1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 21 : Diffusion of Solids"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 21.1 pageno : 577"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"c_cu = 2.*10**13;\t\t\t#concentration of copper in /m**3\n",
"c_al = 4.*10**6;\t\t\t#concn of copper on other side of Al in /m**3\n",
"\n",
"# Calculations\n",
"t = 3.*10**-3;\t\t \t#thickness in m\n",
"z = (c_cu-c_al)/t;\t\t\t#z = dm/dx,concentration graient\n",
"jx = 10.**21;\t\t \t#outward flux of copperv atoms in /sq m/sec\n",
"d = -jx/z;\t\t\t #diffusivity in sq m/sec\n",
"\n",
"# Results\n",
"print \"Diffusivity (in sq m/sec) = %.2e m**2/s\"%d\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diffusivity (in sq m/sec) = -1.50e+05 m**2/s\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 21.2 pageno : 583"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"c_n = 12.;\t\t\t#nitrogen concentration in kg/m**3\n",
"t = 6.*10**-3;\t\t\t#thickness in m\n",
"\n",
"# Calculations\n",
"z = (c_n-0)/t;\t\t\t#concentration gradient in kg/m**4\n",
"d0 = 5.*10**-7;\t\t\t#in sqm/sec\n",
"q = 75.*10**3;\t\t\t#in j/mol\n",
"r = 8.314;\t\t\t#in J/mol/K\n",
"t = 400.;\t\t\t#in K\n",
"dx = d0*math.exp(-q/(r*t));\t\t\t#diffusivity in sqm/sec\n",
"jx = dx * 2*10**-3;\t\t\t#rate of flow of nitrogen in kg/sqm/sec\n",
"\n",
"# Results\n",
"print \"concentration gradient (in kg/m4) = %.0e\"%z\n",
"print \"Diffusivity (in sqm/sec) = %.3e m**2/s\"%dx\n",
"print \"Rate at which nitrogen escapes (in kg/sqm/sec) = %.3e kg/m**2/s\"%jx\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"concentration gradient (in kg/m4) = 2e+03\n",
"Diffusivity (in sqm/sec) = 8.028e-17 m**2/s\n",
"Rate at which nitrogen escapes (in kg/sqm/sec) = 1.606e-19 kg/m**2/s\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 21.4 pageno : 585"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# variables\n",
"z = 8.;\t\t\t#ratio of diffusion in silicon at 1350 C and 1100 C\n",
"x = math.log(z);\n",
"\n",
"# calculations\n",
"q = x/(1.35*10**-5);\t\t\t#activation energy for silver diffusion in J/mol\n",
"q1 = q/1000.;\t \t\t#in kJ/mol\n",
"\n",
"# results\n",
"print \"Activation Energy in Silver diffusion (in kJ/mol) = %d kJ/mol\"%q1\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activation Energy in Silver diffusion (in kJ/mol) = 154 kJ/mol\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|