1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10 : Phase Diagram and Equilibrium Diagram"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.1 pageno : 251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"c = 2.; \t\t\t#for 2 component system\n",
"p = 4.;\n",
"\n",
"# Calculations\n",
"d = c-p+2;\t\t\t#degree of freedom\n",
"t = p*(c-1)+2;\t\t\t#no. of total variables\n",
"\n",
"# Results\n",
"print \"D = C-P+2\"\n",
"print \"Total no. of variables = P*(C-1)+2\"\n",
"print \"Degree of freedom = \",d\n",
"print \"when p = \",p\n",
"print \"Two component system cannot have more than 4 phases in an equilibrium\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"D = C-P+2\n",
"Total no. of variables = P*(C-1)+2\n",
"Degree of freedom = 0.0\n",
"when p = 4.0\n",
"Two component system cannot have more than 4 phases in an equilibrium\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.2 page no : 257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"p_pb = 11364.1; \t \t\t#density of lead in kg/m**3\n",
"p_sn = 7220.14;\t \t \t#density of tin in kg/m**3\n",
"\n",
"# Calculations\n",
"p_e = 100./((38./p_pb)+(62./p_sn));\t\t\t#density of eutectic composition at point D\n",
"w = .88*p_e;\t \t\t#in kgf\n",
"w_pb = .38*w;\t\t \t#of lead in kgf\n",
"w_sn = .62*w;\t\t\t #of tin in kgf\n",
"p_b = 7300.; \t\t#density in beta phase in kg/m**3\n",
"w1 = .12*p_b;\t\t \t#in kgf\n",
"w1_pb = .03*w1;\t\t\t #of lead in kgf\n",
"w1_sn = .97*w1;\t\t\t #of tin in kgf\n",
"w2_pb = w_pb+w1_pb;\t\t\t#Total weight of lead in kgf\n",
"w2_sn = w_sn+w1_sn;\t\t\t#Total weight of tin in kgf\n",
"sn = (w2_sn/(w2_sn+w2_pb))*100;\n",
"\n",
"# Results\n",
"print \"Density of eutectic composition at point D (in kg/m3) = %.1f kg/m**3\"%p_e\n",
"print \"Total weight of lead (in kgf) = %.2f kgf\"%w2_pb\n",
"print \"Total weight of tin (in kgf) = %.1f kgf\"%w2_sn\n",
"print \"%% of Sn = %.2f\"%sn\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Density of eutectic composition at point D (in kg/m3) = 8381.6 kg/m**3\n",
"Total weight of lead (in kgf) = 2829.07 kgf\n",
"Total weight of tin (in kgf) = 5422.7 kgf\n",
"% of Sn = 65.72\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.4 pageno : 266"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"c_be = 100;\n",
"c_e = 1.65;\n",
"c_o = 10;\n",
"\n",
"# Calculations\n",
"w = (c_be-c_o)/(c_be-c_e);\n",
"\n",
"# Results\n",
"print \"weight fractions = %.3f\"%w\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"weight fractions = 0.915\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.5 pageno : 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"#m be amount of tin\n",
"w_sn = 900.;\t \t\t#weight of tin\n",
"w_pb = 1000.;\t\t \t#weight of lead\n",
"\n",
"# Calculations\n",
"m = ((w_pb*0.97)-w_sn)/(1-.97);\t\t\t#in grams\n",
"m1 = m/1000.;\t\t\t #maximum mass of tin in kgm\n",
"\n",
"# Results\n",
"print \"Maximum weight of tin that can be added without changing systems temperature (in kgm) = %.2f kg\"%m1\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum weight of tin that can be added without changing systems temperature (in kgm) = 2.33 kg\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 10.6 page no : 270"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"c = 0.83;\t\t\t#carbon\n",
"f = 0.; \t\t\t#ferrite\n",
"ce = 6.67;\t\t\t#cementite\n",
"\n",
"# Calculations\n",
"w_a = (ce-c)/(ce-f);\n",
"w_b = (c-f)/(ce-f);\n",
"\n",
"# Results\n",
"print \"Weight fraction of errite = %.3f\"%w_a\n",
"print \"Weight Fraction of Cementite = %.3f\"%w_b\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Weight fraction of errite = 0.876\n",
"Weight Fraction of Cementite = 0.124\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|