1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Capter 19: Magnetic Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.1, page no-541"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Relative permiability and magnetic force\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"M=2300.0 # Magnetization\n",
"B=0.00314 # Flux density\n",
"\n",
"#Calculation\n",
"mu=4*math.pi*10**-7\n",
"H=(B/mu)-M\n",
"mur=(M/H)+1\n",
"\n",
"#Result\n",
"print('The magnetic force H is %.4f A/m and the relative permeability mu_r is %.5f'%(H,mur))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnetic force H is 198.7326 A/m and the relative permeability mu_r is 12.57334\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.2, page no-542"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# magnetisation and flux density\n",
"\n",
"import math\n",
"#Variable Declaration\n",
"H=10**4 # Magnetic field intensity\n",
"sus=3.7*10**-3 # Susceptibility\n",
"mu=4*math.pi*10**-7 # permeability of free space\n",
"\n",
"#Calculation\n",
"M=sus*H\n",
"B=mu*(M+H)\n",
"\n",
"#Result\n",
"print('The magnetisation in the material is %.0f A/m and flux density in the material is %.2f * 10^-2 Wb.m^-2'%(M,B*10**2))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnetisation in the material is 37 A/m and flux density in the material is 1.26 * 10^-2 Wb.m^-2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.3, page no-542"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Flux density in a material\n",
"\n",
"import math\n",
"#variable declaration\n",
"H=10**4 # Magnetic field intensity \n",
"sus=-0.8*10**-5 # susceptibility of copper\n",
"mu=4*math.pi*10**-7 # permeability of free space\n",
"\n",
"#Calculations\n",
"M=sus*H\n",
"B=mu*(M+H)\n",
"\n",
"#Result\n",
"print('The flux density in the material is %.2f * 10^-2 Wb.m^-2'%(B*10**2))\n",
"\n",
"# Magnetic field intensity: value given in the book is 10^6 but calculations are done with 10^4"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The flux density in the material is 1.26 * 10^-2 Wb.m^-2\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.4, page no-543"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Permeability \n",
"\n",
"import math\n",
"# Variable declarations\n",
"H=1800.0 # Magnetic field intensity\n",
"fi=3*10**-5 # Magnetic flux\n",
"A=0.2*10**-4 # Area of cross-section \n",
"\n",
"#Calculations\n",
"B=fi/A\n",
"mu=B/H\n",
"\n",
"#Result\n",
"print('\\nThe magnetic flux is %.1f Wb/m^2\\nThe permeability is %.3f*10^-4 H/m'%(B,mu*10**4))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The magnetic flux is 1.5 Wb/m^2\n",
"The permeability is 8.333*10^-4 H/m\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.5, page no-544"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Magnetic moment of Nickel\n",
"\n",
"import math\n",
"#variable declaration\n",
"B=0.65 # Magnetic inductionof Nickel\n",
"r=8906 # Density of Nickel\n",
"M=58.7 # Atomic weight\n",
"avg=6.023*10**26 # Avogadro's Number\n",
"mu=4*math.pi*10**-7 # Permeability of free space\n",
"k=9.27*10**-24 # 1 Bohr Magnetron\n",
"\n",
"#Calculations\n",
"N=r*avg/M \n",
"mu_m=B/(N*mu)\n",
"mu_m=mu_m/k\n",
"\n",
"#Result\n",
"print(\"The magnetic moment of nickel atom is %.2f Bohr magneton\"%mu_m)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnetic moment of nickel atom is 0.61 Bohr magneton\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.6, page no-545"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Average magnetization contributed per atom\n",
"\n",
"import math\n",
"# Variable declaration\n",
"a=2.5*10**-10 # interatomic spacing\n",
"M=1.8*10**6 # MAgnetization\n",
"e=1.6*10**-19 # charge of an electron\n",
"\n",
"#Calculations\n",
"n=2/a**3\n",
"m=9.1*10**-31\n",
"h=6.625*10**-34\n",
"ma=M/n\n",
"beta1=e*h/(4*math.pi*m)\n",
"\n",
"#Result\n",
"print(\"The average magnetisation contributed per atom = %.3f Bohr Magneton\"%(ma/beta1))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The average magnetisation contributed per atom = 1.517 Bohr Magneton\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.7, page no-545"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Tempoerature using classical statistics\n",
