1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Mechanical Properties"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.3 pageno : 166"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"from matplotlib.pyplot import *\n",
"\n",
"# Variables\n",
"a1 = 222.*10**9;\t\t\t#in N\n",
"a2 = 168.*10**9;\t\t\t#in N\n",
"e1 = 1.90; \t \t\t#in sqm\n",
"e2 = 1.42; \t\t \t#in sqm\n",
"da = a1-a2; \t\t\t #in N\n",
"de = e1-e2;\t \t \t#in sqm\n",
"MPa = [14,28,56,84,110,138,193,221,276]\n",
"strain = [.1,.21,.44,.67,.88,1.14,1.7,1.95,2.9]\n",
"\n",
"# Calculations\n",
"e_math_tan = da/de;\n",
"e_math_tann = e_math_tan*10**-9;\t\t\t#in Gpa\n",
"a3 = 180.*10**9; \t\t\t#in N\n",
"e3 = 1.46;\t\t\t #in sqm\n",
"e_sec = 10**-9*a3/e3;\t\t\t #in Gpa\n",
"a = 85*10**6;\n",
"e = .68*10**-3;\n",
"e_y = 10**-9*a/e;\t\t\t #in Gpa\n",
"plot(strain,MPa)\n",
"plot(strain,MPa,\"go\")\n",
"xlabel(\"STRAIN\")\n",
"ylabel(\"STRESS(MPa)\")\n",
"suptitle(\"Stress-strain diagram\")\n",
"\n",
"# Results\n",
"print \"Tangent Modulous of elasticity (in Gpa) = %.1f GPa\"%e_math_tann\n",
"print \"Secant modulous of elasticity (in Gpa) = %d GPa\"%e_sec\n",
"print \"Youngs modulous (in Gpa) = %d GPa\"%e_y\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Tangent Modulous of elasticity (in Gpa) = 112.5 GPa\n",
"Secant modulous of elasticity (in Gpa) = 123 GPa\n",
"Youngs modulous (in Gpa) = 125 GPa\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXXe//HXQUhyyTXAoDsMV0QWK7G7sXAUtRgdy8LQ\nHFxzysDKFus3Uzg1inPbIpozOeNW5laaYhS5FFoNhQm2DJWGS4himqJiAsK5fn9ceUaEk4gczjnw\nfj4e59E513Kuz9VV58N3txiGYSAiIlIND2cHICIirktJQkRE7FKSEBERu5QkRETELiUJERGxS0lC\nRETsUpIQh/vrX/9KSEgIYWFhREREsH37dgBefvllzpw549TY1q9fzzfffHPJ523YsIFZs2bV+rpJ\nSUm88MILADz77LNs2bKl1t8l4kiezg5AGrbMzEzS0tLIycnBy8uLY8eOUVpaCsCcOXMYPXo0V155\nZZXzrFYrHh6O/xvm7bffZsiQIXTv3r3KvoqKCpo0aVLteUOGDGHIkCG1vq7FYrG9nz59eq2/53zl\n5eV4eup/aalbKkmIQxUWFtK+fXu8vLwAaNu2LR06dCAlJYWDBw/Sr18/+vfvD0CLFi147LHHCA8P\nJzMzk2XLlhEZGUlERAR//OMfsVqtVFRUMGbMGHr27EloaChz5swBICUlhR49ehAWFkZcXFy1sUyb\nNs12zOOPP05mZiYbNmzg8ccfp1evXuzZs4eoqCgeeeQRbrrpJubMmcM777xDnz596NWrF9HR0fz4\n448ALFmyhISEBADGjBnDlClTuOWWWwgKCmLNmjXVXv+vf/0rXbt2pW/fvnz33Xe2RDFmzBjbOX/5\ny1/o3bs3PXv2ZNKkSbZzt2/fTmhoKBERETz++OP07NnTFsfQoUPp378/0dHRnD59mgEDBnDDDTcQ\nGhpKamoqAPv27aNbt26MHTuWrl27MmrUKDZu3Mgtt9xCly5dbKU7kSoMEQcqLi42wsPDjS5duhgP\nPvigsXXrVtu+wMBA46effrJ9tlgsxptvvmkYhmHk5uYaQ4YMMcrLyw3DMIwHH3zQeO2114wdO3YY\n0dHRtnNOnDhhGIZhXHPNNUZZWVmlbec7evSo0bVr1yrnjRkzxlizZo1te1RUlDF58mTb5+PHj9ve\n//Of/zSmTp1qGIZhLFmyxHjooYcMwzCM+Ph4IzY21hZ3p06dqlz/888/N3r27GmcOXPGOHnypNGp\nUyfjhRdeqBLDsWPHbOeMHj3a2LBhg2EYhtGjRw/j008/NQzDMKZNm2b07NnTMAzDWLx4sREQEGCL\ns7y83Dh58qRhGIZx5MgRWyx79+41PD09ja+//tqwWq3GDTfcYIwbN84wDMNYv369MWzYsCoxixiG\nYagkIQ7VvHlzduzYwYIFC7j66qsZMWIES5curfbYJk2aMHz4cAC2bNnCjh07uPHGG4mIiGDLli3s\n3buX66+/nj179pCYmMj7779Py5YtAQgNDWXkyJG88cYb1VYRtW7dGm9vb8aPH8/bb79dqYrLuGBm\nmhEjRtje5+fnM3DgQEJDQ5k9eza5ublVzrFYLAwbNgyA7t27c/jw4SrX/+ijj7jrrrvw9vamZcuW\nDB06tNp/Bx988AF9+vQhNDSUDz74gNzcXIqKiiguLiYyMhKAkSNHVrr+wIEDad26NWBW0z311FOE\nhYURHR3NwYMHbaWfjh070qNHDywWCz169GDAgAEAhISEsG/fvmrjEVGSEIfz8PDgtttuIykpiXnz\n5tmtjvH29q5UVx8fH09OTg45OTl8++23PPPMM7Ru3Zovv/ySqKgo/vGPfzBhwgQA0tLSmDx5MtnZ\n2dx0001UVFQwaNAgIiIiuP/++2nSpAlZWVncfffdvPPOOwwePNh2nfOvCWZiOychIYHExES+/PJL\nXn31VbsN7VdccYXt/YVJ59w1zt9e3TElJSVMnjyZNWvW8OWXXzJx4kRKSkqqxHfhuc2aNbO9f+ON\nNzh69CjZ2dnk5OTg4+NDSUkJAE2bNrUd5+HhYYvZw8OD8vLyau9LRElCHGrXrl3s3r3b9jknJ4fA\nwEAAWrZsycmTJ6s9r3///rz11lscOXIEgGPHjvHDDz/w008/UV5ezl133cVzzz1HdnY2hmHwww8/\nEBUVRXJyMidOnOD06dO8//775OTksGDBAk6fPk1RURG33347L774Il988YXdGM7/ET558iTXXHMN\nYNb/19att97KunXrKCkp4dSpU7zzzjtVjjn3Y96uXTuKi4t58803AWjVqhUtW7YkKysLgJUrV9q9\nzsmTJ/Hx8aFJkyZ8+OGH7N+/v9Yxi4B6N4mDFRcXk5CQQFFREZ6ennTu3JkFCxYAcP/99zN48GD8\n/f3ZsmVLpb+Yu3fvzvPPP8/AgQOxWq14eXkxf/58vL29GTt2LFarFYDk5GQqKioYPXo0J06cwDAM\npkyZwlVXXVUpjlOnTvH73/+ekpISDMPgpZdeAuDee+9l4sSJzJ071/ajfH4cSUlJ3HPPPbRp04bf\n/va3th9di8VS6Th778+JiIhgxIgRhIWF4ePjQ+/evasc07p1ayZOnEhISAh+fn626iWAhQsXMnHi\nRFuprFWrVtXGMWrUKIYMGUJoaCg33nhjpV5bF8Z1sZhFACxGdeVeEXEpp0+ftlWDJScnc/jwYVui\nE3EklSRE3EBaWhozZ86kvLycwMDAy6r6ErkUKkmIiIhdargWERG7lCRERMQuJQkREbFLSUJEROxS\nkhAREbuUJERExC4lCRERscthSaKkpITIyEjCw8MJDg7mqaeeAsw5eKKjo+nSpQsDBw6kqKjIds7M\nmTPp3Lkz3bp1Y+PGjY4KTUREasihg+l+/vlnmjVrRnl5Ob/5zW+YPXs2qamptG/fnieeeIJZs2Zx\n/PhxkpOTyc3NZeTIkWzfvp2CggIGDBjArl276mV1MhERqZ5Df4HPTWFcVlZGRUUFbdq0ITU1lfj4\neMCcCnrdunWAudZwXFwcXl5eBAYG0qlTJ9uslyIi4hwOTRJWq5Xw8HB8fX3p168fPXr04PDhw/j6\n+gLg6+trW6Dl4MGDBAQE2M4NCAigoKDAkeGJiMhFOHSCPw8PD3bu3MmJEycYNGgQH374YaX9F05z\nfCFNXywi4lz1Mgtsq1atiImJYceOHfj6+lJYWIifnx+HDh3Cx8cHAH9/f/Lz823nHDhwAH9//yrf\n1alTJ/Ly8uojbBGRBiMoKIjvv//+ks9zWHXT0aNHbT2Xzpw5w6ZNm4iIiGDo0KG2NY6XLl1qWxt4\n6NChrFy5krKyMvbu3cvu3burXZglLy8PwzAa7OvZZ591egy6N92f7q/hvWr7x7XDShKHDh0iPj4e\nq9WK1Wpl9OjR9O/fn4iICGJjY1m4cCGBgYGsXr0agODgYGJjYwkODsbT05P58+eruklExMkcliR6\n9uxJdnZ2le1t27Zl8+bN1Z7z9NNP8/TTTzsqJBERuUQahOBioqKinB2CwzTkewPdn7tr6PdXW263\nMp3FYsHNQhYRcbra/naqJCEiInYpSYiIiF1KEiIiYpeShIiI2KUkISIidilJiIiIXUoSIiJil5KE\niIjYVS+zwIqISN1I