1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
{
"metadata": {
"name": "",
"signature": "sha256:b841fc17f95d9198998020044b36e625586e7f0a22a266fb56d5482aed19bd4a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 13: Leaching"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13.1: Page 722"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# Illustration 13.1\n",
"# Page: 722\n",
"\n",
"print'Illustration 13.1 - Page: 722\\n\\n'\n",
"\n",
"# Solution \n",
"import numpy as np\n",
"import math\n",
"#***Data***#\n",
"Density_L = 1137.0;# [kg/cubic m]\n",
"Density_S = 960.0;# [kg/cubic m]\n",
"Density_p = 1762.0;# [kg/cubic m]\n",
"A_prime = 16.4;# [square m/kg]\n",
"g = 9.81;# [square m/s]\n",
"sigma = 0.066;# [N/m]\n",
"Z = 3.0;# [m]\n",
"dia = 1.0;# [m]\n",
"#**********#\n",
"\n",
"e = 1-(Density_S/Density_p);# [fraction void]\n",
"ap = A_prime*Density_S;# [square m/cubic m]\n",
"# By Eqn. 6.67:\n",
"dp = 6*(1-e)/ap;# [m]\n",
"# By Eqn. 13.6:\n",
"K = dp**2*e**3.0*g/(150.0*(1-e)**2);# [cubic m/s]\n",
"check = K*Density_L*g/(g*sigma);\n",
"if (check<0.02):\n",
" # By Eqn. 13.3: \n",
" So = 0.075;\n",
"else:\n",
" # By Eqn. 13.4:\n",
" So = 0.0018/(check)\n",
"\n",
"# By Eqn. 13.2:\n",
"ZD = (0.275/g)/((K/g)**0.5*(Density_L/sigma));# [m]\n",
"# By Eqn. 13.1:\n",
"Sav = ((Z-ZD)*So/Z)+(ZD/Z);\n",
"# VolRatio=Vol liquid retained/Vol bed.\n",
"VolRatio = Sav*e;\n",
"print\"Vol liquid retained/Vol bed : \",round(VolRatio,4),\" cubic m/cubic m\\n\"\n",
"Mass = VolRatio*math.pi*dia**2*Z*Density_L/4;# [kg]\n",
"# Mass ratio=Mass Liquid/Mass dry solid\n",
"MassRatio = VolRatio*Density_L/(Density_S);\n",
"print\"Mass liquid/Mass dry solid: \",round(MassRatio,4),\" kg/kg\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Illustration 13.1 - Page: 722\n",
"\n",
"\n",
"Vol liquid retained/Vol bed : 0.058 cubic m/cubic m\n",
"\n",
"Mass liquid/Mass dry solid: 0.0687 kg/kg\n",
"\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13.2: Page 749"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# Illustration 13.2\n",
"# Page: 749\n",
"\n",
"print'Illustration 13.2 - Page: 749\\n\\n'\n",
"\n",
"# Solution \n",
"import matplotlib.pyplot as plt\n",
"\n",
"#***Data***#\n",
"# Eqb=[x(Wt fraction NaOH in clear solution) N(kg CaCO3/kg soln in settled sludge) y*(wt fraction NaOH in soln of settled sludge)]\n",
"# a=H2O b=CaCO3 c=NaOH\n",
"Eqb = np.array([[0.090 ,0.495, 0.0917],[0.0700, 0.525, 0.0762],[0.0473, 0.568, 0.0608],[0.0330, 0.600, 0.0452],[0.0208, 0.620, 0.0295],[0.01187 ,0.650, 0.0204],[0.00710, 0.659, 0.01435],[0.00450, 0.666, 0.01015]]);\n",
"def f80(x):\n",
" return x\n",
"x = np.arange(0,0.12,0.01);\n",
"Mass_c = 0.1;# [kg]\n",
"Mass_b = 0.125;# [kg]\n",
"Mass_a = 0.9;# [kg]\n",
"#**************#\n",
"\n",
"\n",
"plt.plot(x,f80(x),label=\"N Vs x\")\n",
"plt.plot(Eqb[:,2],Eqb[:,1],label=\"N Vs Y\");\n",
"plt.grid('on');\n",
"plt.xlabel(\"x,y Wt. fraction of NaOH in loquid\");\n",
"plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
"plt.legend('upper left');\n",
"plt.title(\"Equilibrium Plot\")\n",
"plt.show()\n",
"# Basis: 1 kg soln in original mixture.\n",
"# As in Fig. 13.27 (Pg 750)\n",
"# The original mixture corresponds to M1:\n",
"NM1 = 0.125;# [kg CaCO3/kg soln]\n",
"yM1 = 0.1;# [kg NaOH/kg solution]\n",
"# The tie line through M1 is drawn. At point E1 representing the settled sludge:\n",
"N1 = 0.47;# [kg CaCO3/kg soln]\n",
"y1 = 0.100;# [kg NaOH/kg solution]\n",
"E1 = Mass_b/N1;# [kg soln. in sludge]\n",
"Ro = 1-E1;# [kg clear soln drawn]\n",
"\n",
"# Stage 2:\n",
"xo = 0;# [kg NaOH/kg soln]\n",
"# By Eqn. 13.11:\n",
"M2 = E1+Ro;# [kg liquid]\n",
"# By Eqn. 13.12:\n",