"\n",
"import math\n",
"#Variable declarations\n",
"mu=9.4*10**-24 # Permeability \n",
"H=2 # MAgnetic field intensity\n",
"k=1.38*10**-23 # Bolzmann's constant\n",
"\n",
"#Calculations\n",
"T=2*mu*H/(k*math.log(2))\n",
"\n",
"#Result\n",
"print(\"The temperature of the system T is %.1f K\"%T)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature of the system T is 3.9 K\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.8, page no-547"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Saturation magnetic field of Gd atom\n",
"\n",
"import math\n",
"#Variable declaration\n",
"ba=7.1 # Bohr magnetron per atom\n",
"aw=1.8*10**6 # Atomic weight of Gd \n",
"d=7.8*10**3 # Density of Gd\n",
"avg=6.023*10**26 # Avogadro's Number\n",
"M=157.26 # Atomic number of Gd\n",
"k=9.27*10**-24 # 1 Bohr magnetron\n",
"mu=4*math.pi*10**-7 # permeability of free space\n",
"\n",
"\n",
"#Calculations\n",
"N=d*avg/M\n",
"mm=N*ba*k\n",
"B=N*mu*k*7.1\n",
"\n",
"#Result\n",
"print(\"\\nThe saturation magnetic field of Gd atom is %.2f Wb/m^2\"%B)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The saturation magnetic field of Gd atom is 2.47 Wb/m^2\n"
]
}
],
"prompt_number": 48
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.9, page no-547"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#saturation magnetisation\n",
"\n",
"import math\n",
"# variable ddeclaration\n",
"bet=9.27*10**-24 # 1 Bohr magnetron\n",
"V=0.839*10**-9 # unit cell edge length\n",
"\n",
"#Calculations\n",
"M=32*bet/V**3\n",
"\n",
"#Result\n",
"print(\"The saturation magnetisation is %.3f *10^5 A/m\"%(M*10**-5))\n",
"# Answer in the book is given as 5.023 x 10^-5"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The saturation magnetisation is 5.023 *10^5 A/m\n"
]
}
],
"prompt_number": 55
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.10, page no-548"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Saturation flux density\n",
"\n",
"import math\n",
"#variable declaration\n",
"d=8900 # Density of Ni\n",
"wt=58.71 # Atomic weight\n",
"avg=6.022*10**26 # Avogadro's Number\n",
"bet=9.27*10**-24 # 1 Bohr magnetron\n",
"mu=4*math.pi*10**-7 # permeability of free space\n",
"\n",
"#Calculations\n",
"mm=0.6*bet\n",
"N=d*avg/wt\n",
"ms=mm*N\n",
"bs=mu*ms\n",
"\n",
"#Result\n",
"print(\"\\nThe saturation magnetisation is %.3f *10^5 A/m\\nThe saturation flux density is %.3f Wb/m^2\"%(ms*10**-5,bs))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The saturation magnetisation is 5.077 *10^5 A/m\n",
"The saturation flux density is 0.638 Wb/m^2\n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.11, page no-548"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Saturation magnetisation of gadolinium\n",
"\n",
"import math\n",
"#variable declaration\n",
"awt=157.25 # Atomic weight\n",
"an=64 # Atomic number\n",
"d=7860 # density\n",
"k=9.27*10**-24 # 1 Bohr magnetron\n",
"avg=6.023*10**26 # avogadro's Number\n",
"\n",
"#Calculations\n",
"N=d*8*k*avg/awt\n",
"\n",
"# Result\n",
"print(\"The saturation magnetisation of gadolinium is %.2f*10^6 A/m\"%(N*10**-6))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The saturation magnetisation of gadolinium is 2.23*10^6 A/m\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 19.12, page no-549"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Magnetic flux density inside the material\n",
"\n",
"import math\n",
"#variable declaration\n",
"H=1000 # Magnetic field strength\n",
"sus=-0.3*10**-5 # magnetic susceptibility\n",
"mu=4*math.pi*10**-7 # permeability of free space\n",
"\n",
"#calculation\n",
"M=sus*H\n",
"B=mu*(M+H)\n",
"B=math.floor(B*10**6)/10**6\n",
"\n",
"#Result\n",
"print(\"The magnetic flux density inside the material is %.3f T or Wb.m^-2\"%(B*10**3))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnetic flux density inside the material is 1.256 T or Wb.m^-2\n"
]
}
],
"prompt_number": 67
}
],
"metadata": {}
}
]
}
|