1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
{
"metadata": {
"name": "",
"signature": "sha256:c3307fcf5401111c18823817fd228cc6b9116793515454b94be6aa8bf3b80a0e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 :\n",
"Electrical and Magnetic\n",
"Properties of Materials"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1 Page No : 443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"l = 100;\t\t\t#length of wire\n",
"p = 2.66*10**(-8);\t\t\t#resistivity\n",
"\n",
"# Calculation\n",
"A = 3*10**(-6);\t\t\t#cross sectional area\n",
"R = p*l/A;\t\t\t#resismath.tance of an aluminium wire\n",
"\n",
"# Results\n",
"print 'resistance of an aluminium wire = %.3e Ohm'%R\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistance of an aluminium wire = 8.867e-01 Ohm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2 Page No : 443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"R_Cu = 1.56;\t\t\t#Resistivity of pure copper(in micro-ohm-cm)\n",
"R_CuNi = 4.06;\t\t\t#Resistivity of Cu containing two atomic percent (in micro-ohm-cm)\n",
"R_Ni = (R_CuNi-R_Cu)/2;\t\t\t#Increase in resistivity due to one atomic % Ni\n",
"\n",
"# Calculation\n",
"R_CuAg = 1.7;\t\t\t#resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)\n",
"R_Ag = R_CuAg-R_Cu;\t\t\t#Increase in resistivity due to one atomic % Ag\n",
"R_CuNiAg = R_Cu+R_Ni+3*R_Ag;\t\t\t#Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag\n",
"\n",
"# Results\n",
"print 'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = %.2f micro-ohm-cm'%R_CuNiAg\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag = 3.23 micro-ohm-cm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3 Page No : 443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"R_Cu = 1.8*10**(-8);\t\t\t#resistivity of pure copper at room temperature \n",
"R_CuNi = 7*10**(-8);\t\t\t#resistivity of Cu 4% Ni alloy at room temperature \n",
"\n",
"# Calculation\n",
"R_Ni = (R_CuNi-R_Cu)/4;\t\t\t#resistivity due to Impurity scattering per % of Ni\n",
"\n",
"# Results\n",
"print 'resistivity due to impurity scattering per percent of Ni in the Cu lattice = %.1e ohm-meter'%R_Ni\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistivity due to impurity scattering per percent of Ni in the Cu lattice = 1.3e-08 ohm-meter\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4 Page No : 455"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"C = 10**(-9);\t\t\t#capacitance(in F)\n",
"d = 2*10**(-3);\t\t\t#distance of separation in a parallel plate condenser\n",
"E_o = 8.854*10**(-12);\t\t\t#dielectric consmath.tant\n",
"\n",
"# Calculation\n",
"A = (10*10**(-3))*(10*10**(-3));\t\t\t#area of parallel plate condenser\n",
"#C = E_o*E_r*A/d\n",
"E_r = C*d/(E_o*A);\t\t\t#Relative dielectric constant\n",
"\n",
"# Results\n",
"print 'Relative dielectric constant of a barium titanate crystal %.0f'%(E_r)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Relative dielectric constant of a barium titanate crystal 2259\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5 Page No : 456"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"q = 1.6*10**(-19);\t\t\t#charge (in C)\n",
"d_1 = 0.06\t\t\t#shift of the titanium ion from the body centre (in \u00c5)\n",
"d_2 = 0.08\t\t\t#shift of the oxygen anions of the side faces (in \u00c5)\n",
"d_3 = 0.06\t\t\t#shift of the oxygen anions of the top and bottom face (in \u00c5) \n",
"\n",
"# Calculation\n",
"D_1 = d_1*10**(-10);\t\t\t#shift of the titanium ion from the body centre (in m)\n",
"D_2 = d_2*10**(-10);\t\t\t#shift of the oxygen anions of the side faces (in m)\n",
"D_3 = d_3*10**(-10);\t\t\t#shift of the oxygen anions of the top and bottom face (in m)\n",