"NM2 = Mass_b/(E1+Ro);# [kg CaCO3/kg soln]\n",
"# M2 is located on line RoE1. At this value of N, and the tie line through M2 is drawn. At E2:\n",
"N2 = 0.62;# [kg CaCO3/kg soln]\n",
"y2 = 0.035;# [kg NaOH/kg solution]\n",
"E2 = Mass_b/N2;# [kg soln. in sludge]\n",
"Ro = 1-E2;# [kg clear soln drawn]\n",
"\n",
"# Stage 3:\n",
"xo = 0;# [kg NaOH/kg soln]\n",
"# By Eqn. 13.11:\n",
"M3 = E2+Ro;# [kg liquid]\n",
"# By Eqn. 13.12:\n",
"NM3 = Mass_b/M3;# [kg CaCO3/kg soln]\n",
"# Tie line E3R3 is located through M3.At E3:\n",
"N3 = 0.662;# [kg CaCO3/kg soln]\n",
"y3 = 0.012;# [kg NaOH/kg solution]\n",
"# By Eqn. 13.8:\n",
"E3 = Mass_b/N3;# [kg soln. in sludge]\n",
"print\"The fraction of original NaOH in the slurry: \",round(E3*y3/Mass_c,4),\" \\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Illustration 13.2 - Page: 749\n",
"\n",
"\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXXZ///XxVHOIyflMDgoEAcPgwgOajqaFZYmUmlq\nt0Lpjw4eSu0uf9otWd1lZVqZ3t5qYmaRt0Jhipbe92QoKCgjCMhBQRhARJSDIMrh+v6x1gybzd57\n9p49a/aeNe/n47Ef7LX2Onyu2cO6Zn2utT7L3B0REZFUWhW6ASIiUryUJEREJC0lCRERSUtJQkRE\n0lKSEBGRtJQkREQkLSUJiTUzG2Bm283MwukqM/tq+P5iM3sqYdl9ZnZkDts+YP1CMbOpZvbDQrdD\n4klJQoqCma02s53hAb329et8t+vua9y9i++/IcjDF+7+kLt/Oo9t57V+LsLk9kH4c9lkZo+a2eG1\nTQlf2Wwnp0QooiQhxcKBs8MDeu3rqkI3Kh0za93Eu3Tgm+7eBRgClAC3JTYph23lsqy0cEoSUvTM\nrJWZ/SL8C/p1M/tm+Bdxq/Dz1Wb2iYTlp5jZg+H7ssRlk7Y70cz+lTT7s+E+NpnZzxK6qSaa2XNm\n9kszeweYkrh+qv0kdW0lrv+ema00s5PMbJKZrTGzjWZ2STY/D3d/D5gOHF27q6S4LjezFWa22cz+\namZ9wvnPhou8Ep6RfDGb/UnLpiQhxSTdX7j/H/BZoBw4AfgCB3avJHe35DPWzHhgFHA8cC7wlYTP\nxgCvA72BH2exreR2jQFeAboDfwIeDvdzFPBl4A4z65hhe7UJqyfweeDlhP0QfnYG8J/AF4E+wJvA\nNAB3PzVc7NjwTO1/sohBWjglCSkWBvwl/Cu79vXV8LPzgdvcfV34V/R/krnLJJ/ulFvcfYu7rwVu\nBy5M+Gy9u//W3fe5+64GbHuVuz8Q1kceBvoCN7v7bnf/B/ARMCjNugb82szeA6qBdcA1CZ/XJoqL\ngfvcvdrdPwKuB8aa2YAGtFeENoVugEjIgXPd/X9TfNYHWJswvSbCdiTvp2+azxpiY8L7DwDcfVPS\nvM5p1nXgSnf/XT376APMr1vJfYeZbQb6Ee3PTWJKZxLSHGwAEv8STv6reAfQKWH6cBoueT/rEqYz\ndWPtCP9N7C7Kpx0NtR4oq50ws05ADw6MQyRrShJSTNJ1Ez0MXGVm/czsUOB7HHjArga+ZGZtzOwE\ngv76htYlrjOzEjMrBa4C/pzNSuEZwTrg38ystZl9haDW0JjS/Xws4bM/AZPM7Dgza0/QNTfX3WvP\nIjZG0C6JMSUJKSaPJd0n8Wg4/x7gKYKi73zgUQ48YH6f4MD3HjAFeChpu+kSRqr7C/4KvAQsAP4G\n3Jdh2eR5lwPfAd4BhgPP1bOvXBNZvXG4+zMEP49HCc4qBgJfSlh2CvBAWPP5Qo77lxbIonzokJmN\nIyj+tQbudfdbkj6/jqDQBkF9ZBjQ0923RNYoafbMrAx4A2jj7vsK2xqReIssSYQ3Gy0DziQ4DZ8H\nXOjuS9MsfzbwLXc/M5IGSWwoSYg0nSi7m8YAK919tbvvJrhW+9wMy19E0J8qkg09d1ekCUSZJPpx\n4CWDNeG8g4Q3EH2aoB9VJKPwD4/WOosQiV6USSKXv/TOAWarFiEiUlyivJluHVCaMF1KcDaRypfI\n0NVkZupaEBFpAHfPa0DHKM8k5gODw4HP2gEXADOTFzKzbsCpBJcepuXusX3ddNNNBW+D4lNsii9+\nr8YQ2ZmEu+8xsysIrm9vTTCezFIzmxx+fne46HjgKXf/IKq2FLvVq1cXugmRinN8cY4NFJ9EPHaT\nu88CZiXNuztp+gHggSjbISIiDaM7rovAxIkTC92ESMU5vjjHBopPIr7jurGYmTeHdoqIFBMzw4u4\ncC1ZqqqqKnQTIhXn+OIcG7SM+MwsFq+o6HkSItLiNfeeiiiThLqbRKRFC7tkCt2MvKSLQd1NEdi9\ndzc7d+8sdDNERIqCkkSSBW8toOfPejL8t8O56NGL+PlzP+fpN55m887Nke2zJfT7xlWcYwPFJ6pJ\nHGRMvzFs+d4Wlm5ayoK3FrBgwwIeW/4Yr2x8ha7tuzLy8JHBq89Iyg8v54huR0TaHygiUkiqSWRp\nn+9j1XurWPDWAqrfqq5LILv27OLYw45lRK8RHN37aI7ufTQjeo+ge4fuBW2viGRHNYl6tt0cfjjF\nkCTS2fj+Rha9vYjFby/m1bdf5dVNr7L47cV0bteZEb1HcHSvIGkc3ftohvcaTtf2XQvdZBFJoCRR\nz7abww+nmJNEKu7O2m1r6xLH4k3Bv0vfWUrPjj2Ds43wzGNErxFsWrKJcWeOK3SzI1NVVUVlZWWh\nmxGJOMcGLSO+008/vSiTRKtWrVi5ciVHHnkkENwdXlpayg9/+MODlo0ySagmEQEzY0C3AQzoNoCz\nBp9VN3/vvr2s3rK6Lmk8ufJJbp1zK0vnLaVibQWTyifxxRFfpHO7zgVsvYgUo6hvmku732LMoMma\n25lErj7a+xGPL3+cqa9M5Z+r/8n4oeOZWD6RU484lVamC9BEolRfd1NjHZdzPYQln0lMmjSJ/v37\n60yiJWrXuh3nDTuP84adx8b3N/LQooe4ctaV7PhoB5cedymXll9KWUlZoZsp0iLF+O/TrOjP1CKQ\neK32YZ0P45qx17Dwawv5ny/+D5t2buKE/z6BMx44gwdfeZAdH+0oXEMbKM7Xosc5NlB8hdSxY0d2\n7tx/Y++GDRsK0t2kJFGkzIxRfUdxx2fuYN016/j6CV9n2uJp9L+tP5fNvIzZa2YXZbFNRBpHeXk5\nDz30