summaryrefslogtreecommitdiff
path: root/Material_Science_by_S._L._Kakani_and_A._Kakani/ch11.ipynb
blob: cf7a4c6af8a921920cae892ca56312a3ae6f7c5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
{
 "metadata": {
  "name": "",
  "signature": "sha256:ccc34ac1a23df3ea87c02161eb6957101119525a84db5440299d3d3e0c490bb9"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 11 :\n",
      "Deformation of Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.1 Page No : 369"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "h_1 = 1;\n",
      "k_1 = 1;\n",
      "l_1 = 1;\n",
      "#Miller indices of slip plane\n",
      "h_2 = 1;\n",
      "k_2 = -1;\n",
      "l_2 = 1;\n",
      "#Miller indices of stress plane\n",
      "h_3 = 1;\n",
      "k_3 = 1;\n",
      "l_3 = 0;\n",
      "\n",
      "# Calculation\n",
      "#Miller indices of slip direction\n",
      "A = (h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_2**2+k_2**2+l_2**2)**(1./2)));\t\t\t#Value of math.cos(x) where x  = angle between slip plane and stress plane\n",
      "B = (h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1**2+k_1**2+l_1**2)**(1./2))*((h_3**2+k_3**2+l_3**2)**(1./2)));\t\t\t#Value of math.cos(y) where y  = angle between slip direction and stress direction\n",
      "C = (1-A**2)**(1./2);\t\t\t#Value of math.sin(x)\n",
      "stress = 3.5;\t\t\t#Applied Stress in Mpa\n",
      "T_cr = stress*A*B*C;\t\t\t#Critical resolved shear stress(in MPa)\n",
      "\n",
      "# Results\n",
      "print 'Critical resolved shear stress in = %.3f MPa'%T_cr\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Critical resolved shear stress in = 0.898 MPa\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.3 Page No : 370"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "D = 0.022;\t\t\t#Grain diameter(in mm)\n",
      "d = D*10**(-3);\t\t\t#Grain diameter(in m)\n",
      "K = 0.63;\t\t\t#Constant(in MNm**(-3/2))\n",
      "\n",
      "# Calculation\n",
      "sigma_i = 80;\t\t\t#in MNm**-2\n",
      "sigma_y = sigma_i+K*d**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy\n",
      "\n",
      "# Results\n",
      "print 'Yield stress for a polycrystalline alloy in = %.2f MN/m**2'%sigma_y\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Yield stress for a polycrystalline alloy in = 214.32 MN/m**2\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11.4 Page No : 370"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "sigma_y1 = 120;\t\t\t#primary yield strength of polycrystalline material(in MN*m**-2)\n",
      "sigma_y2 = 220;\t\t\t#increased yield strength of polycrystalline material(in MN*m**-2)\n",
      "d_1 = 0.04*10**(-3);\t\t\t#primary grain diameter(in meter)\n",
      "d_2 = 0.01*10**(-3);\t\t\t#grain diameter after decreasing(in meter)\n",
      "\n",
      "# Calculation\n",
      "#sigma_y1 = sigma_i+K*(d_1)**(-1/2)\n",
      "#sigma_y2 = sigma_i+K*(d_2)**(-1/2)\n",
      "#putting the values and solving the equation\n",
      "K = (220-120)/((d_2**(-1./2))-((d_1**(-1./2))));\t\t\t#consmath.tant(in MN*m(-3/2))\n",
      "sigma_i = sigma_y1-K*(d_1)**(-1./2);\t\t\t#in MN*m**-2\n",
      "d = 1./((10**4)*(256./645))**(1./2);\t\t\t#grain diameter for grain size ASTM 9(in mm)\n",
      "D = d*10**(-3);\t\t\t                        #grain diameter for grain size ASTM 9(in meter)\n",
      "sigma_y = sigma_i+K*(D)**(-1./2);\t\t\t#Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m**-2)\n",
      "\n",
      "# Results\n",
      "print 'Yield stress for a polycrystalline alloy for grain size ASTM 9 in = %.0f MN*m**-2'%round(sigma_y)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Yield stress for a polycrystalline alloy for grain size ASTM 9 in = 179 MN*m**-2\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}