25RGyvIUSo1SmlqakjgykZjoGIddT0lCRMRNpG1KY8orU8iL+O+MrnmvmO8d\nlSg0LYeIiJsYNHYQGwM3Vt2+fxDpi9J/9VxNyyEi0sCdqSitdnuJtcRh11SSEBFxcbm5MHUqfPpR\n02r3e3t4O+zaShIiIi7o1Cn417/g5pthwAC44gqYl5RIUE5QpeOCsoNIiEtwWBxquBYRcRGGAZ98\nAosWwdq1EBUFTz8Nt98Onp4AMfhfA3NXzKXEWoK3hzcJDyU4tHeTGq5FRJyssBBee81MDgDjx8Po\n0eDnV3fXqO1vp0oSIiJOUF4O774LCxfCtm1w113m+//9X7BYnB3dfylJiIjUo127zBLDa69BYKBZ\nali2DFq2dHZk1VOSEBFxsNOn4c03zeTw3Xfwhz/A5s0QHOzsyC5ObRIiIg5gGJCVZVYhvfWWWY00\nfjz87nfg5VX/8ahNQkTEBRw5Aq+/bpYaSkpg3Dj46ivw93d2ZLWjkoSIyGWqqICNG81Sw+bNMHSo\nWWq49VbXaYSu7W+nkoSISC3t2QOLF8OSJdChg5kY7r0XWrVydmRVqbpJRKQenDljDnRbuNCsRho1\nyuzK2rOnsyNzDCUJEZGLMAzIzjYTw6pVcNNN8MADZrVS0+qnU2owlCREROw4dgzeeMNMDidOwNix\nkJMD//M/zo6s/jhsgr/8/Hz69etHjx49CAkJISUlBYCkpCQCAgKIiIggIiKC9957z3bOzJkz6dy5\nM926dWPjxqpzpouIOJrVajY+x8XB9ddDZia88ALk5cEzzzSuBAEObLguLCyksLCQ8PBwiouLueGG\nG1i3bh2rV6+mZcuWPProo5WOz83NZeTIkWzfvp2CggIGDBjArl278PConMfUcC0ijvDDD2Yj9OLF\n0KaN2Qg9ciS0bevsyOqGyy065OfnR3h4OAAtWrSge/fuFBQUAFQb6Pr164mLi8PLy4vAwEA6depE\nVlaWo8ITEaG0FFavhkGDICLCHOOwdq1ZpfTQQw0nQVyOellPYt++feTk5NCnTx8A5s6dS1hYGOPH\nj6eoqAiAgwcPEhAQYDsnICDAllREROrSl1/ClCkQEACvvgrx8XDgAMybB716OTs61+LwJFFcXMzd\nd9/NnDlzaNGiBQ888AB79+5l586ddOjQgalTp9o91+Iqo1BExO0VFcE//mH2TIqJMccyfPYZbNli\nVitdeaWzI3RNDu3ddPbsWYYPH859993HsGHDAPDx8bHtnzBhAkOGDAHA39+f/Px8274DBw7gb2cc\ne1JSku19VFQUUVFRdR+8iLg9w4CtW83eSRs2QHQ0PPec+c8mTZwdnWNlZGSQkZFx2d/jsIZrwzCI\nj4+nXbt2vPTSS7bthw4dokOHDgC89NJLbN++neXLl9sarrOysmwN199//32V0oQarkXkYgoKYOlS\nc/6kK680G6Hvuw/at3d2ZM7jciOuP/nkE5YtW0ZoaCgREREAzJgxgxUrVrBz504sFgsdO3bk1Vdf\nBSA4OJjY2FiCg4Px9PRk/vz5qm4SkRorK4N33jFLDZmZcM89sHy5Wb2kn5La09xNIuLWvvnGTAyv\nvw7dupmlhuHDoXlzZ0fmWlyuJCEi4iinTpnTYyxcCPv3m72TPv4YOnd2dmQNj0oSIuIWDAP+/W8z\nMbz9NkRFmaWGwYPBU3/uXpSmCheRBqmw0FwPetEi8/P48ebyn76+zo3L3ai6SUQajPJyeO89s9Sw\ndSvcdZeZJG6+WY3Q9U1JQkRcxq5dZjJ47TUIDDRLDa+/Di1bOjuyxktJQkSc6vRpeOsts9SwaxeM\nHm2Ogu7e3dmRCahNQkScwDAgK8tMDG+9BbfcAuPGwe9+B15ezo6uYVKbhIi4vCNHYNkyMzmUlpqJ\n4euv4ZprnB2Z2KOShIg4VEUFbNxoJobNm80lP8ePh1tvVSN0fVIXWBFxKXv2mAv4LFkCHTqYieHe\ne83ZV6X+qbpJRJzuzBlz0Z5Fi8w1G0aNgnffhZ49nR2Z1JaShIhctuxsszpp5UpzQr0//tGsVmra\n1NmRyeVSkhCRWjl2DN54wyw1FBXB2LHmsp//8z/OjkzqktokRKTGrFb44AOz1PDee3DHHWZbQ79+\n4FEviyFLbanhWkQuS9qmNFKWp1BqlNLU0pTEkYnERMcA8MMPZiP04sXQpo2ZGEaOhLZtnRy01Jga\nrkWk1tI2pTHllSnkReTZtn0/L49tH8HOz2LYscPsmfT22/DLGmLSSKgkISIMGjuIjYEbq2xv+9Yg\n5j6Vzp13msuAivtSSUJEaq3UKK12e88bShg5sp6DEZeipiYRwVpafV9Vbw/veo5EXI2ShEgjt2ED\nfLklkXYfBFXaHpQdREJcgpOiEleh6iaRRqqsDJ56ypyF9d11MRw/DXNXzKXEWoK3hzcJDyXYejdJ\n46WGa5FGaN8+s7eSj4/ZrbVdO2dHJI5W299OVTeJNDLr1kFkJMTGwvr1ShDy61TdJNJIlJXBE0+Y\nSSI11UwUIhejJCHSCOzZAyNGgL+/Ob9SmzbOjkjchaqbRBq4NWugTx+47z5zxLQShFwKlSREGqjS\nUnjsMUhLM1833eTsiMQdqSQh0gB9/z387//CoUPmWg9KEFJbShIiDczq1WaCGDcO3nwTWrd2dkTi\nzhyWJPLz8+nXrx89evQgJCSElJQUAI4dO0Z0dDRdunRh4MCBFBUV2c6ZOXMmnTt3plu3bmzcWHWy\nMRGxr6QEHngAnn4a0tNh8mSwWJwdlbg7hw2mKywspLCwkPDwcIqLi7nhhhtYt24dixcvpn379jzx\nxBPMmjWL48ePk5ycTG5uLiNHjmT79u0UFBQwYMAAdu3ahccFK5loMJ1IVbt2meMeunaFBQugVStn\nRySuxuUG0/n5+REeHg5AixYt6N69OwUFBaSmphIfHw9AfHw869atA2D9+vXExcXh5eVFYGAgnTp1\nIisry1HhiTQYy5fDLbeY60qvXKkEIXWrXno37du3j5ycHCIjIzl8+DC+vr4A+Pr6cvjwYQAOHjxI\nnz59bOcEBARQUFBQH+GJuKUzZyAxEbZuhU2b4Je/yUTqlMOTRHFxMcOHD2fOnDm0bNmy0j6LxYLl\nVypN7e1LSkqyvY+KiiIqKqouQhVxG99+C/fcAz17wo4dcMH/WiJkZGSQkZFx2d/j0CRx9uxZhg8f\nzujRoxk2bBhglh4KCwvx8/Pj0KFD+Pj4AODv709+fr7t3AMHDuDv71/t956fJEQam9dfh0cfhRkz\nYMIENU5L9S78A3r69Om1+h6HNVwbhkF8fDzt2rXjpZdesm1/4oknaNeuHU8++STJyckUFRVVarjO\nysqyNVx///33VUoTariWxiRtUxopy1MoNUrxNJpiOZpIfl4Mq1dDaKizoxN34nLLl37yyScsW7aM\n0NBQIn5ZOX3mzJlMmzaN2NhYFi5cSGBgIKtXrwYgODiY2NhYgoOD8fT0ZP78+b9aFSXS0KVtSmPK\nK1PIi8izbWuxK4/Ff4PQUK3zIPVD60mIuKhBYwexMbDqeKFB+weRvijdCRGJO3O5LrAicnlOlpRW\nu73EWlLPkUhjVuMkUVJSQmlp9f/RikjdMQz4179gR2bTavd7e3jXc0TSmNlNElarlbVr13LPPffg\n7+9Px44due666/D39+fuu+/m7bffVrWPSB3buxeio+Ef/4AXn04kKCeo0v6g7CAS4hKcFJ00Rnbb\nJG699Vb69u3L0KFDCQ8Pp2lT86+a0tJScnJySE1N5eOPP2bbtm31G7DaJKQBslrhlVdg+nRz9bhH\nHwVPT7Pxeu6KuZRYS/D28CYhLoGYaDVay6Wr7W+n3SRRWlpqSwz21OSYuqYkIQ3Nd9/B+PHm+4UL\nzfmXROpanTdcX/jj/+OPP/LDDz/YXtUdIyI1V14Os2aZ8y6NGAHbtilBiOu56DiJ1NRUpk6dysGD\nB/Hx8WH//v10796d//znP/URn0iD9NVXMHasudbD9u3QsaOzIxKp3kV7N/3pT38iMzOTLl26sHfv\nXrZs2UJkZGR9xCbS4JSVQVIS/Pa35qytmzYpQYhru2iS8PLyon379litVioqKujXrx+ff/55fcQm\n0qB8/jnceKM5IV9OjuZdEvdw0eqmNm3acOrUKfr27cuoUaPw8fGhRYsW9RGbSINw5oxZeliyBF58\nEUaOVHIQ93HRaTlOnz7NlVdeSUVFBW+88QYnT55k1KhRtGvXrr5irES9m8SdfPyx2XMpLAzmzoVf\nllIRqXd13gX2008/ZdKkSXz//feEhoaycOFCgoODLzvQy6UkIe6guNhca/qtt2DePLjrLmdHJI1d\nnXeBnTx5MrNnz+ann37i0Ucf5ZFHHrmsAEUai82bzcWATpyAr79WghD3ZrckERERQU5Ojt3PzqKS\nhLiqEyfgscfg/ffh1Vfh9tudHZHIf9X5ehInTpxg7dq1ti89/7PFYuEu/XkkYvPOO/DAAxATY5Ye\nrrrK2RGJ1A27JYkxY8ZUWvTnXHI4Z/HixY6PrhoqSYgrOXoUHn4YMjPNmVv79XN2RCLVq/OGa1el\nJCGuwDDMRunERIiLg+eeg+bNnR2ViH11Xt304osvAlT60nMXsVgsPProo7UIU8T9FRbCgw/CN9/A\n2rVw883OjkjEcez2bnrsscd4/fXX+emnnyguLqa4uJhTp07Z/inS2BgGvPYahIZC9+7mqGklCGno\n7JYksrOzWbFiBe+++y69evUiLi6O/v374+GhFU+l8cnPh0mT4OBBSE+HXr2cHZFI/bhom4RhGGRm\nZrJixQo2b97MrFmzGDp0aH3FV4XaJKQ+Wa3wz3/Cn/4EU6bAk0+Cl5ezoxK5dHXeJnHOkSNHyMnJ\n4csvvyQgIICrr766VgGKuJu8PJg4EU6fhowM6NHD2RGJ1D+7dUcLFy5k0KBBxMbGYhgGq1evZtOm\nTdysSlhp4Coq4OWXITLSHPfw738rQUjjZbe6ycPDg5CQEK677rqqJ1kspKamOjy46qi6SRzpm2/M\nCfm8vMxxD507OzsikbpR59VNH3zwge2LoWpXWJGG5OxZmD3bnMp7+nRzQSD10RDRYDoRdu6EcePg\n6qthwQKopvAs4vbqfBbYmJgY3nzzTX7++ecq+37++WdWrVrFHXfccckXFHEVpaXwzDMwcCAkJJhd\nW5UgRCqzW5L48ccfmTdvHm+99RZNmjShQ4cOGIZBYWEh5eXljBgxgsmTJ9d7byeVJKQufPaZWXro\n3Bnmz4drrnF2RCKO5dC5mwoLC9m/fz8Wi4XrrrsO3xourzVu3DjS0tLw8fHhq6++AiApKYl//etf\ntuQyY8YMbv9lTuWZM2eyaNEimjRpQkpKCgMHDqwasJKEXIaff4Znn4XXX4c5cyA2VkuJSuNQ59VN\n5/Pz8yMoKIgDBw5w4MCBGn/52LFjSU9Pr7Tt3LxPOTk55OTk2BJEbm4uq1atIjc3l/T0dB588EGs\nVusl3IrIr9u2zVxG9MAB+OorGDFCCULkYn61TeLrr78G4NChQ4SEhLB48WJGjx7NSy+9VKMv79u3\nL23atKmyvbpstn79euLi4vDy8iIwMJBOnTqRlZVV0/sQsevUKZg82ZytdfZsWLHCbKQWkYuzmyT2\n7dtHSEgIYK4dMXDgQDZs2MBnn33GokWLLuuic+fOJSwsjPHjx1NUVATAwYMHCQgIsB0TEBBAQUHB\nZV1HZONGcynRkhJzMaDf/97ZEYm4F7vjJLzOm6Bm8+bNTJw4EYCWLVte1iR/DzzwAM888wwAf/7z\nn5k6dSoLFy6s9lh74zGSkpJs76OiooiKiqp1PNIwHT8OU6fCBx+Y3Vqrad4SadAyMjLIyMi47O+x\nmyQCAgKYO3cu/v7+5OTkMHjwYMDs/lpeXl7rC/r4+NjeT5gwgSFDhgDg7+9Pfn6+bd+BAwfw9/ev\n9jvOTxIiF1q/3qxeGjbMbHto2dLZEYnUvwv/gJ4+fXqtvudX5276+uuvWbp0KatWrbK1LXz22WeM\nHTu2VhcDs33jnLfffpuePXsCMHToUFauXElZWRl79+5l9+7d9O7du9bXkcbnyBGz3eGxx2D5cpg3\nTwlC5HJd0ojr48eP07p16xpPyxEXF8fWrVs5evQovr6+TJ8+nYyMDHbu3InFYqFjx468+uqrti61\nM2bMYNGiRXh6ejJnzhwGDRpUNWB1gZULGAasWmWuNT16tDmtRrNmzo5KxLXU+TiJ6dOnExsbS/fu\n3SktLWXw4MF88cUXeHp68sYbbxAdHX3ZQdeGkoSc7+BBcynR77+HRYtAhU+R6tX5OIlVq1bRrVs3\nAJYuXYphGBw5coStW7fy9NNP1z5SkTpgGLB4MYSHm8uJ7tihBCHiCHYbrps2bWqrVkpPT+fee++l\nSZMmdO/e/bIarkUuVdqmNFKWp1BqlNLU0pR7BySy8rUYjhyBTZvMAXIi4hi/miS++uor/Pz8yMjI\nYPbs2bZ91U36J+IIaZvSmPLKFPIi8mzbNv8tj/t6wzvvxGgpUREHs1vd9PLLL3P33XfTtWtXHnnk\nEa6//noA0tLS6KVV4KWepCxPqZQgAKx35XG4Yq4ShEg9sFuS6NOnD999912V7TExMcTExDg0KJFz\nSqyldraX1HMkIo2T3ZLEww8/bHs/Z86cSvvGjBnjsIBEzikqgl1fN612n7eHdz1HI9I42U0SW7du\ntb1fsmRJpX1ffPGFwwISAfjkE4iIgF7XJXL9jqBK+4Kyg0iIS3BSZCKNi93qJhFnKC+H55+Hf/zD\nnHNp6NAY0jbB3BVzKbGW4O3hTcJDCcREq8pTpD7YTRIVFRUcO3YMwzBs7wHbZ5G6tm8fjBpljpbO\nzv7vanEx0TFKCiJOYnfEdWBgoG2chGEYVabi2Lt3r+Ojq4ZGXDdMK1dCYiI88QQ8+ihcxkTDIlIN\nhy5f6kqUJBqWU6cgIQEyM83FgNS7WsQxHLp86fl++OEHHnjggUu+kMiFsrLMxmkvL7N6SQlCxPXY\nTRK5ubkMGTKE4OBgYmNjOXDgAFOmTKFv37507ty5PmOUBqaiAmbOhN/9DpKT4Z//hObNnR2ViFTH\nbsP1+PHjmTRpEn369CE9PZ2ePXsyYcIEvvvuO7y91UddaufAAXM6b6vVnJTv2mudHZGI/Bq7bRLh\n4eHs3LnT9vn6669nz5499RaYPWqTcF9r18IDD5gN1NOmQZMmzo5IpPGo7W+n3ZJESUkJ2dnZgNm7\n6YorriA7O9vW00nzN0lNnT4NjzwCW7aYS4v26ePsiESkpuyWJKKioip1e72wG+yHH37o+OiqoZKE\ne8nJMZcU7d3bXE70qqucHZFI41TnXWAzMzO5+eabLzuwuqYk4R6sVnj5ZbOB+uWXzUFyIuI8dZ4k\nIiIiyMnJuezA6pqShOs7dAjGjIGTJ2H5cujY0dkRiUi9jZMQ+TXvvGOOd4iMhI8+UoIQcXd2SxKt\nW7emb99BfVBUAAASVUlEQVS+1Z9ksZCamurQwOxRScI1nTljTqmRmgrLloGd/3RExEnqvHfT1Vdf\nzWOPPVbtl144j5M0bl9/bTZOBwfDF19A69bOjkhE6ordJNGiRQtuu+22+oxF3EDapjRSlqdQapTS\n1NKUji0TWbMihr/9zWyH0N8PIg2L3STRpk0bCgsL8fPzA2Dp0qWsWbOGwMBAkpKSaNu2bb0FKa4h\nbVMaU16ZUmnN6aapeaTMhrHxmspbpCGy23B9/PhxrrjiCgC2bdvGtGnTiI+P56qrruL++++vtwDF\ndaQsT6mUIABKh+axdutcJ0UkIo5mtyRhtVptpYVVq1YxadIkhg8fzvDhwwkLC6u3AMV1lBql1W4v\nsZbUcyQiUl/sliQqKio4e/YsAJs3b6Zfv362feXl5Y6PTFzK2bOQ923Tavd5e2jCR5GGym5JIi4u\njttuu4327dvTrFkzW3fY3bt301rdVxqVn36Cu+8GP89EvHbksfeG/1Y5BWUHkfBQghOjExFH+tWV\n6TIzMyksLGTgwIE0/2XC/127dlFcXFyjCf7GjRtHWloaPj4+fPXVVwAcO3aMESNGsH//fgIDA1m9\nerUt6cycOZNFixbRpEkTUlJSGDhwYNWANU6iXv3nPzB0qJkkZsyA9A/SmLtiLiXWErw9vEmIS9D6\n0yJuwCWXL/3oo49o0aIFf/jDH2xJ4oknnqB9+/Y88cQTzJo1i+PHj5OcnExubi4jR45k+/btFBQU\nMGDAAHbt2oXHBYsdK0nUnw0bYNw4ePFFcw0IEXFfLjktR9++fWnTpk2lbampqcTHxwMQHx/PunXr\nAFi/fj1xcXF4eXkRGBhIp06dyMrKcmR4YodhwKxZ8Mc/molCCUKk8bLbJuEohw8fxtfXFwBfX18O\nHz4MwMGDB+lz3kIDAQEBFBQU1Hd4jV5JCUycCLm58OmnWjlOpLGr9yRxPovF8qtTfNjbl5SUZHsf\nFRVFVFRUHUfWOB06BHfeCdddZ07O16yZsyMSkdrKyMggIyPjsr+n3pOEr6+vbST3oUOH8PHxAcDf\n35/8/HzbcQcOHMDf37/a7zg/SUjd2LEDhg2D+++HP/1J02uIuLsL/4CePn16rb6n3qcKHzp0KEuX\nLgXMqT6GDRtm275y5UrKysrYu3cvu3fvpnfv3vUdXqO0ahUMHgxz5sCf/6wEISL/5dCSRFxcHFu3\nbuXo0aNce+21/OUvf2HatGnExsaycOFCWxdYgODgYGJjYwkODsbT05P58+drtlkHs1ohKQleew02\nbYLwcGdHJCKuxqFdYB1BXWDrRnEx/OEP8OOPsHYt/FLrJyINlEt2gRXXtH8/3HKLue7Dli1KECJi\nn5JEI/PJJ3DzzebaDwsXQtPqp2MSEQGc3AVW6teiRTBtmtkGMXiws6MREXegJNEIlJfD449DWhps\n2wbdujk7IhFxF0oSDdD5S4w2qWjK8e8Tadcihs8+gwtmSRER+VVKEg1MdUuMttqTR9JUaNNGs7WK\nyKVRF9gGZtDYQWwM3Fh1+/5BpC9Kd0JEIuIK1AVWACixaolREak7ShINSEkJ7M7VEqMiUneUJBqI\nggK47TYIuiqR63cEVdoXlB1EQpyWGBWRS6c2iQYgM9NcXvShh8xxEO9u1hKjIlKZSy5f6ghKEpWd\nGyC3eDHEKA+IiB21/e1UF1g3dfYsTJ0K77+vAXIi4jhKEm7o6FGIjQVvb/jsM3OiPhERR1DDtZv5\n4gu46SaIjIQNG5QgRMSxVJJwI2++CQ8+CCkpEBfn7GhEpDFQknADVis8+6w5e+v770OvXs6OSEQa\nCyUJF3fyJNx3HxQVwfbtWiBIROqX2iRc2O7d0KcPBATA5s1KECJS/5QkXFR6OvzmN/DwwzB/Plxx\nhbMjEpHGSNVNLsYwYPZseOklWLPGTBQiIs6iJOFCzpyBCRPg22/N8Q/XXuvsiESksVN1k4vIz/9v\nqeHjj5UgRMQ1KEm4gI8/NgfH3XsvLFsGV17p7IhEREyqbnKyBQvgT38yx0AMHuzsaEREKlOSqEdp\nm9JIWZ5CqVGKF03xKkpk73cxfPwxdOni7OhERKpSkqgnaZvSmPLKFPIi8mzbmr2bx+Jk6NJFc3yL\niGtSm0Q9SVmeUilBAPx8Rx6L1s91UkQiIhfntJJEYGAgV111FU2aNMHLy4usrCyOHTvGiBEj2L9/\nP4GBgaxevZrWDWSa01KjtNrtJdaSeo5ERKTmnFaSsFgsZGRkkJOTQ1ZWFgDJyclER0eza9cu+vfv\nT3JysrPCq1MVFbD/+6bV7vP28K7naEREas6p1U0XLqWXmppKfHw8APHx8axbt84ZYdWpoiIYMgRa\nliYS+HlQpX1B2UEkxCU4KTIRkYtz2hrX119/Pa1ataJJkyZMmjSJiRMn0qZNG44fPw6YCaRt27a2\nz7aA3WiN62+/hd//HgYNghdegI0ZacxdMZcSawneHt4kxCUQE61GaxFxPLdb4/qTTz6hQ4cOHDly\nhOjoaLpdsEizxWLBYrE4KbrLl5YGY8fCzJkwfry5LSY6RklBRNyK05JEhw4dALj66qu58847ycrK\nwtfXl8LCQvz8/Dh06BA+dubGTkpKsr2PiooiKiqqHiKuGcOA5GSYNw/Wr4ebb3Z2RCLSGGVkZJCR\nkXHZ3+OU6qaff/6ZiooKWrZsyenTpxk4cCDPPvssmzdvpl27djz55JMkJydTVFRUpfHalaubTp82\nSw179sDbb4O/v7MjEhExuVV10+HDh7nzzjsBKC8vZ9SoUQwcOJAbb7yR2NhYFi5caOsC6y7274dh\nwyA0FLZtA291WhKRBsBpDde15Yolia1bzcn5nnwSpkwBN25KEZEGyq1KEg2FYcDf/w7Tp5uzt0ZH\nOzsiEZG6pSRRS2Vl8NBD8O9/m6+goIufIyLibpQkaqGwEIYPBx8fyMyEli2dHZGIiGNogr9L9Pnn\n0Lu3WbW0Zo0ShIg0bCpJXIJly+CRR+DVV+Guu5wdjYiI4ylJ1EBFBUybBmvXwgcfQM+ezo5IRKR+\nKElcxPHjZvfWigrIyoJ27ZwdkYhI/VGbxK/IzTXbH4KDIT1dCUJEGh8lCTtSU+G22+D//T946SXw\nVJlLRBoh/fRhrj+dsjyFUqOUppamXG1JJGNjDO+8A5GRzo5ORMR5Gn2SSNuUxpRXplRaf7ppah4L\nXoDISE3rLSKNW6OvbkpZnlIpQQCUDs1j+ftznRSRiIjraPRJotQorXZ7ibWkniMREXE9jT5JHDvc\ntNrt3h6a61tEpNEmCcOA556Dwq8SufbTyrPzBWUHkRCX4KTIRERcR6NsuC4thQkT4Lvv4IvtMWR/\nDXNXzKXEWoK3hzcJDyVoLWoRERrhokNHjsCdd4KfH7z2GjRrVofBiYi4qNr+djaq6qZvv4U+feDW\nW2H1aiUIEZGLaTTVTZs3w8iR8Le/wZgxzo5GRMQ9NMgkceEI6i7tEln9egxvvmlOtSEiIjXT4JJE\ndSOoP1yXx7y/wW23qTFaRORSNLg2iepGUJ8dlsfarRpBLSJyqRpcktAIahGRutPgkkRTi0ZQi4jU\nlQaXJBJHJhKUoxHUIiJ1oUEOpkvblFZ5BHWcRlCLSONW28F0DTJJiIhIZRpxLSIidc7lkkR6ejrd\nunWjc+fOzJo1y9nhiIg0ai6VJCoqKnjooYdIT08nNzeXFStW8M033zg7rHqVkZHh7BAcpiHfG+j+\n3F1Dv7/acqkkkZWVRadOnQgMDMTLy4t7772X9evXOzusetWQ/0NtyPcGuj9319Dvr7ZcKkkUFBRw\n7bXX2j4HBARQUFDgxIhERBo3l0oSFovF2SGIiMj5DBeSmZlpDBo0yPZ5xowZRnJycqVjgoKCDEAv\nvfTSS69LeAUFBdXqd9mlxkmUl5fTtWtXtmzZwjXXXEPv3r1ZsWIF3bt3d3ZoIiKNkktNFe7p6cm8\nefMYNGgQFRUVjB8/XglCRMSJXKokISIirsWlGq7PV5NBdYmJiXTu3JmwsDBycnLqOcLau9i9ZWRk\n0KpVKyIiIoiIiOD55593QpS1M27cOHx9fenZs6fdY9z1ucHF78+dnx1Afn4+/fr1o0ePHoSEhJCS\nklLtce76DGtyf+76DEtKSoiMjCQ8PJzg4GCeeuqpao+75GdX61ZmByovLzeCgoKMvXv3GmVlZUZY\nWJiRm5tb6Zi0tDTj9ttvNwzDMD799FMjMjLSGaFesprc24cffmgMGTLESRFenm3bthnZ2dlGSEhI\ntfvd9bmdc7H7c+dnZxiGcejQISMnJ8cwDMM4deqU0aVLlwbz/55h1Oz+3PkZnj592jAMwzh79qwR\nGRlpfPTRR5X21+bZuWRJoiaD6lJTU4mPjwcgMjKSoqIiDh8+7IxwL0lNBwwabloL2LdvX9q0aWN3\nv7s+t3Mudn/gvs8OwM/Pj/DwcABatGhB9+7dOXjwYKVj3PkZ1uT+wH2fYbNmzQAoKyujoqKCtm3b\nVtpfm2fnkkmiJoPqqjvmwIED9RZjbdXk3iwWC//+978JCwvjjjvuIDc3t77DdBh3fW411ZCe3b59\n+8jJySEyMrLS9obyDO3dnzs/Q6vVSnh4OL6+vvTr14/g4OBK+2vz7Fyqd9M5NR1Ud2G2d4fBeDWJ\nsVevXuTn59OsWTPee+89hg0bxq5du+ohuvrhjs+tphrKsysuLubuu+9mzpw5tGjRosp+d3+Gv3Z/\n7vwMPTw82LlzJydOnGDQoEFkZGQQFRVV6ZhLfXYuWZLw9/cnPz/f9jk/P5+AgIBfPebAgQP4+/vX\nW4y1VZN7a9mypa3YePvtt3P27FmOHTtWr3E6irs+t5pqCM/u7NmzDB8+nPvuu49hw4ZV2e/uz/Bi\n99cQnmGrVq2IiYnh888/r7S9Ns/OJZPEjTfeyO7du9m3bx9lZWWsWrWKoUOHVjpm6NChvPbaawB8\n+umntG7dGl9fX2eEe0lqcm+HDx+2ZfusrCwMw6hSt+iu3PW51ZS7PzvDMBg/fjzBwcE8/PDD1R7j\nzs+wJvfnrs/w6NGjFBUVAXDmzBk2bdpEREREpWNq8+xcsrrJ3qC6V199FYBJkyZxxx138O6779Kp\nUyeaN2/O4sWLnRx1zdTk3t566y3+/ve/4+npSbNmzVi5cqWTo665uLg4tm7dytGjR7n22muZPn06\nZ8+eBdz7uZ1zsftz52cH8Mknn7Bs2TJCQ0NtPzAzZszghx9+ANz/Gdbk/tz1GR46dIj4+HisVitW\nq5XRo0fTv3//y/7d1GA6ERGxyyWrm0RExDUoSYiIiF1KEiIiYpeShIiI2KUkISIidilJiIiIXUoS\nIr/461//SkhICGFhYURERPDb3/6WiIgIOnfuTOvWrW1TR2dmZhIVFUW3bt0IDw/n5ptvrjK/z8MP\nP0xAQEClKRCWLFlCQkICAElJSTRv3pwjR47Y9lc3/YWIs7nkYDqR+paZmUlaWho5OTl4eXlx7Ngx\nysrK8PPzY+vWrcyePZsNGzbYjrdYLCxfvpxevXqxZMkSnnzySdt+q9VKamoqwcHBbN261TZ3zoVz\n5LRv354XXniB5OTkaveLuAKVJESAwsJC2rdvj5eXFwBt27bFz88PuPi00X369CEvL8/2OSMjg7Cw\nMMaNG8eKFSuqPcdisTBu3DhWrVplm0pBxBUpSYgAAwcOJD8/n65duzJ58mS2bdt20XPOJY/09HRC\nQkJs21esWMGIESMYMmQI7777LhUVFdWe36JFC8aNG8fLL79cNzch4gBKEiJA8+bN2bFjBwsWLODq\nq69mxIgRLF261O7xhmEwatQorr/+eqZPn86LL74ImIu9vPfeewwZMoTmzZsTGRlJenq67ZzzWSwW\nEhMTWbp0KcXFxY67OZHLoCQh8gsPDw9uu+02kpKSmDdvHmvWrLF77Lk2iT179jBhwgT+7//+D4D3\n33+foqIiQkJC6NixIx999JHdKifDMGjVqhUjR45k3rx5DrknkculhmsRYNeuXVgsFjp37gxATk4O\ngYGBv3rOuZLBc889R9euXZk6dSorVqxg4cKFjBgxAoCff/6Zjh07cubMmWrPBXj00Ue58cYbKS8v\nr8M7EqkbKkmIYK5UNmbMGHr06EFYWBjffvstSUlJgFlqqK7n0blt3t7eTJkyheeff56NGzcSExNj\nO6ZZs2b85je/YcOGDZW+5/z37dq146677qKsrMzBdyly6TRVuIiI2KWShIiI2KUkISIidilJiIiI\nXUoSIiJil5KEiIjYpSQhIiJ2KUmIiIhdShIiImLX/we+zSLCLWWf+wAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f50104c24d0>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.4 page no : 179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"from matplotlib.pyplot import *\n",
"\n",
"# Variables\n",
"t = [0,1,2,4,8,16,24,32,40,48,60,72] #time\n",
"s = [0,.02,.029,.041,.057,.078,.094,.109,.122,.136,.156,.176] # strain E (mm/mm)\n",
"\n",
"# calculations\n",
"min_creep_rate = 12./14 # from curve\n",
"creep_intercept = .055 # from curve\n",
"\n",
"#results\n",
"plot(t,s)\n",
"plot(t,s,\"go\")\n",
"suptitle(\"Strain-Time Curve\")\n",
"xlabel(\"Time(minute)\")\n",
"ylabel(\"Strain\")\n",
"\n",
"print \"Minimum Creep rate : %.3f mm/mm\"%min_creep_rate\n",
"print \"The creep intercept : %.3f mm/mm\"%creep_intercept\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Minimum Creep rate : 0.857 mm/mm\n",