EHv37uXJJ5/k2WefLUg7VJNoZtZvX88fFv6B+6vvZ8++PUw8biKXHHcJpd1K619ZRA5SrJfA\nvvTSS1x66aWsWbOG8ePHs3fvXo466ihuvvnmg5bVJbBKEgdxd15c9yJTq6fy8JKHGdVnFBPLJ3Le\n0PPo0LZDoZsn0mwUa5LIhQb4i7mG9IuaGSf2P5G7zr6Lmm/X8JWRX+GBVx6g3y/7MfmxycytmVs0\nv/jF3O+brzjHBopPlCRioUPbDnzp6C/x1JefYuHXF3JEyRFcMuMSht85nFtm38L67esL3UQRaabU\n3RRT7s7za59navVUHln6CBX9Kzh/+PkM6zWMwd0H06Njj0I3UaQoqLupnm03hx+OkkR+dny0gxmv\nzeCJFU+w4t0VrNi8glbWiiE9hjC4x2AGdx8cvO8+mME9Bmt8KWlRlCTq2XZz+OHEPUk09fg47s6m\nnZtYsXlFXdJY/u5yVmxewcp3V9KpXaf9SSNMHEN6DGFQ90F0bNsx5/3FefyfOMcGLSO+Yh27KRfN\n9o5rMxsH3A60Bu5191tSLFMJ3Aa0Bd5x98oo2yTBL07vTr3p3ak3Jw84+YDP3J3129fXJY8V767g\nDwv/wIp3V/DGe2/Qo0OPIGl0338WMrjHYI469Cjat2lfoIhEJCqRnUmYWWtgGXAmsA6YB1zo7ksT\nlikBngM+7e41ZtbT3d9Jsa1Yn0k0F3v37aVmWw3LNy8/6AxkzdY19OnSp+7sI7Erq6ykjLat2xa6\n+SIpqbupnm1HmCTGAje5+7hw+nsA7v7ThGW+ARzu7v9Rz7aUJIrc7r27eXPrm0ECCc9AapPJhu0b\nGNBtQMr6R2nXUlq3al3o5ksLpiSRWZTdTf2AtQnTNcCJScsMBtqa2f8BXYBfufuDEbapKMWh37dt\n67YM6j6IQd0HBd9qgr8/83dKjy2tSxqvvPUKjyx5hOWbl7P5g80ceeiRB9U/BncfTN8ufYv+0bBx\n+O4yaQnxSWZRJolsUnNb4HjgE0BHYI6ZzXX3FckLTpw4kbKyMgBKSkooLy+v++Wt/aKb63R1dXVR\ntaexp5csWkK71u04t/Lc/Z93gcpLK9nx0Q6m/W0aNdtqaNehHXNr5vKbh39DzbYaWg1sxcmlJ9P3\nnb4cc9gxXDbhMtq3aV/weDQdr+k4qaqqYurUqQB1x8t8RdndVAFMSehuuh7Yl1i8NrPvAh3cfUo4\nfS/wpLs/krQtdTe1QOu2reO5tc8xe81sZq+ZzfLNyxnVdxSnlJ7CKQNOYWzpWEoOKSl0M6WZU3dT\nPduOMEm0IShcfwJYD7zIwYXrocAdwKeB9sALwAXuviRpW0oSwrYPtzG3Zm5d0pi3fh5HHnpkXdI4\nZcApGuhQclasSaKsrIyvfe1rPPjgg2zYsIHx48dz11130b79wVcRNsskAWBmZ7H/Etj73P0nZjYZ\nwN3vDpe5DpgE7APucfdfp9hOrJNEVQvo940ivt17d7PgrQV1SWP2mtl0aNshSBhh4hjRe0SkT/fT\nd9e8VRXxfRJlZWV07dqVWbNm0bFjR8455xxOP/30eD2Zzt1nAbOS5t2dNP0L4BdRtkPiqW3rtozp\nN4Yx/cZwzdhrcHdWvLuiLmHcNvc2Nu3cxEmlJ9UljdH9RnNIm0MK3XRpRuwHjXPxhN+UWyIyM664\n4gr69esHwA033MCVV16ZMklESXdcS6xtfH/jAXWNxZsWU354eV3SOKn0JI1j1cIVa3fTwIEDufPO\nOznrrLMAWLx4MaNHjz7gaXW1mu2ZhEihHdb5MCYMm8CEYRMAeP+j93lx3YvMXjOb37z4Gy6efjGl\n3UoPqGuUlZQV/aW30jKsWbPmgPd9+/Zt8jboTKIItIR+32KNb8++PSzcuLDuTONfa/5FK2t1QF3j\n2MOOTXvDXzHH1hhaQnzFXJPo1q0bTzzxBB06dOBzn/sclZWV/OhHPzpoWZ1JiESkTas2HN/neI7v\nczxXnXgV7s6qLavqksZd8+9i3fZ1VPSvqEsaJ/Y/sUEDHYrkwsy46KKL+NSnPsX69esZP348N954\nY9O3oxgzaLK4n0lIcXtn5zs8tyasa6ydzcKNCzmm9zF13VMnl55Mr069Ct1MaaBirkncd999nHHG\nGfUu22wvgW0sShJSTHbu3sm8dfPqksactXM4vPPhnDPkHM4bdh4V/SsivexWGpeSRGb6TS4CtcME\nxFXc4uvYtiOnlZ3GDafewHf7fZfN/76ZhyY8RIe2HZj8t8n0/2V/vvH4N/jH6/9g997dhW5uXuL2\n3SWLe3yNQTUJkTy1btWaUX1HMarvKG4+/WaWb17OjKUz+P7/fZ8V767g7CFnM2HoBD511Kfo0LZD\noZsrzcSqVasK3QRA3U0ikarZVsNfXvsLM16bwfz18/nkkZ9kwrAJfHbwZ+l2SLdCN08o3u6mXKgm\noSQhMfDOznd4bNljzHhtBlWrqzh5wMlMGDqBc4eeS+9OvQvdvBZLSSIz1SSKQNz7ReMcXy6x9ezY\nk0kjJzHzwpmsu2Ydk8on8cyqZxjymyGcev+p3D73dt7c8mZ0jW2AOH93EP/4GoNqEiIF0KV9F84f\ncT7njzifXXt28cwbzzB96XR+/K8fM6DbACYMDe4SH9ZrWKGb2iLoDvv01N0kUkT27NvD7DWzmb50\nOjNem0Gntp3qhhUZ1WeUDmaSE9UkRGLM3Zm/fj7Tl05n+mvT+WD3B5w39DwmDJvAKQNO0bPBpV6q\nScRE3PtF4xxflLGZGaP7jeYnZ/6E1775Gk9++Ul6derFt5/6Nn1u7cNlMy/jiRVP8OGeDyNrQ5y/\nO4h/fI2h3pqEmR0CfB4oS1je3f3mCNslIgnMjOG9hjO813BuPPVGVm9ZzYylM/jp7J9y8fSLGTdo\nHBOGTuCswWfRuV3nQjdXYqTe7iYzewrYArwE7K2d7+63Rtu0A9qg7iaRNDa+v5G/Lvsr05dO5/m1\nz1NZVsmEYRM4Z8g5elZGC9ckNQkze9Xdj85nJ/lSkhDJzpZdW3h8+eNMf206T7/xNCf0PYEJQycw\nfuh4+nXtV+jmSRNrqprE82Z2bD47kczi3i8a5/iKLbaSQ0q4+NiLefT8R9lw7QauHHMlL6x7gWPu\nOoaKeyv42XM/Y/nm5VnfPFZs8TW2uMfXGLK5T+LjwCQzWwXUVsjc3ZU4RIpYx7YdGT90POOHjmf3\n3t1Ura5i+tLpnP7A6ezzfVT0r2Bs/7GM7T+WUX1H6RkZklI23U1l4dvaBQ3A3VdH1agUbVB3k0gj\ncXfWbF3D3Jq5zKmZw5yaObz69qsM6zlsf+IoHcvAkoG6L6OZa7L7JMysnOCMwoF/ufsr+ew0V0oS\nItHatWcXL294mTlr5zB33VzmrJ3D7n2765JGRf8KRvcdTad2nQrdVMlBUxWurwYuB6YTnEWMB+5x\n91/ns+NcxD1JtITnCMc1vjjHtnbrWu6bfh/b+m5jTs0cFm5cyJAeQ+q6qCr6VzCo+6BmfbYR5+8P\nmu4Z15cBJ7r7jnCnPwXmAvUmCTMbB9wOtAbudfdbkj6vBP4KvBHOetTdD37Kt4g0udJupVQOrKw7\niH6450MWvLWAuTVz+duKv3HD/97AB3s+oKJ/BRX9KhhbOpbRfUfTpX2XwjZcGlU2ZxKLgDHu/kE4\n3QF40d2PqWe91sAy4ExgHTAPuNDdlyYsUwlc4+6fq2dbsT6TEGmu1m1bV1fbmFszl+q3qjmq+1F1\nZxpj+49lSI8hzfpsozlrqu6ma4CJHNjdNNXdb6tnvbHATe4+Lpz+HoC7/zRhmUrgWnc/p55tKUmI\nNAMf7f2I6req9xfF185h+0fbObHfiXWJ48T+J9K1fddCN7VFaMrC9SjgFPYXrhdksc4XgE+7++Xh\n9JcJuq2uTFjmNILkU0NwtnGduy9Jsa1YJ4m494vGOb44xwaNE9+G7RuYWzO3LnG8vOFlBh46sK6L\namz/sXys58doZU0/lFzcv79IaxJm1tXdt5lZd2AVsDr8yM2su7u/W8+2szmqvwyUuvtOMzsL+Asw\nJNWCEydOpKysDICSkhLKy8vrvtzaG2Ka63R1dXVRtUfxaboxp5e9tIxDOZRbPhmUJJ9+5mlef+91\ndh++m2dWPcONv7uRbR9u45RTT6GifwUd13VkeK/hnP2ps4ui/c1puqqqiqlTpwLUHS/zlfZMwswe\nd/fPmtlqUhzw3X1gxg2bVQBTErqbrgf2JRevk9ZZBYxKTkBxP5MQaek2vr/xgLONlza8RGnXUsb2\nH8t1J12nhy81UFE/T8LM2hAUrj8BrAde5ODC9WHA2+7uZjYGeNjdy1JsS0lCpAXZs28PizYuYk7N\nHM4adBYDD834N6mk0SRjN5nZM9nMS+bue4ArgKeAJcCf3X2pmU02s8nhYl8AFplZNcGlsl/KpfFx\nUXu6GFdxji/OsUHh4mvTqg0j+4zkG6O/EWmCiPv31xgy1SQ6AB2BXmFdolZXIKvhJN19FjArad7d\nCe9/C/w2lwaLiEjTyVST+BZwNdCXoLuo1nbgv939juibV9cWdTeJiOSoqe6TuNLdf5PPTvKlJCEi\nkrumep7ENjO7JPmVz07lQHHvF41zfHGODRSfZDd202j2XwLbATiD4P6G30fVKBERKQ45XwJrZiUE\nVyp9OpompdynuptERHLUVN1NyXYCumhZRKQFyOY+iccSXo8T3CA3I/qmtRxx7xeNc3xxjg0Un2RX\nk7g14f0e4E13XxtRe0REpIhENixHY1JNQkQkd1GPAvs+6UdydXfXgPAiIjGXtibh7p3dvUualxJE\nI4p7v2ic44tzbKD4JLuaBGZ2HHAq+x869EqkrRIRkaKQzbAcVwOXc+DjS+9x919H37y6NqgmISKS\no6Yau2kRUOHuO8LpTsBcdz8mnx3nQklCRCR3TXkz3b4076URxL1fNM7xxTk2UHySXU3ifuAFM0vs\nbvpdpK0SEZGikNV9EmY2CjiF/YXrBVE3LGn/6m4SEclRU9UkjgLWufsuMzsdOAb4vbtvyWfHuVCS\nEBHJXVPVJKYDe8xsEHA3UAr8MZ+dyoHi3i8a5/jiHBsoPskuSexz9z3ABOA37v4doE+0zRIRkWKQ\nTXfTC8CvgP8fOMfdV5nZq+5+dFM0MGyDuptERHLUVN1NXwEqgB+HCWIg8GA+OxURkeah3iTh7ovd\n/Sp3/1M4vcrdb4m+aS1H3PtF4xxfnGMDxScNezJd1sxsnJm9ZmYrzOy7GZYbbWZ7zGxClO0REZHc\nRPY8CTNrTfAUuzOBdcA84EJ3X5piuX8QPBb1fnd/NMW2VJMQEclRoZ5xna0xwEp3X+3uu4FpwLkp\nlrsSeATYFGFbRESkAbJ9xvXMhOdczzSzP5jZ1WZ2SIZV+wGJjzmtCeclbrsfQeK4K5zVIk8X4t4v\nGuf44hwbKD7JbuymVUBP4E8EYzddAGwHhgD3AP+WZr1sDvi3A99zdzczC7ef0sSJEykrKwOgpKSE\n8vJyKisrgf1fdHOdrq6uLqr2KD5Na7p5TldVVTF16lSAuuNlvrK5T2K+u5+Qap6ZLXb3EWnWqwCm\nuPu4cPp6ghvzbklY5g32J4aeBHWJy919ZtK2VJMQEclRpM+4TtDJzI5w9zfDnR4BdAo/+yjDevOB\nwWZWBqwnOAO5MHEBdz+y9r2Z3Q88lpwgRESkcLIpXF8L/MvMqsysCvgX8J3w4UMPpFspHMrjCuAp\nYAnwZ3dfamaTzWxy/k2Pj9rTxbiKc3xxjg0Un2R3JvEkQf1hKEGdYTng7r6LoKaQlrvPAmYlzbs7\nzbKTsmmwiIg0nWxqEvcnHsDNrDMw093PiLpxCftUTUJEJEdNdZ9EjZndGe7wUODvaOwmEZEWIZux\nm74P7DCzuwnujP6lu98fectakLj3i8Y5vjjHBopPMtQkzOzz4VsH5gLfJxhaw81sgrtPb4L2iYhI\nAaWtSZjZVA68Ic4Sp5uy0KyahIhI7prkGdfFQElCRCR3xT7An2Qp7v2icY4vzrGB4hMlCRERySBT\nTeIkYE4x9POou0lEJHdRdzddArxsZn82s4lmdng+OxIRkeYnbZJw96+5+0hgCtAdmGpmc83sP83s\n1PCJctII4t4vGuf44hwbKD7J7ma6pe7+y3DI7zOA54DzgRejbpyIiBSWLoEVEYkpXQIrIiKRUpIo\nAnHvF41zfHGODRSfKEmIiEgGme6TOA64FXgHuB74HXA8sBCY5O4rm6yRqkmIiOQs6prEfwG/Av4K\nPA/8N3Ao8DPgznx2KiIizUOmJHGIuz/m7n8Cdrj7n9x9n7s/BvRqova1CHHvF41zfHGODRSfZE4S\niTfL/TLps7YRtEVERIpMpprE14CH3H170vxBwBXu/q0maF/tPlWTEBHJkZ4nISIiaUV+M52ZfcbM\nnjWzzeHrn2b22Xx2KAeLe79onOOLc2yg+CRDkjCzy4GbCQb4OzJ8/QC4ycwmZ7NxMxtnZq+Z2Qoz\n+26Kz881s1fMbIGZvWRmZzQoChERiUSmmsRS4BR335w0vwfwnLsPzbjhYJTYZcCZwDpgHnChuy9N\nWKaTu+8I3x8DzHD3QSm2pe4mEZEcRd7dlJwgEuZlc8QeA6x099XuvhuYBpybtK0dCZOdCW7cExGR\nIpEpSWwzs/LkmeGd2NtTLJ+sH7A2YbomnJe8vfHhWcss4Kosths7ce8XjXN8cY4NFJ9AmwyfXQv8\n1czuB14CDBgFTAS+nMW2s+ofcve/AH8xs48DDwIfS7XcxIkTKSsrA6CkpITy8nIqKyuB/V90c52u\nrq4uqvYoPk1runlOV1VVMXXqVIC642W+Ml4CGz6y9JvA8HDWEuC37v5WvRs2qwCmhA8rwsyuB/a5\n+y0Z1nkdGJOiDqKahIhIjhqjJpH2TMLMegM93P37SfNHmNled99Uz7bnA4PNrAxYD1wAXJi0raOA\nN9zdzex4SF0HERGRwshUk/gN0DPF/B4EA/9l5O57gCuApwjOQP7s7kvNbHLCJbSfBxaZ2YJwm1/K\npfFxUXu6GFdxji/OsYHik8w1iUHu/s/kme7+rJndlc3G3X0WQUE6cd7dCe9/RjCqrIiIFKFM90ks\nd/chuX4WBdUkRERyF/V9EitTDcFhZp8BXs9npyIi0jxkShLfAm4zs6lmdqWZXWVmDxDUDppsBNiW\