summaryrefslogtreecommitdiff
path: root/Material_Science_by_S._L._Kakani_and_A._Kakani/ch6.ipynb
blob: 5cb066faa62e166d70135caff63505053cb6786c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
{
 "metadata": {
  "name": "",
  "signature": "sha256:c0c85d5a39a8e445759e5cb8d2f67d6ba3787632cdef1705d098045c10def4f6"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6 :\n",
      "Photoelectric Effect"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.1 Page No : 191"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.62*10**-34;      #Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;           #speed of light (in m/s)\n",
      "e = 1.6*10**-19;       #electron charge(in coulomb)\n",
      "Wavelength_1 = 2300*10**-10;\n",
      "Wavelength_2 = 1800*10**-10;\n",
      "\n",
      "# Calculation\n",
      "W = h*c/Wavelength_1;\t\t\t#Work function\n",
      "E_in = h*c/Wavelength_2;\n",
      "E = E_in-W;\t\t\t#kinetic energy of the ejected electron(in Joules)\n",
      "E_1 = E/e;\t\t\t#kinetic energy of the ejected electron(in eV)\n",
      "\n",
      "# Results\n",
      "print 'kinetic energy of the ejected electron in = %.1f eV'%E_1\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "kinetic energy of the ejected electron in = 1.5 eV\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.2 Page No : 191"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.625*(10**(-34));\t#Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
      "e = 1.602*10**-19;\t\t#electron charge(in coulomb)\n",
      "W = 2.3;\t\t\t    #work (in eV)\n",
      "\n",
      "# Calculation\n",
      "W_1 = W*e;\t\t\t#work (in joules)\n",
      "v_o = W_1/h;\t\t\t#threshold frequency(in Hz)\n",
      "Wavelength = (h*c/W_1)/10**(-10);\t\t\t#Wavelength in Angstrom\n",
      "\n",
      "# Results\n",
      "print 'threshold frequency(Hz) = %.2e'%v_o\n",
      "print 'Wavelength in %.0f Angstrom'%(round(Wavelength,-1))\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "threshold frequency(Hz) = 5.56e+14\n",
        "Wavelength in 5390 Angstrom\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.3 Page No : 192"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
      "e = 1.602*10**-19;\t\t\t#electron charge(in coulomb)\n",
      "\n",
      "# Calculation\n",
      "wavelength = 6800*10**-10;\t\t\t#wavelength of radiation\n",
      "v_o = c/wavelength;\t\t\t#frequency\n",
      "W = h*v_o;\t\t\t#Work function\n",
      "\n",
      "# Results\n",
      "print 'threshold frequency in = %.2e Hz'%v_o\n",
      "print 'work function of metal in = %.2e joule'%W\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "threshold frequency in = 4.41e+14 Hz\n",
        "work function of metal in = 2.92e-19 joule\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.4 Page No : 192"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
      "c = 3.*10**8;\t\t\t#speed of light (in m/s)\n",
      "\n",
      "# Calculation\n",
      "L_r  = 150*8./100;\t\t\t#Lamp rating(in joule)\n",
      "wavelength = 4500.*10**-10;\t\t\t#in meter\n",
      "W = h*c/wavelength;\t\t\t#work function\n",
      "N = L_r/W;\t\t\t#number of photons emitted by lamp per second\n",
      "\n",
      "# Results\n",
      "print 'number of photons emitted by lamp per second = %.1e'%N\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "number of photons emitted by lamp per second = 2.7e+19\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.5 Page No : 193"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.6*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
      "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n",
      "W = 2.24;\t\t\t#work function(in eV)\n",
      "\n",
      "# Calculation\n",
      "W_1 = W*e;\t\t\t#work function(in joule)\n",
      "v = (W_1/h)*10**-10;\t\t\t#frequency\n",
      "wavelength = c/v;\t\t\t#region of electrons spectrum is less than(in angstrom)\n",
      "\n",
      "# Results\n",
      "print 'region of electrons spectrum is less than %d angstrom'%round(wavelength,-1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "region of electrons spectrum is less than 5520 angstrom\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.6 Page No : 193"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h = 6.625*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
      "P_o = 10*10**3;\t\t\t#Power of radio receiver (in Watt)\n",
      "\n",
      "# Calculation\n",
      "v = 440*10**3;\t\t\t#Operating frequency\n",
      "E = h*v;\t\t\t#Energy of each electron\n",
      "N = P_o/E;\t\t\t#Number of photons emitted/sec\n",
      "\n",
      "# Results\n",
      "print 'Number of photons emitted/sec by radio receiver = %.1e'%N\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Number of photons emitted/sec by radio receiver = 3.4e+31\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6.7 Page No : 193"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "W_t = 4.52;\t\t\t#Work function for tungesten(in eV)\n",
      "W_b = 2.5;\t\t\t#Work function for barrium(in eV)\n",
      "h = 6.62*(10**(-34));\t\t\t#Planck's constant(in m2*kg/s)\n",
      "c = 3*10**8;\t\t\t#speed of light (in m/s)\n",
      "\n",
      "# Calculation\n",
      "e = 1.6*10**-19;\t\t\t#electron charge(in coulomb)\n",
      "W_T = W_t*e;\t\t\t#Work function for tungesten(in Joule)\n",
      "W_B = W_b*e;\t\t\t#Work function for barrium(in Joule)\n",
      "Wavelength_T = (h*c/W_T)*10**10;\t\t\t#wavelength of light which can just eject electron from tungsten\n",
      "Wavelength_B = (h*c/W_B)*10**10;\t\t\t#wavelength of light which can just eject electron from barrium\n",
      "\n",
      "# Results\n",
      "print 'wavelength of light which can just eject electron from tungsten in = %.0f Angstrom'%Wavelength_T\n",
      "print 'wavelength of light which can just eject electron from barrium in = %.0f Angstrom'%Wavelength_B\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of light which can just eject electron from tungsten in = 2746 Angstrom\n",
        "wavelength of light which can just eject electron from barrium in = 4965 Angstrom\n"
       ]
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}