"The creep intercept : 0.055 mm/mm\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'e']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEhCAYAAACOZ4wDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVWX6//E3KMmklqORBtvCAeQkIgoyVpOYGSpKB53C\najxExs9G0b52GOs7k9bkYcwpgaavOZPaTJGTzqgJMoqGHRRJwXIklQicLUZTmiEqIpv1+2PnDgQF\nkc3ewOd1XVzXXms9a60bynXvtZ5nPbeLYRgGIiIil+Dq6ABERMT5KVmIiEiDlCxERKRBShYiItIg\nJQsREWmQkoWIiDRIyUKc0osvvki/fv0IDQ0lLCyMTz75BIBXXnmFM2fOXPbxnnvuObZu3dqottOn\nTycsLIzg4GCuvvpqwsLCCAsLY+3atcTExPD9999f9vkbcujQIUaPHk3fvn0ZNGgQ999/P//973+b\n/TwiTeWi9yzE2ezcuZPZs2ezfft23NzcOH78OGfPnuWGG26gT58+7N69mx49etTZr7q6GlfX5vv+\nc/jwYcaMGcO+ffua7Zj1qaiooH///rz88svExMQAsH37dq677jqCg4MbdYzm/t1FLqT/u8TplJaW\nct111+Hm5gZA9+7dueGGG0hKSuLo0aMMGzaM4cOHA9ClSxeeeOIJBgwYwM6dO3nhhRcYPHgwISEh\nJCQk2I45efJk1q5dC4C3tzdz585l0KBB9O/fn4MHD9YbR33fo7y9vTl+/DjFxcUEBAQwZcoU/P39\nefDBB9m8eTO33HILffv2td0JnTp1iocffpjIyEgGDhzIhg0b6hzz7bff5uabb7YlCoChQ4cSHBzM\nypUrmTFjhm39mDFj+OCDD+r87gsWLOC+++6ztcvKymLs2LEAbN68mZtvvplBgwZx3333cerUqUb8\nVxCpTclCnM6dd96J2WzG39+fX//617aLY2JiIp6enmRlZdkeKZ0+fZqf//zn7N27l1tuuYXp06eT\nk5PDvn37OHPmDBs3bgTAxcUFFxcX22cPDw/27NnDtGnTeOmllxod2/ljABQWFvLEE09w4MABDh48\nyOrVq/n444956aWXmD9/PmB9nDZ8+HB27drFtm3bePLJJzl9+nStY+7fv59BgwY1eL4Ll2v+7r/5\nzW/YtWuX7RHd6tWrmTBhAt9++y0vvvgiW7duZc+ePQwaNIg//vGPjf59Rc5TshCn07lzZ/bs2cPr\nr7+Oh4cH999/P6tWraq3bYcOHRg3bpxtedu2bfz85z+nf//+bNu2jfz8/Hr3u/feewEYOHAgxcXF\nTYqzT58+BAcH4+LiQnBwMHfccQcA/fr1sx1z8+bNLFy4kLCwMIYNG8bZs2cxm811jtWUp8E1f/cO\nHTowcuRINmzYQFVVFenp6dx1111kZ2eTn5/PzTffTFhYGG+++Sb/+c9/mvT7SvvW0dEBiNTH1dWV\noUOHMnToUEJCQli1ahWTJk2q087d3d32bbuiooJf//rX7NmzBy8vL+bNm0dFRUW9x+/UqRNgvchW\nVVUBEB0dzX//+18iIiJ4/fXXG4zx/DHOx3vVVVfZPp8/JsA//vEP/Pz8Lnqc4OBgtm/fXu+2jh07\nUl1dbVuu+fvU/N0B4uLiSElJoXv37kRERNC5c2cARowYwdtvv93g7yNyKbqzEKdz6NAhCgoKbMt5\neXl4e3sD0LVrV8rKyurd7/yFtEePHpSXl/Puu+9e1nn/9a9/kZeX16hE0VjR0dEkJSXZlvPy8uq0\neeCBB9ixYwfp6em2dR988AH79+/H29ubvXv3YhgGZrOZnJyci55r6NCh5Obmsnz5cuLi4gCIjIzk\n448/prCwELD2odT824o0lu4sxOmUl5czY8YMTpw4QceOHfHz87NdwB999FFGjhyJl5cXW7durfXN\nulu3bkydOpV+/frRq1cvIiMjGzxXzb6Mi22/2HJjtv32t79l1qxZ9O/fn+rqan72s5/V6eR2d3dn\n48aNzJo1i1mzZuHm5kZoaChLly4lODiYPn36EBQURGBgYK2+jQvP7+rqypgxY1i1ahVvvvkmAB4e\nHqxcuZIJEyZw9uxZwNqPcqk7HZH6aOisiIg0SI+hRESkQUoWIiLSICULERFpkJKFiIg0SMlCREQa\npGQhIiINUrIQEZEGKVmIiEiDlCxERKRBdk0WGRkZBAQE4Ofnx6JFi+psP3DgAEOGDMHd3Z0lS5bU\n2rZgwQKCg4MJCQnhgQcesE1VICIiLc9uycJisTB9+nQyMjLIz88nNTWVzz//vFabHj16kJyczBNP\nPFFrfXFxMcuXLyc3N5d9+/ZhsVh455137BWqiIg0wG7JIicnB19fX7y9vXFzcyMuLo7169fXauPh\n4UF4eLitItp511xzDW5ubpw+fZqqqipOnz6Nl5eXvUIVEZEG2C1ZlJSU0Lt3b9uyyWSipKSkUft2\n796d2bNnc+ONN+Lp6Um3bt1shWVERKTl2S1ZXGra54YUFhbyyiuvUFxczNGjRykvL+ett95qxuhE\nRORy2K2ehZeXV63ykWazGZPJ1Kh9d+/ezc0330yPHj0AawnMHTt28OCDD9Zq5+vrayvqIiIijePj\n48MXX3xxWfvY7c4iPDycgoICiouLqaysZPXq1cTGxtbb9sKSGgEBAWRnZ3PmzBkMwyAzM5OgoKA6\n+xUWFmIYhtP/PPfccw6PQXEqztYcZ2uIsTXF2ZQv2Xa7s+jYsSMpKSlER0djsViIj48nMDCQZcuW\nAZCQkEBpaSkRERGUlZXh6urK0qVLyc/PJzQ0lIkTJxIeHo6rqysDBw7k0UcftVeoIiJ2l7YljaS3\nkzhrnKWTSycSH0gkZkSMo8NqNLuWVR01ahSjRo2qtS4hIcH2uVevXrUeVdX01FNP8dRTT9kzPBGR\nFpG2JY2Zr86kMOzHb/SFr1o/t5aEoTe4W0BUVJSjQ2gUxdm8FGfzaQ0xwsXjfPlvSbUSBUBhWCHJ\nqcktEFXzaNU1uF1cXGjF4YtIG3fqFPzf/8GcZVGce3B7ne1Di4aStTKrxeNqyrVTdxYiIs2svBz+\n8Afw8YHsbAjv36nedu6u7i0cWdMpWYiINJOyMliwAH72M8jNhcxMePddeDYhEZ88n1ptfXJ9mDFh\nhoMivXx27eAWEWkPvv8ekpNh6VK4807Yvh0CA3/cfr4TOzk1mYrqCtxd3ZkxfUar6dwG9VmIiDTZ\nd99BUhKkpMDo0fDMM+Dv7+ioGqY+CxGRFnD8OPz2t+DnB4cPw86dsGpV60gUTaVkISLSSN9+a717\n8POD0lLIyYE33gBfX0dHZn9KFiIiDfjvf+Hpp613DsePWzuvly+3dmS3F0oWIiIXUVoKTzwBAQHW\n4bB791rfm7jpJkdH1vKULERELnD0KMyaBUFBUFkJ+/bBq69CjRI97Y6ShYjID44cgRkzoF8/cHGB\n/futo51UqFPJQkSE//wHHnsM+vcHd3fIz4eXX4YbbnB0ZM5DyUJE2q3iYkhIgLAwuOYaOHAAFi+G\nXr0cHZnzUbIQkXbnyy/hkUdg0CC47jo4eBAWLoTrr3d0ZM5LyUJE2o2CApgyBQYPBk9P6/KLL1oT\nhlyaXZNFRkYGAQEB+Pn5sWjRojrbDxw4wJAhQ3B3d2fJkiW1tp04cYLx48cTGBhIUFAQ2dnZ9gxV\nRNqwgwdh4kQYMgS8veGLL+D556F7d0dH1nrYbSJBi8XC9OnTyczMxMvLi4iICGJjYwmsMbtWjx49\nSE5OZt26dXX2nzlzJqNHj2bNmjVUVVVx6tQpe4UqIm1Ufj78/vfW2V9nzrRO9nfttY6OqnWy251F\nTk4Ovr6+eHt74+bmRlxcHOvXr6/VxsPDg/DwcNzc3Gqt//777/nwww95+OGHAWs972v1X1hEGunf\n/4b774dhw6wjnAoL4dlnlSiuhN2SRUlJCb1rvMFiMpkoKSlp1L5FRUV4eHgwZcoUBg4cyNSpUzl9\n+rS9QhWRNuLTT2H8eLjjDggPtyaJ3/wGunZ1dGStn90eQ7m4uDR536qqKnJzc0lJSSEiIoJZs2ax\ncOFCnn/++Tpt586da/scFRXVamr1ikjzyc2FF16wVqV78knrDLCdOzs6KueRlZVFVlbWFR3DbsnC\ny8sLs9lsWzabzZhMpkbtazKZMJlMREREADB+/HgWLlxYb9uayUJE2pdPPrEmiT174Kmn4O234Sc/\ncXRUzufCL9Lz5s277GPY7TFUeHg4BQUFFBcXU1lZyerVq4mNja237YVFOHr16kXv3r05dOgQAJmZ\nmQQHB9srVBFxUmlb0oieEk3U5Ciip0STtiUNgF27rMWG7r3XWpmusNDaga1EYT92rZS3adMmZs2a\nhcViIT4+njlz5rBs2TIAEhISKC0tJSIigrKyMlxdXenatSv5+fl06dKFTz/9lEceeYTKykp8fHxY\nsWJFnU5uVcoTabvStqQx89WZFIYV2tZ57fDh+u+X8u3RGObMgYcfhk6dHBhkK9WUa6fKqoqIU4qe\nEs1m78111gd9HE3exgyuusoBQbURKqsqIm1GRfXZetd7eFYoUTiAkoWIOBXDsL5E99me+p8vubu6\nt3BEAkoWIuIkDAP+9S+49VaYPh3iYxPxyfWp1cYn14cZE2Y4KML2zW5DZ0VEGsMwYNMm61xNZWXw\n29/CffdBhw4xDNsCyanJVFRX4O7qzozpM4gZEePokNsldXCLiEMYBmzcaE0SFRXWJDF+PLjqeYfd\nNeXaqTsLEWlR1dWwYYM1SVgs8LvfwT33KEk4OyULEWkR1dXwz39ak0SHDvDcczB2rJJEa6FkISJ2\nZbHA2rXWaTnc3a3FhmJi4AqmjxMHULIQEbuwWGD1ams9iWuugT/8AUaOVJJorZQsRKRZVVVBaqo1\nSVx3HbzyCowYoSTR2ilZiEizOHcO3nrL+pjphhvgT3+C229XkmgrlCxE5IqcOwdvvgnz58NNN8Hy\n5aCyMm2PkoWINEllJaxcCQsWgK+v9fMvfuHoqMRelCxE5LKcPQtvvAELF0JgoPXR0803OzoqsTcl\nCxFplIoK+POfYdEi6N8f/v53iIx0dFTSUpQsROSSzpyB11+3Dn0ND7e+WBce7uiopKXZ9d3JjIwM\nAgIC8PPzY9GiRXW2HzhwgCFDhuDu7s6SJUvqbLdYLISFhTF27Fh7hiki9Th1CpYsgZ/9DLZvt87j\ntH69EkV7Zbc7C4vFwvTp08nMzMTLy4uIiAhiY2MJDAy0tenRowfJycmsW7eu3mMsXbqUoKAgTp48\naa8wReQC5eXWYa9//KO1wzojA0JDHR2VOJrd7ixycnLw9fXF29sbNzc34uLiWL9+fa02Hh4ehIeH\n4+bmVmf/I0eOkJ6eziOPPKKZZUVawMmT1pFNPj6Qm2stQPTuu0oUYmW3ZFFSUkLv3r1tyyaTiZKS\nkkbv//jjj7N48WJcNcuYiF19/731bWsfH9i/H7Ky4J13oF8/R0cmzsRuj6FcruC1zY0bN3L99dcT\nFhZGVlbWJdvOnTvX9jkqKooovQ0k0ignTsDSpZCSAqNHw4cfgr+/o6MSe8jKymrwWtoQuyULLy8v\nzGazbdlsNmMymRq1744dO9iwYQPp6elUVFRQVlbGxIkTefPNN+u0rZksRKRhx49b52v6058gNhZ2\n7rS+VCdt14VfpOfNm3fZx7DbM57w8HAKCgooLi6msrKS1atXExsbW2/bC/sk5s+fj9lspqioiHfe\neYfbb7+93kQhIvVL25JG9JRooiZHET0lmrQtaXz7LTz7LPj5wVdfQU6O9eU6JQppDLvdWXTs2JGU\nlBSio6OxWCzEx8cTGBjIsmXLAEhISKC0tJSIiAjKyspwdXVl6dKl5Ofn06VLl1rHupJHWiLtTdqW\nNGa+OpPCsELbupx5hVR9Dg/+MobcXOscTiKXQzW4RdqY6CnRbPbeXGf90IPRZL2d4YCIxNk05dqp\noUYibUx55dn6N1xV0bKBSJuiZCHSRpw8aR0C+8nHnerd7u7q3sIRSVuiZCHSyp05Y52Ww9cXDhyA\nV+cl4pPnU6uNT64PMybMcFCE0hZoIkGRVqqyEv7yF2tlusGDYevW8y/SxeDpCcmpyVRUV+Du6s6M\n6TOIGRHj6JClFVMHt0grU1UFf/sbzJsHAQHwwgua3E8uT1OunbqzEGklqqthzRr43e+gZ09rKVNV\nppOWomQh4uQMwzo9+G9/C1ddBUlJMGIE6PUjaUlKFiJObOtW+N//tdaWeOEF6/QcShLiCEoWIk5o\nxw5rkjhyxNo3cf/9oAmYxZH0v5+IE8nNhZgYmDABHnoI8vOtn5UoxNH0v6CIE8jPh/HjYcwYGDUK\nDh2Chx+Gjrr3FyehZCHiQF9+CRMnQlQUREbCF1/A9OnQqf6XsEUcRslCxAGOHIGEBOvLdD4+1iTx\n5JNw9dWOjkykfkoWIi3o66/h8cehf3/o1g0OHoTnnoNrrnF0ZCKXpmQh0gK++w6eeQaCgsBisfZR\nLFoEPXo4OjKRxlH3mUgzS9uSRtLbSZw1ztKhuhOebolkbIjh7rshLw9uvNHREYpcPrvfWWRkZBAQ\nEICfnx+LFi2qs/3AgQMMGTIEd3d3lixZYltvNpsZNmwYwcHB9OvXj6SkJHuHKnLFzlep2+y9me19\ntrPNZzPr9s/kxZfSWL5ciUJaL7tOJGixWPD39yczMxMvLy8iIiJITU0lMDDQ1uabb77h8OHDrFu3\njp/+9KfMnj0bgNLSUkpLSxkwYADl5eUMGjSIdevW1dpXEwmKs7ljYjRbfepWqYs+HE3GG6pSJ87B\n6Srl5eTk4Ovri7e3N25ubsTFxbF+/fpabTw8PAgPD8fNza3W+l69ejFgwAAAunTpQmBgIEePHrVn\nuCJNduKEtfDQ9p31V6mrqFaVOmnd7JosSkpK6N27t23ZZDJRUlJy2ccpLi4mLy+PyMjI5gxP5Ip9\n842149rHBwoKIDJMVeqkbbJrB7dLM8x4Vl5ezvjx41m6dCldunSps33u3Lm2z1FRUURFRV3xOUUa\nUlICL70Eq1ZZ523avRv69IG0LYnMfLWQwrBCW1ufXB9mTFeVOnGcrKwssrKyrugYdk0WXl5emM1m\n27LZbMZkMjV6/3PnzjFu3Dgeeugh7r777nrb1EwWIvb25ZfWIa/vvguTJ8O+feDl9eP289XoVKVO\nnMmFX6TnzZt32cewa7IIDw+noKCA4uJiPD09Wb16NampqfW2vbCzxTAM4uPjCQoKYtasWfYMU6RB\nn38OCxZAWhpMm2Z9mc7Do/62MSNilBykzbF7WdVNmzYxa9YsLBYL8fHxzJkzh2XLlgGQkJBAaWkp\nERERlJWV4erqSteuXcnPz2fv3r3cdttt9O/f3/Y4a8GCBYwcOfLH4DUaSuwsL89a4/rDDyExEX79\na+ub1yKtWVOunarBLVKPHTusSWLvXnjiCXj0Uejc2dFRiTQP1eAWuQKGYa1M9+KLUFwMTz8Na9eC\nuwYyiShZiJyvcf3ii9b3JebMgQcegAte/RFp15QspN2yWGDNGpg/31rX+tln4d57oUMHR0cm4nyU\nLKTdOXcO3nrLOrqpe3drshg92powRKR+ShbSblRUwIoV1vckfvYzeO01GDZMSUKkMZQspM0rL4dl\ny2DJEhg4EFJTYcgQR0cl0rooWUibUbOORCeXTjwcm8ihf8eQnGytcZ2eDj/MTSkil0nJQtqE83Uk\nas7JlPlcIUO9YPv2GGrMbC8iTaCyqtImJL2dVCtRAFSPK+SqG5KVKESagZKFtHpVVfDlEdWRELEn\nJQtptQwD3nsPQkLgWKnqSIjYk/ospFXKzbXO2VRaaq0rYbglMutPqiMhYi9KFtKqmM3WN623bIG5\ncyE+Hjp2BIjBxUV1JETsRbPOSqtQVgYLF1rfl5g2DZ56Cq65xtFRibROTbl2qs9CnFpVlfVN6759\n4ehR+PRT+P3vlShEWppdk0VGRgYBAQH4+fmxaNGiOtsPHDjAkCFDcHd3Z8mSJZe1r7RtNTuv16yB\nTZtg5Uq4jKq8ItKM7PYYymKx4O/vT2ZmJl5eXkRERJCamkpgjUHv33zzDYcPH2bdunX89Kc/Zfbs\n2Y3eF/QYqq2q2Xm9eLEm+RNpbk71GConJwdfX1+8vb1xc3MjLi6O9evX12rj4eFBeHg4bhcUDmjM\nvtL2mM0wcSLExMD998Nnn1k/K1GIOJ7dkkVJSQm9e/e2LZtMJkpKSuy+r7Q+ZWXwzDPWeZtuugkO\nHYKEhPOjnETEGdgtWbhcwdfBK9lXWo9z5+BPf6rdef3CC9C1q6MjE5ELNfjd7eDBg7z00ksUFxdT\nVVUFWC/m27Ztu+R+Xl5emM1m27LZbMbUyN7Jy9l37ty5ts9RUVFERUU16hziOOfLmD71FHh6Wjuv\nw8IcHZVI25WVlUVWVtYVHaPBDu7+/fszbdo0Bg4cSIcf6k26uLgwaNCgSx64qqoKf39/tm7diqen\nJ4MHD663kxqsF/yuXbvaOrgbu686uFufC9+8HjVKfRIiLa0p184G7yzc3NyYNm3aZQfTsWNHUlJS\niI6OxmKxEB8fT2BgIMuWLQMgISGB0tJSIiIiKCsrw9XVlaVLl5Kfn0+XLl3q3Vdar4u/eS0irUGD\ndxZz587Fw8ODe++9l06dfpysrXv37nYPriG6s3B+Nd+8fuwx66Mn9UmIOFZTrp0NJgtvb+96O5yL\nioouLzo7ULJwHhdWqXvsvkRKimJ4/nkYOdL61rVeqBNxDnZJFs5MycI51Felzm2dD4Edl7Ly9Rh1\nXos4mWZNFlu3bmX48OGsXbu23juLe++9t2lRNiMlC+cQPSWazd6b664/HE3GGxkOiEhELqVZO7g/\n+OADhg8fznvvvee0yUKcQ3mlqtSJtHUXTRbz5s0DYOXKlS0Vi7QyFou14/qTjztB37rbVaVOpO1o\n1ODFjRs3kp+fT0XFj98Uf/e739ktKHF+H38M06dbpwr/4zOJvJKuKnUibVmDySIhIYEzZ86wbds2\npk6dyrvvvktkZGRLxCZO6Kuv4OmnYds264ywcXHg4hJDnz6qUifSljU4GiokJIR9+/bRv39/Pvvs\nM8rLyxk5ciQfffRRS8V4UergbjnnzkFSEixYAI88Av/7v9Cli6OjEpGmsMsb3D/5yU8AuPrqqykp\nKaFHjx6UlpY2LUJplTIzITERbrzR+vjJ39/REYlIS2swWYwdO5bvvvuOJ5980jYf1NSpU+0emDje\n4cMwezbs2QOvvAKxsZrHSaS9uuRjqOrqanbu3Mktt9wCQEVFBRUVFXTr1q3FArwUPYayj4oK6yR/\nL78MM2fCk0/CDzeYItIG2OUN7gEDBrB3794rCsxelCya1/mpw2fNgtBQ+OMfwdvb0VGJSHOzS1nV\nO+64gzVr1uii3MYVFMCYMda7iNdeg3/8Q4lCRH7U4J1Fly5dOH36NB06dMDd3fqSlYuLC2VlZS0S\n4KXozuLKnToFL74Ir78Ov/mNtSP7qqscHZWI2JNdRkOVl5c3OSBxXoYBf/+79U7ittvgs8+sVetE\nROrT4GOo4cOHN2qdtB7//jfcfjvMnw9vvQV/+5sShYhc2kWTxZkzZzh27BjffPMNx48f59ixYxw/\nfpzi4mJKSkoadfCMjAwCAgLw8/Nj0aJF9bZJTEzEz8+P0NBQ8vLybOsXLFhAcHAwISEhPPDAA5w9\nW/9kddJ4338Pjz9uTRTjx1uHxP7iF46OSkRaBeMiXnnlFcPb29u46qqrDG9vb9tPSEiIkZycfLHd\nbKqqqgwfHx+jqKjIqKysNEJDQ438/PxabdLS0