nIO79onGOL86xgeKTDEnC3ZcDxwLPAgOBI4B/Ase6+7KmaZ6IiBSShgoXEYmpyMduCncy1szmmdn7\nZrbbzPaZ2bZ8dioiIs1DvUkCuAO4CFgBHAJ8Fbgzyka1NHHvF41zfHGODRSfZJckcPcVQGt33+vu\n9wPjom2WiIgUg3prEmb2LPBJ4F5gA/AWcKm7Hxd98+raoJqEiEiOmqQmAVwSLncFsBPoTzCchoiI\nxFymx5f2NrMR4UODPnD3re4+BbgP2NpkLWwB4t4vGuf44hwbKD6JcIA/ERFp/jKN3fSSu49K89li\ndx8RacsO3J9qEiIiOYq6JtElw2dt89mpiIg0DxrgrwjEvV80zvHFOTZQfJL5eRLfAv5mZl/kwGdc\nnwSc3QRtExGRAqvvGdeHENxtXVt/WAz80d13NUHbEtuhmoSISI4aoyahAf5ERGKqqW6mk4jFvV80\nzvHFOTZQfKIkISIiGai7SUQkphqjuynT1U21O1kEOMHVTbW2AvOAH7n75nwaICIixSub7qYngccJ\nrnK6GHgMmA9sBKZG1rIWJO79onGOL86xgeKTLM4kgDPdfWTC9EIzW+DuI8OzjIzMbBxwO9AauNfd\nb0n6/GLg3wnOVLYDX3f3hVlHICIikcnmeRILgcvd/YVwegxwj7sfV5ssMqzbGlgGnAmsI+iiutDd\nlyYsMxZY4u5bw4Qyxd0rkrajmoSISI6apCZB8LjS+82sczi9HfiqmXUCflLPumOAle6+GsDMpgHn\nAnVJwt3nJCz/AsHzKkREpAhkU5NY5O5HA+VAubsfQ3Dg3+HuD9ezbj9gbcJ0TTgvna8CT2TRpliJ\ne79onOOLc2yg+CS7M4npZnauu28BMLM+BIXs47NYN+s+IjM7HfgKcHKqzydOnEhZWRkAJSUllJeX\nU1lZCez/opvrdHV1dVG1R/FpWtPNc7qqqoqpU6cC1B0v85VNTeJy4DPAF4BSYCZwnbv/vd6Nm1UQ\n1BjGhdPXA/tSFK+PBaYD49x9ZYrtqCYhIpKjJqlJuPs9ZtYe+CtwBPA1d38uy+3PBwabWRmwHrgA\nuDBxATPT6ykPAAARPklEQVQbQJAgvpwqQYiISOFkesb1teHrGqA9wVnEK0BFOK9e7r4HuAJ4ClgC\n/Nndl5rZZDObHC72H8ChwF1mtsDMXswjnmap9nQxruIcX5xjA8Unmc8kunBgTWFGON059eKpufss\nYFbSvLsT3l8GXJbLNkVEpGlo7CYRkZjSUOEiIhIpJYkiEPd+0TjHF+fYQPGJkoSIiGSQtiZhZjel\nWccB3P3mqBqVoi2qSYiI5Cjq+yR2cPAd050Ihs7oCTRZkhARkcJI293k7r9w91vd/VbgHqADMAmY\nBgxsova1CHHvF41zfHGODRSf1HPHtZn1AL5N8LCh3wPHu/t7TdEwEREpvEw1iV8A5wH/Ddzp7tub\nsmFJbVFNQkQkR41Rk8iUJPYBHwG7U3zs7t41nx3nQklCRCR3kd5M5+6t3P0Qd++S4tVkCaIliHu/\naJzji3NsoPhE90mIiEgGGrtJRCSmNHaTiIhESkmiCMS9XzTO8cU5NlB8oiQhIiIZqCYhIhJTqkmI\niEiklCSKQNz7ReMcX5xjA8UnShIiIpKBahIiIjGlmoSIiERKSaIIxL1fNM7xxTk2UHxSz/MkGoOZ\njQNuB1oD97r7LUmfDwXuB0YCN4QPORIRaZa2bYO1a2HNmuDfxPff/S58+tOFbmFuIq1JmFlrYBlw\nJrAOmAdc6O5LE5bpBRwBjAfeS5UkVJMQkWKwaxfU1BycBBKn9+6F0lIYMCD4t/Y1YACMHAk9ejRd\ne6N+xnVjGAOsdPfVAGY2DTgXqEsS7r4J2GRmn424LSIiae3ZAxs2HHzQT5zeuhX69TswCZSXwznn\n7J8uKQHL67BcXKJOEv2AtQnTNcCJEe+z2amqqqKysrLQzYhMnOOLc2wQn/jc4Z13Dj7wz59fxYcf\nVrJ2Lbz1FvTqdeBf/0ceCaedtj8p9O4NrVpYJTfqJNFofUQTJ06krKwMgJKSEsrLy+t+eWuLT811\nurq6uqjao/g03dymd+yAsrJK1qyBp5+u4u23oXXrYHrZsio2bYIuXSopLYWOHavo3RsqKioZOxYO\nOyyYnjChknbtUm9/5044/PDiiTfddFVVFVOnTgWoO17mK+qaRAUwxd3HhdPXA/uSi9fhZzcB76sm\nISKJausA6WoAiXWAdLWA/v2hU6dCR9L0mkNNYj4w2MzKgPXABcCFaZaNUS+eiGQjUx2g9v3WrdC3\n74EH/9o6QO30oYfGqw5QTCK/49rMzmL/JbD3uftPzGwygLvfbWaHE1z11BXYB2wHhrv7+wnbiPWZ\nRFVM+n3TiXN8cY4N8ovPHTZtSl8Irq0D9Ox58F/+if8edlh0dYC4f3/N4UwCd58FzEqad3fC+7eA\n0qjbISKNa+vW9N0/ta9OnQ5OAOXl+6f79YN27QodiWSisZtE5CC7dh18wE9OAol1gFS1gNLSllkH\nKCaNcSahJCHSwiTWAdIVg2vrAKm6f1QHaD6UJGIi7v2icY6v2GJLdT9AciKorQOkugqo9n1tHaDY\n4mtscY+vWdQkRKTx1I4LlO5KoJoa6Njx4AN/efn+9337qg4g2dOZhEiRSBwXKF1XkOoAkgt1N4k0\nE8n3A6RKAlu27B8XKN1NYXEbF0iipSQRE3HvF41zfFVVVZx2WmXKcYESp1ONC5ScBKK8H6Ch4vzd\nQfzjU01CpAmkej5A7fSyZfDuu0EdIPmgn3g/gOoA0lzpTEJatHzGBap931LHBZLip+4mkQyyHRdI\ndQCJKyWJmIh7v2gU8SWPC5TpfoB0ZwCNUQfQd9e8xT0+1SQktjLVAVLdD5A8LtCAAaoDiDQGnUlI\nk8t0P0Dyc4J1P4BIw6m7SYrO3r1BHSBTITj5fgCNCyQSDSWJmGgu/aK14wJl6gZKNS7Qhx9WccYZ\nlUV9P0BDNZfvrqEUX/OmmoQ0qnTjAtVOJ9YBEpPAccdlHheoqgpi/P9QJNZ0JtFC5DoukJ4TLNL8\nqbtJAI0LJCKpKUnERKZ+0WzvByjmcYHi3O8b59hA8TV3qknEwLZtsGoVfPBB6iRQWwdIPuiPHKlx\ngUQkejqTiFAu4wKle0qY6gAi0lDqbiqgbJ8TnK4OUPtedQARiUrRJwkzGwfcDrQG7nX3W1Is82vg\nLGAnMNHdF6RYpkmTRHIdIFUS2Lgx++cE1yfu/aJxji/OsYHia+6KuiZhZq2BO4AzgXXAPDOb6e5L\nE5b5DDDI3Qeb2YnAXUBFVG2qtW1b5i6gtWuDLp6mek5wdXV1rH9R4xxfnGMDxSfRFq7HACvdfTWA\nmU0DzgWWJizzOeABAHd/wcxKzOwwd9/Y0J0m3g+QLhGkGhfotNMKNy7Qli1bmm5nBRDn+OIcGyg+\niTZJ9APWJkzXACdmsUx/IGWSSDUuUH33A9SeAZxzjsYFEhHJVZRJItsiQvLhOuV6AwakHhdo4MAD\nzwKa47hAq1evLnQTIhXn+OIcGyg+ibBwbWYVwBR3HxdOXw/sSyxem9l/AVXuPi2cfg04Lbm7ycyK\n69ImEZFmomgL18B8YLCZlQHrgQuAC5OWmQlcAUwLk8qWVPWIfIMUEZGGiSxJuPseM7sCeIrgEtj7\n3H2pmU0OP7/b3Z8ws8+Y2UpgBzApqvaIiEjumsXNdCIiUhgFLfGa2Tgze83MVpjZd9Ms8+vw81fM\nbGQu6xZaQ+Mzs1Iz+z8zW2xmr5rZVU3b8uzk8/2Fn7U2swVm9ljTtDg3ef5+lpjZI2a21MyWhN2p\nRSXP+K4Pfz8Xmdkfzax907W8fvXFZmZDzWyOme0ys2tzWbcYNDS+Bh1b3L0gL4IuqJVAGdAWqAaG\nJS3zGeCJ8P2JwNxs1y30K8/4DgfKw/edgWVxii/h82uAh4CZhY6nseMjuP/nK+H7NkC3QsfUiL+f\nZcAbQPtw+s/ApYWOKcfYegEnAD8Crs1l3UK/8owv52NLIc8k6m62c/fdQO3NdokOuNkOKDGzw7Nc\nt9AaGt9h7v6Wu1eH898nuAGxb9M1PSsNjg/AzPoTHITu5eDLoItBg+Mzs27Ax939d+Fne9x9axO2\nPRv5fH/bgN1ARzNrA3QkGFWhWNQbm7tvcvf5BHHktG4RaHB8DTm2FDJJpLqRrl+Wy/TNYt1Ca2h8\n/RMXCK8OGwm80OgtzE8+3x/AbcB3gH1RNTBP+Xx/A4FNZna/mb1sZveYWcdIW5u7Bn9/7v4ucCuw\nhuDKxS3u/nSEbc1VNrFFsW5TaZQ2ZntsKWSSaOjNds1F3jcTmlln4BHg6jDrF5OGxmdmdjbwtgeD\nORbr95vP99cGOB64092PJ7hy73uN2LbG0OD/f2Z2FPAtgu6OvkBnM7u48ZqWt3yuxmkOV/Lk3cZc\nji2FTBLrgNKE6VKCjJhpmf7hMtmsW2gNjW8dgJm1BR4F/uDuf4mwnQ2VT3wnAZ8zs1XAn4AzzOz3\nEba1IfKJrwaocfd54fxHCJJGMcknvhOA5919s7vvAaYTfKfFIp/jQ1yOLWnlfGwpYPGlDfA6wV8j\n7ai/cFbB/sJZvesW+pVnfAb8Hrit0HFEEV/SMqcBjxU6nsaOD3gWGBK+nwLcUuiYGis+oBx4FegQ\n/q4+AHyz0DHlElvCslM4sLAbi2NLhvhyPrYUOtizCKrrK4Hrw3mTgckJy9wRfv4KcHymdYvt1dD4\ngFMI+uqrgQXha1yh42nM7y/h89MowqubGuH38zhgXjh/OkV2dVMjxPfvwGJgUZgk2hY6nlxiI7jK\nZy2wFXiPoL7SOd26xfZqaHwNObboZjoREUmrmY2XKiIiTUlJQkRE0lKSEBGRtJQkREQkLSUJERFJ\nS0lCRETSUpKQBjOz28zs6oTpp8zsnoTpW83s22Z2hJklP5Uw3Ta/GA6t/UwjtO9cMxuWMP0DM/tE\nvtutZ59/CofVvjpp/hQz22FmvRLm1TvUipl1M7Pfh0NCrzSzB8ysa/hZmZktSrGfa1NsZ7KZ/VsO\ncRy07caQrh1R7U/ypyQh+ZhNOByDmbUCegDDEz4fCzxHMODdRVlu86vAZe5+wME8HG00V+cltsfd\nb3L3vJNPOuEIxSe4+3Hu/qsUi7wDJB7As7lJ6T6CET8Hu/sgYBXByLnppNymB0+CfDCL/UWqWNoh\n2VOSaIHMbHT41257M+sUPnxkeNIyP0g6S/hxigeUzCFIBAAjCIZq2B4+cKc9MIzgjs6fAh+34AFD\nV5OGmf0HcDLwOzP7mZldamYzw7OKf4RtfdrMXjKzhWb2uYR1Lwljqg7/8h4LnAP8PByJ9Ugzm2pm\nnw+X/0Q4f6GZ3Wdm7cL5q8O/xmv38bEU7TwkHOF1YbiNyvCjvwP9wjhPSVrNgd8BF5hZSYptzjCz\n+eF3cXk4bxDBmE8/TFj0ZuAEMxuY7seY5mdbd4ZhZlVm9lMze8HMlqVoa1bxmlkHM5sWnvlNN7O5\nZnZ8+Nn7Cet/wczuT9GOUbXfGfCNTG2QwonsGddSvNx9npnNJHggSQfgQXdfkrTY7wiGk/hVeJZw\nATA6aTvrzWyPmZUSJIs5BEMWjyV45sAid99twZOzrnP3c+pp181mdjrBWDMvm9lEgqGMj3H3LWbW\nGjjP3bebWc9wfzPNbARwAzDW3d81s5Jw+ZkE40JNBzAzB9zMDgHuB85w95Vm9gDwdeBXBAfzTe4+\nysy+DlwHXJ7U1G8Ce9392DCJ/N3MBhMkpb+5+0hSez/8uX6LYEydRF9x9/fMrAPwopk9SnAWVO0J\nwyK4+77woHo0wZAYR5nZgoTtHA78PNWPl/1nGQ60dvcTzews4Cbgk2nanC7eIQQ/s/fdfbiZHQO8\nnLS/dO9rp+8HvuHus83sZxn2LwWkM4mW62bgUwQjeh70H9Td3wQ2m1l5uNzL7v5eiu08T9DldBLB\nQXtO+H4sQXcU5Dcc+N/dfUv4vhXwEzN7BfgH0NeCh+CcATzswXMOSFg+1b4N+Biwyt1XhvMeAE5N\nWGZ6+O/LBIOoJTsZ+EO4r2XAm8CQFPtK5sCvgUstGKo50dXhwX8OwWirg8ncHVX72evuPrL2BfxX\nFu2A+mNMlC7ejyfMXwQszGK/QFBrIRjPqvZ3RF1QRUpnEi1XT6ATwaMQOwA7UyxzLzAJOIzgL+BU\nniM4iBxD8JftWoK/vrdmWCdbntSui8N2H+/uey0YavyQcLl0B8ZUB9rkeZY078Pw372k/z/SkMRn\n7r7VzP4IXFE3M+i++QRQ4e67zOz/gPbAEqDczKz2bCI8qysPP8tHNjEe0PYc5yf+PDvksX0pMJ1J\ntFx3AzcCfwRuqZ1pZq8lLDMDGEdwtvFUmu08D5wNbPbAe0AJwZnE8+Ey24AuDWhj8oGjK8HDivaG\n3VJHEByM/hf4opl1D2M4NFx+e7hOIicYPbPMgofnAPwb8M8c2vUvgoRF2O0yINxmtn5JMGJn63C6\nG/BemCCGEgzLjbu/TlDTuTFh3RuBl9z9jRz2V6uhB+JU8b5GMBz6ReH8o4FjE9bZaGZDw6R2XlIb\nzIPHuW4xs5PD+cX00CJJoCTRApnZJcCH7j6NoKg82swqw37+Oh48P/d/Cbpy0nV9vEpwVdPchHkL\nCR5p+W7C9N6wqHy1mfUxs8ezaGpi/zXAQwRF24UEB/alYTuXAD8G/hl22dwaLj8N+E5YhD4yIa4P\nCc6Q/ifc1h6Cbprafabbf607gVbhutOAS8OfVfL6qeLB3TcTdPe0D+fPAtqY2RLgJwRdTrW+Cgyx\n4PLXlcCgcN4B20y1n0acny7euwieSrcE+AHwUsK63wP+RnCmuT5hW4k/00nAbxNqKhqSughpqHCp\nY2afBQa6+x3hdCuC//hfCP+qFUkr7Ca71t1frndhaTZUk5A67l73170Fl8Q+BkxXghBpuXQmISIi\naakmISIiaSlJiIhIWkoSIiKSlpKEiIikpSQhIiJpKUmIiEha/w9Jrjjq3itbkQAAAABJRU5ErkJg\ngg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7c610f0>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The fraction of original NaOH in the slurry: 0.0227 \n",