"U_1 = 4*q*D_1;\t\t\t#dipole moment due to two O2\u2013 ions on the four side faces(in C-m)\n",
"U_2 = 2*q*D_2;\t\t\t#dipole moment due to one O2\u2013 on top and bottom(in C-m)\n",
"U_3 = 4*q*D_3;\t\t\t#dipole moment due to one Ti4+ ion at body centre(in C-m)\n",
"U = U_1+U_2+U_3;\t\t\t#Total dipole moment(in C-m)\n",
"V = 4.03*((3.98)**2)*10**(-30);\t\t\t#volume(in m3)\n",
"P = U/V;\t\t\t#polarization the total dipole moments per unit volume\n",
"\n",
"# Results\n",
"print 'polarization = %.2f C/m**2'%P\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"polarization = 0.16 C/m**2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6 Page No : 478"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"V = ((2.87)**3)*10**(-30)\t\t\t#Volume of unit cell of BCC iron (in m**3)\n",
"N = 2.\t\t\t#Number of atoms in the unit cell\n",
"\n",
"# Calculation\n",
"M = 1750.*10**3;\t\t\t#saturation magnetization of BCC Iron A/m\n",
"M_Net = V*M*(1./N)\t\t\t#net magnetic moment per atom\n",
"Bohr_magneton = 9.273*10**(-24);\t\t\t#Bohr_magneton (magnetic moment) in A/m2\n",
"M_moment = M_Net/Bohr_magneton;\t\t\t#The magnetic moment (in units of U_B)\n",
"\n",
"# Results\n",
"print 'The magnetic moment (in units of U_B) = %.1f'%M_moment\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The magnetic moment (in units of U_B) = 2.2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.7 Page No : 479"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"p = 8.90*10**6;\t\t\t#density of nickel in gm/m3. \n",
"N_A = 6.023*10**23;\t\t\t#Avogadro\u2019s number atoms/mol\n",
"At_w = 58.71;\t\t\t#Atomic weight of Ni in gm/mol\n",
"\n",
"# Calculation\n",
"N = p*N_A/At_w;\t\t\t#number of atoms/m3\n",
"U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n",
"M_s = 0.60*U_B*N;\t\t\t#saturation magnetization\n",
"pi = 22./7;\n",
"U_o = 4*pi*10**(-7);\t\t\t#magnetic consmath.tant\n",
"B_s = U_o*M_s;\t\t\t#Saturation flux density\n",
"\n",
"# Results\n",
"print 'the saturation magnetization = %.1e'%M_s\n",
"print 'Saturation flux density = %.2f'%B_s\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the saturation magnetization = 5.1e+05\n",
"Saturation flux density = 0.64\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.8 Page No : 479"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"import math \n",
"\n",
"# Variables\n",
"#Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and\n",
"n_b = 32;\t\t\t#\n",
"U_B = 9.273*10**(-24);\t\t\t#Bohr_magneton\n",
"\n",
"# Calculation\n",
"a = 0.839*10**(-9);\t\t\t#the unit cell edge length in m\n",
"V = a**3;\t\t\t#volume(in m3)\n",
"M_s = n_b*U_B/V;\t\t\t#the saturation magnetization\n",
"\n",
"# Results\n",
"print 'the saturation magnetization = %.0e A/m'%M_s\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the saturation magnetization = 5e+05 A/m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.9 Page No : 479"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"\n",
"# Variables\n",
"#hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency\n",
"#Pe is proportional to the square of the induced emf (Pe)\n",
"#Pe + Ph = 750 W (at 25 Hz)\n",
"#4Pe + 2Ph = 2300 W(at 50Hz)\n",
"#solving equation\n",
"P_e = 800./2;\t\t\t#induced emf loss \n",
"\n",
"# Calculation\n",
"I_d = 4*P_e;\t\t\t#The eddy current loss at the normal voltage and frequency\n",
"\n",
"# Results\n",
"print 'The eddy current loss at the normal voltage and frequency = %.0f W'%I_d\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The eddy current loss at the normal voltage and frequency = 1600 W\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|