oxRo0YZhmEY2dnZRmRkpGEYhlFUVGT06dPHqKio\nMAzDMO677z5j5cqVdc5xifClBovFMFasMIxevQxj6lTD+O9/HR2RiDhSU66dF+2zGDJkCL/85S9Z\ns2YNiYmJrFy5krVr1+Lt7c0DDzzQYBLKycnB19cX7x+G1MTFxbF+/fpatbQ3bNjApEmTAIiMjOTE\niRN8/fXXXHPNNbi5udk61k+fPo2Xl9cVJcX2as8e64R/1dWwYQNERDg6IhFpjS76GCohIQF3d3cS\nExP54IMPmDNnDpMnT+baa6/l0UcfbfDAJSUl9O7d27ZsMpnqPL66WJvu3bsze/ZsbrzxRjw9PenW\nrRt33HFHU36/duvYMfh//886HPbRR2HnTiUKEWm6iyaL6upqunfvDsDq1atJSEhg3Lhx/P73v6eg\noKDBA9dXMKk+Rj3DtwoLC3nllVcoLi7m6NGjlJeX89ZbbzXqeO1N2pY0oqdEEzU5iugp0WzISOO1\n1yAwEDp1gs8/hylTwLXBoQwiIhd30cdQFouFc+fO4ebmRmZmJq+//rptW1VVVYMH9vLywmw225bN\nZjMmk+mSbY4cOYKXlxdZWVncfPPN9OjRA7BW5duxYwcPPvhgnfPMnTvX9jkqKoqoqKgGY2sr6qt9\nnfVMIX4usHVrDCEhDgxORJxGVlYWWVlZV3SMiyaLCRMmMHToUK677jquvvpqfvHDsJmCgoJGzQ0V\nHh5OQUEBxcXFeHp6snr1alJTU2u1iY2NJSUlhbi4OLKzs+nWrRs9e/bE39+fF154gTNnzuDu7k5m\nZiaDBw+u9zw1k0V7k/R2Uq1EAVB5VyGmw8mEhKiWhIhYXfhF+nwl1Mtx0WTx7LPPcvvtt1NaWsqd\nd96J6w/PMQzDIDk5ueEDd+xISkoK0dHRWCwW4uPjCQwMZNmyZYC1T2T06NGkp6fj6+tL586dWbFi\nBWCdj2rixImEh4fj6urKwIEDG9VP0t6cNVT7WkRaRoPTfTiz9jzdh2FAvzujyb91c51t0YejyXgj\nwwFRiUhrYJeJBMX5nDkD8fFwsiiRG3f51Nrmk+vDjAmqfS0izavBuaHEuXz5pfXta39/yN8bw/ad\nqn0tIvanx1CtSHq6dRjss8/CjBmqWiciTWOXWWfF8SwWeP55+MtfrHUmfihcKCLSYpQsnNyxY/Dg\ng9ZSp7t3Q69ejo5IRNojdXA7sd27YdAgCAmBzEwlChFxHCULJ2QYsHw5jBoFL70EixdDR90DiogD\n6RLkZM4VfxYTAAAWh0lEQVScgV//Gnbtgo8+so56EhFxNN1ZOJEvv7R2Xp85Y00WShQi4iyULJxE\nejoMGQKTJ8Pbb0OXLo6OSETkR3oM5WAaFisirYGShQNpWKyItBZ6DOUgGhYrIq2JkoUD/PnPGhYr\nIq2LLlMt6MwZmD7dWg/7ww8hIMDREYmINI7uLFrI+WGxp05BTo4ShYi0LnZNFhkZGQQEBODn58ei\nRYvqbZOYmIifnx+hoaHk5eXZ1p84cYLx48cTGBhIUFAQ2dnZ9gzVrs4Pi500CVJTNSxWRFofuz2G\nslgsTJ8+nczMTLy8vIiIiCA2NpbAwEBbm/T0dL744gsKCgrYtWsX06ZNsyWFmTNnMnr0aNasWUNV\nVRWnTp2yV6h2U3NY7Nq1cOutjo5IRKRp7JYscnJy8PX1xdvbG4C4uDjWr19fK1ls2LCBSZMmARAZ\nGcmJEyf4+uuvcXd358MPP2TVqlXWIDt25Nprr7VXqHahYbEi0pbY7TFUSUkJvXv3ti2bTCZKSkoa\nbHPkyBGKiorw8PBgypQpDBw4kKlTp3L69Gl7hdrsNCxWRNoau91ZuDSyjNuF1ZpcXFyoqqoiNzeX\nlJQUIiIimDVrFgsXLuT555+vs//cuXNtn6OiooiKirqSsK/Yn/8Mc+bAa69Zy5+KiDhaVlYWWVlZ\nV3QMuyULLy8vzGazbdlsNmMymS7Z5siRI3h5eWEYBiaTiYiICADGjx/PwoUL6z1PzWTR0tK2pJH0\ndhJnjbO4GZ3g20RKimI0LFZEnMqFX6TnzZt32cewW7IIDw+noKCA4uJiPD09Wb16NampqbXaxMbG\nkpKSQlxcHNnZ2XTr1o2ePXsC0Lt3bw4dOkTfvn3JzMwkODjYXqE2SdqWNGa+OpPCsELbus4HC1m5\nEAICYhwYmYhI87NbsujYsSMpKSlER0djsViIj48nMDCQZcuWAZCQkMDo0aNJT0/H19eXzp07s2LF\nCtv+ycnJPPjgg1RWVuLj41NrmzNIejupVqIAODWqkD+vS2Z8rJKFiLQtLsaFnQatiIuLS50+j5YS\nNTmK7X2211k/tGgoWSuzWj4gEZFGasq1U29wN1H12U71rnd3dW/hSERE7E/JoglOnoT/5CbSY5tP\nrfU+uT7MmDDDQVGJiNiPHkNdJosF7rkHevaEu36ZRso7yVRUV+Du6s6MCTOIGaH+ChFxbk25dipZ\nXKYnnoDcXMjIgKuuatFTi4g0i6ZcOzVF+WVYvhw2bIDsbCUKEWlfdGfRSNu2wYQJ1joUffu2yClF\nROxCo6Hs5NAha6J45x0lChFpn5QsGnDsGMTEwIsvwrBhjo5GRMQx9BjqEiorIToawsOttbJFRNoC\njYZqRoYBjzwC334L//gHdOhgl9OIiLQ4jYZqRkuWwJ498NFHShQiIkoW9Vi/Hl5+2TpEVvWyRUSU\nLOrIy7M+fkpPhxpF/ERE2jWNhqrh6FG46y7405/gh7pLIiKCkoXN6dPWRJGQAL/8paOjERFxLhoN\nBVRXw/33g7s7vPkmNLJ8uIhIq+R0b3BnZGQQEBCAn58fixYtqrdNYmIifn5+hIaGkpeXV2ubxWIh\nLCyMsWPHNntsaVvSiJ4STdTkKHyHRrO/II0//1mJQkSkPnbr4LZYLEyfPp3MzEy8vLyIiIggNjaW\nwMBAW5v09HS++OILCgoK2LVrF9OmTSM7O9u2fenSpQQFBXHy5Mlmja1O/ew+4P1JIZkfoCnGRUTq\nYbc7i5ycHHx9ffH29sbNzY24uDjWr19fq82GDRuYNGkSAJGRkZw4cYKvv/4agCNHjpCens4jjzzS\n7C/e1Vc/uziikOTU5GY9j4hIW2G3ZFFSUkLvGmNPTSYTJSUljW7z+OOPs3jxYlxdmz/Es8bZetdX\nVFc0+7lERNoCuz2Gcmnkw/8L7xoMw2Djxo1cf/31hIWFkZWVdcn9586da/scFRVFVFRUg+fs5KL6\n2SLSfmRlZTV4LW2I3ZKFl5cXZrPZtmw2mzGZTJdsc+TIEby8vFi7di0bNmwgPT2diooKysrKmDhx\nIm+++Wad89RMFo019Z5Etv62EMu9Pz6K8sn1YcZ01c8Wkbbnwi/S8+bNu+xj2G3obFVVFf7+/mzd\nuhVPT08GDx5MampqnQ7ulJQU0tPTyc7OZtasWbU6uAG2b9/OSy+9xHvvvVc3+CYOnX3uOdi+Mw13\nk+pni0j741QTCXbs2JGUlBSio6OxWCzEx8cTGBjIsmXLAEhISGD06NGkp6fj6+tL586dWbFiRb3H\nauwjrcY4cgRSUiAvL4Ybb1RyEBFpjHb3Ut6kSWAyWYsZiYi0R051Z+GMdu+GzZutZVJFRKTx2s3c\nUIYBs2fD889D166OjkZEpHVpN8li3Tr47jt4+GFHRyIi0vq0iz6LykoICoLXXoMRI1ogMBERJ+Z0\nEwk6i1dfBX9/JQoRkaZq83cWx45BQABs3269uxARae90Z1HD+SnI+98VxU98oikqSXN0SCIirVab\nHDpbawpyb+u6ma9ap/bQW9oiIpevTT6Gip4SzWbvzXXXH44m442MlghNRMRp6THUDzQFuYhI82qT\nyUJTkIuINK82mSxmTEjEbZ1PrXU+uT7MmKApyEVEmqJNdnB7XBtDj+8g9HCNKcinawpyEZGmapMd\n3NOmWWeWffZZBwQlIuLkmtLB3eaSRUUFeHlBXh7ceKODAhMRcWIaDQWsXw8DBypRiIg0J7sni4yM\nDAICAvDz82PRokX1tklMTMTPz4/Q0FDy8vIAa83uYcOGERwcTL9+/UhKSmrU+VauhMmTmyl4ERGx\nMuyoqqrK8PHxMYqKiozKykojNDTUyM/Pr9UmLS3NGDVqlGEYhpGdnW1ERkYahmEYX331lZGXl2cY\nhmGcPHnS6Nu3b519a4a/cfNGY+iEO40OPkON4RPvNDZu3mjPX01EpNVqyqXfrqOhcnJy8PX1xdvb\nG4C4uDjWr19PYGCgrc2GDRuYNGkSAJGRkZw4cYKvv/6aXr160atXLwC6dOlCYGAgR48erbXvebWm\n9/CHrUCxpvcQEWk2dn0MVVJSQu/evW3LJpOJkpKSBtscOXKkVpvi4mLy8vKIjIys9zxJbydZE0UN\nhWGFJKcmX+mvICIi2Pk9CxcXl0a1My7ola+5X3l5OePHj2fp0qV06dKlzr5z587lYN5BKMI6aWCf\nH7dpeg8REcjKyiIrK+uKjmHXZOHl5YXZbLYtm81mTCbTJdscOXIELy8vAM6dO8e4ceN46KGHuPvu\nu+s9x9y5c9l5eCeHvQ/X2abpPUREICoqiqioKNvyvHnzLvsYdn0MFR4eTkFBAcXFxVRWVrJ69Wpi\nY2NrtYmNjeXNN98EIDs7m27dutGzZ08MwyA+Pp6goCBmzZp1yfMkPpDIde9reg8REXux+0t5mzZt\nYtasWVgsFuLj45kzZw7Lli0DICEhAYDp06eTkZFB586dWbFiBQMHDuSjjz7itttuo3///rbHUgsW\nLGDkyJE/Bl/jxZJRd6VRfCqZnqYfpveYoOk9RETq067f4P7FL2DePLj9dgcHJSLi5NrtG9yGAfv3\nQ3CwoyMREWmb2kSyKC0FV1e4/npHRyIi0ja1iWSxfz/06weNHKkrIiKXqU0ki3//W4+gRETsqU0k\nC/VXiIjYl5KFiIg0qNUPna2uNvjpT+GLL+C66xwdkYiI82uXQ2dLSsDdXYlCRMSeWn2y0CMoERH7\na/XJQiOhRETsr9UnC91ZiIjYX5tIFv36OToKEZG2rdWPhurSxcBshm7dHB2NiEjr0C5HQ11zjRKF\niIi9tfpkof4KERH7s2uyyMjIICAgAD8/PxYtWlRvm8TERPz8/AgNDSUvL++y9gX1V4iItAS7JQuL\nxWKrgJefn09qaiqff/55rTbp6el88cUXFBQU8PrrrzNt2rRG73tea7izuNJC6S1FcTYvxdl8WkOM\n0HribAq7JYucnBx8fX3x9vbGzc2NuLg41q9fX6vNhg0bmDRpEgCRkZGcOHGC0tLSRu173vK0aNK2\npNnr12gWreV/IMXZvBRn82kNMULribMp7JYsSkpK6N27t23ZZDJRUlLSqDZHjx5tcN/zdoVuZuar\nM50+YYiItGZ2SxYujaxE1BwjdwvDCklOTb7i44iIyEUYdrJz504jOjratjx//nxj4cKFtdokJCQY\nqamptmV/f3+jtLS0UfsahmHwUwzQj370ox/9XM6Pj4/PZV/TO2In4eHhFBQUUFxcjKenJ6tXryY1\nNbVWm9jYWFJSUoiLiyM7O5tu3brRs2dPevTo0eC+AMZxw17hi4hIDXZLFh07diQlJYXo6GgsFgvx\n8fEEBgaybNkyABISEhg9ejTp6en4+vrSuXNnVqxYccl9RUTEMVr1dB8iItIyWu0b3I19aa+lPfzw\nw/Ts2ZOQkBDbuuPHjzNixAj69u3LnXfeyYkTJxwYIZjNZoYNG0ZwcDD9+vUjKSnJKeOsqKggMjKS\nAQMGEBQUxJw5c5wyzvMsFgthYWGMHTsWcM44vb296d+/P2FhYQwePBhwzjhPnDjB+PHjCQwMJCgo\niF27djldnAcPHiQsLMz2c+2115KUlOR0cS5YsIDg4GBCQkJ44IEHOHv2bJNibJXJ4nJe2mtpU6ZM\nISMjo9a6hQsXMmLECA4dOsTw4cNZuHChg6KzcnNz4+WXX2b//v1kZ2fz6quv8vnnnztdnO7u7rz/\n/vvs3buXzz77jPfff5+PPvrI6eI8b+nSpQQFBdlGAjpjnC4uLmRlZZGXl0dOTg7gnHHOnDmT0aNH\n8/nnn/PZZ58REBDgdHH6+/uTl5dHXl4ee/bs4eqrr+aee+5xqjiLi4tZvnw5ubm57Nu3D4vFwjvv\nvNO0GC+7S9wJ7Nixo9ZoqQULFhgLFixwYES1FRUVGf369bMtnx/lZRiG8dVXXxn+/v6OCq1ed911\nl7FlyxanjvPUqVNGeHi48e9//9sp4zSbzcbw4cONbdu2GWPGjDEMwzn/u3t7exvffvttrXXOFueJ\nEyeMPn361FnvbHHW9K9//cu49dZbDcNwrjiPHTtm9O3b1zh+/Lhx7tw5Y8yYMcbmzZubFGOrvLNo\nzAt/zuTrr7+mZ8+eAPTs2ZOvv/7awRH9qLi4mLy8PCIjI50yzurqagYMGEDPnj1tj86cMc7HH3+c\nxYsX4+r64z8pZ4zTxcWFO+64g/DwcJYvXw44X5xFRUV4eHgwZcoUBg4cyNSpUzl16pTTxVnTO++8\nw4QJEwDn+nt2796d2bNnc+ONN+Lp6Um3bt0YMWJEk2JslcmisS/8OSMXFxenib+8vJxx48axdOlS\nunbtWmubs8Tp6urK3r17OXLkCB988AHvv/9+re3OEOfGjRu5/vrrCQsLu+hLps4QJ8DHH39MXl4e\nmzZt4tVXX+XDDz+std0Z4qyqqiI3N5fHHnuM3NxcOnfuXOcxiTPEeV5lZSXvvfcev/zlL+tsc3Sc\nhYWFvPLKKxQXF3P06FHKy8v529/+VqtNY2NslcnCy8sLs9lsWzabzZhMJgdGdGk9e/aktLQUgK++\n+orrr7/ewRHBuXPnGDduHL/61a+4++67AeeM87xrr72WmJgY9uzZ43Rx7tixgw0bNtCnTx8mTJjA\ntm3b+NWvfuV0cQLccMMNAHh4eHDPPfeQk5PjdHGaTCZMJhMREREAjB8/ntzcXHr16uVUcZ63adMm\nBg0ahIeHB+Bc/452797NzTffTI8ePejYsSP33nsvO3fubNLfslUmi5ov/FVWVrJ69WpiY2MdHdZF\nxcbGsmrVKgBWrVpluzg7imEYxMfHExQUxKxZs2zrnS3Ob7/91jZK48yZM2zZsoWwsDCni3P+/PmY\nzWaKiop45513uP322/nrX//qdHGePn2akydPAnDq1Ck2b95MSEiI08XZq1cvevfuzaFDhwDIzMwk\nODiYsWPHOlWc56WmptoeQYFz/TsKCAggOzubM2fOYBgGmZmZBAUFNe1vadfeFTtKT083+vbta/j4\n+Bjz5893dDg2cXFxxg033GC4ubkZJpPJeOONN4xjx44Zw4cPN/z8/IwRI0YY3333nUNj/PDDDw0X\nFxcjNDTUGDBggDFgwABj06ZNThfnZ599ZoSFhRmhoaFGSEiI8Yc//MEwDMPp4qwpKyvLGDt2rGEY\nzhfnl19+aYSGhhqhoaFGcHCw7d+Ns8VpGIaxd+9eIzw83Ojfv79xzz33GCdOnHDKOMvLy40ePXoY\nZWVltnXOFueiRYuMoKAgo1+/fsbEiRONysrKJsWol/JERKRBrfIxlIiItCwlCxERaZCShYiINEjJ\nQkREGqRkISIiDVKyEBGRBilZSJtz7Ngx27TRN9xwAyaTibCwMLp27cr06dOb7TxPPPEEWVlZjW5/\n9OjReqeEaKz169c3anblpKQk/vrXvzb5PCL10XsW0qbNmzePrl278j//8z/NetyTJ08yfPhw2zTf\nLWHy5MmMHTuWcePGXbKdI2KTtk93FtLmnf8+lJWVZStMNHfuXCZNmsRtt92Gt7c3//jHP3jiiSfo\n378/o0aNoqqqCoA9e/YQFRVFeHg4I0eOtM2ns379eu644w7bOby9vXnmmWcICwsjPDyc3Nxc7rzz\nTnx9fW2lhIuLi21FsVauXMm9997LqFGj6Nu3L08//bTtWF26dLF9XrNmDVOmTGHnzp289957PPnk\nk4SFhVFUVERhYSGjRo0iPDyc2267jYMHDwLQtWtXevTowf79++31J5V2SMlC2q2ioiLef/99NmzY\nwEMPPcSIESP47LPP+MlPfkJaWhrnzp1jxowZrF27lt27dzNlyhSeffZZAD766CPCw8Ntx3JxceGm\nm24iLy+P2267jcmTJ/PPf/6T7OxsnnvuuXrP/+mnn/L3v/+dffv2sXr1ats0+zVnAD3/eciQIcTG\nxvLSSy+Rl5dHnz59ePTRR0lOTmb37t0sXryYxx57zLbf4MGD+eCDD5r9bybtV0dHByDiCC4uLowa\nNYoOHTrQr18/qquriY6OBiAkJITi4mIOHTrE/v37bXcQFosFT09PAP7zn//YZnA97/xkliEhIZw6\ndYrOnTvTuXNnOnXqRFlZWZ0Yhg8fbpsaPigoiMOHD+Pl5XXJuM/fJZWXl7Nz585afSCVlZW2z56e\nnnz55ZeX9TcRuRQlC2m3rrrqKsBaM8PNzc223tXVlaqqKgzDIDg4mB07dtS7f3V1da3lTp062fY/\nf+yax7vQ+fYAHTp0sLWpeWdx5syZWvuc31ZdXU23bt3Iy8urNzbDMJym3oO0DXoMJe1SY8Z1+Pv7\n880335CdnQ1Ya4Dk5+cDcNNNN9n6L5py7Evp2bMnBw4coLq6mn/+85+2i37Xrl1tdyjXXHMNffr0\nYc2aNbZzfvrpp7ZjfPXVV3h7e19RHCI1KVlIm3f+YluzItiF1cEu/Bbu4uKCm5sba9as4emnn2bA\ngAGEhYWxc+dOAG699VZ2795d7/6XOvbFzl/TwoULGTNmDLfccovtsRdAXFwcixcvZtCgQRQVFfHW\nW2/xl7/8hQEDBtCvXz/ee+89W9ucnBx+8YtfNPIvJNIwDZ0VaYLy8nKGDRvGJ5984uhQ6igrK2P4\n8OFOGZu0XrqzEGmCLl26MGzYsDo1wZ3BypUrmTlzpqPDkDZGdxYiItIg3VmIiEiDlCxERKRBShYi\nItIgJQsREWmQkoWIiDRIyUJERBr0/wHNQhTKgu5WJgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f50125b9350>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 7.5 pageno : 183"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Find Stress\n",
"\n",
"# Variables\n",
"n = 3.;\n",
"a = 300.;\n",
"t = 365. * 24;\t\t\t#in hours\n",
"e = 2.*10**6;\t\t\t#kgf/sqcm\n",
"ai = 750.;\t \t\t#in kgf/sqcm\n",
"\n",
"# Calculations\n",
"v_cr = 2.8*10**-8;\t\t\t# in cm/cm/hour creep rate\n",
"x = math.log(v_cr)-n*math.log(a);\n",
"a1 = math.exp(x);\n",
"a_tf = round(math.sqrt(1./((1./ai**(n-1))+(a1*e*(n-1)*t))),-2);\n",
"\n",
"# Results\n",
"print \"Stress Remaining (in kgf/sq cm) = %.f kgf/cm**2\"%a_tf\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stress Remaining (in kgf/sq cm) = 200 kgf/cm**2\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|