"\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13.3: Page 754"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# Illustration 13.3\n",
"# Page: 754\n",
"\n",
"print'Illustration 13.3 - Page: 754\\n\\n'\n",
"\n",
"# Solution (a)\n",
"import numpy as np\n",
"from scipy import interp\n",
"import matplotlib.pyplot as plt\n",
"#***Data***#\n",
"# a=H2O b=CaCO3 c=NaOH \n",
"mass_c = 400;# [kg/h]\n",
"x1 = 0.1;# [wt fraction NaOH in overflow]\n",
"#**********#\n",
"\n",
"Mb = 100.0;# [kg/kmol]\n",
"Mc = 40.0;# [kg/kmol]\n",
"rate_c = mass_c/Mc;# [kmol/h]\n",
"rate_b = rate_c/2;# [kmol/h]\n",
"mass_b = rate_b*Mb;# [kg/h]\n",
"# After trial calculations:\n",
"y3 = 0.01;# [kg NaOH/kg solution]\n",
"N3 = 0.666;# [kg CaCO3/kg solution]\n",
"E3 = mass_b/N3;# [kg/h]\n",
"lost_c = E3*y3;# [kg/h]\n",
"sludge_a = E3-lost_c;# [kg/h]\n",
"overflow_c = mass_c-lost_c;# [kg NaOH/kg solution]\n",
"R1 = overflow_c/x1;# [kg overflow/h]\n",
"R1_a = R1-overflow_c;# [kg/h]\n",
"RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
"# For purpose of calculation, it may be imagined that agitators are not present in the flowsheet and the first thickner is fed with the dry mixture of the reaction products, CaCO3 and NaOH, together with overflow from the second thickner.\n",
"F = 400.0;# [kg NaOH/h]\n",
"NF = mass_b/F;# [kg CaCO3/kg NaOH]\n",
"yF = 1.0;# [wt fraction NaOH in dry solid, CaCO3 free basis]\n",
"# Points R1, E3, RNpPlus1 and F are plotted as in Fig 13.30 (Pg 755) and locate the point deltaR at the intersection of lines FR1 and E3RNpPlus1 extended. The coordinates of point deltaR are NdeltaR=-0.1419, ydeltaR=-0.00213. Further computation must be done on enlarged section of the equilibrium diagram (Fig 13.31 (Pg 755)). Point deltaR is plotted and the stages stepped off in a usual manner. The construction are projected on the xy diagram. Three stages produce a value: y3=0.001\n",
"print\"The NaOH lost in sludge: \",round((lost_c/mass_c)*100,2),\"%\\n\"\n",
"print\"\\n\"\n",
"\n",
"# Solution (b)\n",
"#*** Data***#\n",
"lost_c = 0.001*mass_c;# [kg/h]\n",
"#***********#\n",
"\n",
"NNp_by_yNp = mass_b/lost_c;# [kg CaCO3/kg NaOH in final sludge]\n",
"# In order to determine the liquid content of the final sludge:\n",
"# Eqb=[N y_star]\n",
"Eqb = np.array([[0.659 , 0.01435],[0.666, 0.01015],[0.677, 0.002],[0.679, 0.001],[0.680 ,0.0005]]);\n",
"N_by_ystar = zeros(5);\n",
"for i in range(0,5):\n",
" N_by_ystar[i] = Eqb[i,0]/(Eqb[i,1]);\n",
"\n",
"plt.plot(Eqb[:,0],Eqb[:,1]);\n",
"plt.grid('on');\n",
"plt.xlabel(\"x Wt fraction of NaOH\");\n",
"plt.ylabel(\"N kg CaCO3 / kg solution\");\n",
"plt.title(\"Equilibrium plot\")\n",
"# By Interpolation, for N_by_ystar=NNp_by_yNp:\n",
"NNp = interp(NNp_by_yNp,N_by_ystar,Eqb[:,0]);# [kg CaCO3/kg soln]\n",
"yNp = NNp/NNp_by_yNp;# [wt fraction NaOH in the liquid of the final sludge]\n",
"ENp = mass_b/NNp;# [kg/h]\n",
"ENp_a = ENp-lost_c;# [kg/h]\n",
"overflow_c = mass_c-lost_c;# [kg/h]\n",
"R1 = overflow_c/0.1;# [kg/h]\n",
"R1_a = R1-overflow_c;# [kg/h]\n",
"RNpPlus1 = R1_a+sludge_a;# [kg/h]\n",
"# On the operating diagram (Fig 13.32 (Pg 757)) point deltaR is located and stages were constructed. \n",
"# Beyond the fourth stage, the ratio of the overflow to the liquid in the sludge become substantially constant.\n",
"R_by_E = RNpPlus1/ENp;\n",
"# This is the initial slope of the operating line on the lower part of the figure.\n",
"# From Illustration 13.2:\n",
"m = 0.01015/0.00450;\n",
"Value1 = R_by_E/m;\n",
"xNpPlus1 = 0;# [kg NaOH/kg solution]\n",
"y4 = 0.007;# [wt fraction NaOH in the liquid]\n",
"Value2 = (yNp-(m*xNpPlus1))/(y4-(m*xNpPlus1));\n",
"# From Fig 5.16: (Pg 129):\n",
"# An Additional 2.3 stages beyond 4 are computed graphically are required.\n",
"# An additional two stage will make yNp/y4=0.099:\n",
"yNp = 0.099*y4;# [wt fraction NaOH in the liquid]\n",
"print round(yNp*ENp,2),\"kg NaOH was lost if 6 thickners were used\\n\"\n",
"# An additional three stage will make yNp/y4=0.0365:\n",
"yNp = 0.0365*y4;# [wt fraction NaOH in the liquid]\n",
"print round(yNp*ENp,3),\"kg NaOH was lost if 7 thickners were used\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Illustration 13.3 - Page: 754\n",
"\n",
"\n",
"The NaOH lost in sludge: "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 1.88 %\n",
"\n",
"\n",
"\n",
"0.51"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" kg NaOH was lost if 6 thickners were used\n",
"\n",
"0.188 kg NaOH was lost if 7 thickners were used\n",
"\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEZCAYAAABFFVgWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecHVX9//HXm4QgfQkWugEBFURCSwJSgoCGIEGp36Bo\nQCEaQ/mKSpMiFkCKEhANaEhASVCkfqWXRQQJJLKhhRIhPwho6EiTEPL5/XFmc2+uW+5u7tyy9/18\nPO4jOzNnZj73w7Bn55wzZxQRmJmZ5WGZWgdgZmZ9lysZMzPLjSsZMzPLjSsZMzPLjSsZMzPLjSsZ\nMzPLjSsZsxKS1pP0hiRly62Svp79/GVJNxWVXSRpgx4ce4n9a0XSoCx2/w6wXPkCs4Ylaa6kt7MK\nof0zYWmPGxHPRMTKUXiILLIPEfH7iPj8Uhx7qfavBUmnSLq01nFYY+pf6wDMlkIAX4iI22sdSDkk\n9YuI92sdh1k1+U7G+iRJy0g6S9KLkv4h6dvFzUPZXdAuReUX/7XeVVOSpDGS7ipZvUd2jhcl/ayo\nmW2MpLslnSPpJeCU4v07Ok9J01zx/q9KmiNpO0kHS3pG0nxJX+0iB62STpM0XdLrkq6WtFonZdeS\ndK2klyU9Kekb2foRwHHAAdmd4gPl5N+snSsZa3TqZP1hwB7AYGBrYF+yJq9MdLDcW18EtgK2BPYC\nDinaNgT4B/Bh4CdlHKs0riHALGAgMBX4Q3aejwFfAc6XtEIXxzsIOBhYE1gIdNacOA14Jiu3L/BT\nSTtHxI3AT4FpWRPiFmV8B7PFXMlYIxNwdfZXfvvn69m2/YGfR8RzEfEq6RdlZxUS3WzrzhkR8VpE\nPAv8AhhdtO35iPhlRCyKiP/04thPR8SUrH/oD8BawKkR8V5E3AIsADbsZN8ALomIRyPibeBEYP/2\nO612ktYFtgOOiYgFETEL+A3Qfpckli4/1sTcJ2ONLIC9OumTWRN4tmj5mRzjKD3PWp1s6435RT+/\nAxARL5asW6kHsS0LfLCkzFrAKxHxVknZrXscrVkJ38lYX/VPYL2i5fVKtr8FrFi0vMZSnKv0PM8V\nLXfVDNf+S724uWtp4uhIaWzvAS+VlHkeGChppZKy87KfPVW79ZorGWt0nTXj/AE4QtLaWWf3sSz5\ny7IN+B9J/SVtDexD73+ZfldSS9bsdARweTk7ZXckzwEHSeon6RBSX0ulCPiKpE9m/TanAn8sGprd\nHsezwD3AaZKWk/RpUr/S77Ii/wIGlTazmZXDlYw1uutKnpP5U7b+IuAmUqf5DOBPLFkhnUj6hf4q\ncArw+5LjdlbhlHbMA1wDzAQeAP4P+G0XZUvXHQp8j3R3sQlwdzfn6klFGMClwGTSnd0AUiXY0bFG\nA4NIdzVXAicVNUP+Mfv3ZUkzenB+M5TnS8uy4Y+/APoBv4mIMzooMwHYHXgbGBMRD2TrJ5FGB70Q\nEZuV7HM4MA54H/hzRByT25ewPkHSIOApoH9ELKptNNUh6Q7g0oiYVOtYrHnldicjqR9wPjCC9Bfa\naEmfLCkzEtgwIjYiDTn9VdHmi7N9S4+7MzAK+HREfAo4K59vYNYnuInLairP5rIhwJyImBsR75HG\n4e9VUmYUMAUgIqYDLZLWyJbvIjVllPoWcFp2zNKRNmZdacYO7Gb8zlZH8qxk1mbJ4ZPzsnU9LVNq\nI2BHSfdmTzR7mKV1K/tjp1+zNJUBRMTObiqzWsvzOZly/4IqvZ3vbr/+wGoRMUzSNqRRRGXPgmtm\nZtWTZyXzHLBu0fK6FMbdd1ZmHZZ8xqAj80ijX4iI+7O5n1aPiJeLC0lyM4GZWS9ERMX68vJsLpsB\nbJRNAjgAOAC4tqTMtWRTV0gaBrwWEfPp2tXAZ7N9NgYGlFYw7SLCnwhOPvnkmsdQLx/nwrlwLrr+\nVFpulUxELATGk55VeBS4PCJmSxoraWxW5nrgKUlzgImkYckASJpKekBsY0nPSjo42zQJ2EDSQ6QJ\nAzudhdaSuXPn1jqEuuFcFDgXBc5FfnKduywibgBuKFk3sWR5fCf7ju5k/XukmWXNzKzO+Yn/JjBm\nzJhah1A3nIsC56LAuchPrk/815Kk6KvfzcwsL5KIBun4tzrR2tpa6xDqhnNR4FwUOBf5cSVjZma5\ncXOZmZkt5uYyMzNrGK5kmoDbmwuciwLnosC5yI8rGTMzy437ZMzMbDH3yZiZWcNwJdME3N5c4FwU\nOBcFzkV+XMmYmVlu3CdjZmaLuU/GzMwahiuZJuD25gLnosC5KHAu8uNKxszMcuM+GTMzW8x9Mk1s\n0aJaR2Bm1jOuZBrEzJmw1VYwfXrP93V7c4FzUeBcFDgX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qJo\n/SRJ8yU91Ml+R0taJGlgXvHXky23hO99D774RRg/Hl5/vdYRmZl1L7c+GUn9gMeBXYHngPuB0REx\nu6jMSGB8RIyUNBQ4NyKGZdt2AN4ELomIzUqOvS5wEfBxYKuIeKWD8/fJPplXXoFjj4Xrr4df/AL2\n2QdUsdZTM2t2jdQnMwSYExFzI+I9YBqwV0mZUcAUgIiYDrRIWiNbvgt4tZNjnwN8P5eo69zAgXDh\nhTBtGpx8Muy5J8ydW+uozMw6lmclszbwbNHyvGxdT8ssQdJewLyIeLASQTaq7beHBx6A7baDrbeG\ns86ChQs7Luv25gLnosC5KHAu8pNnJVNuW1XpbVmn+0laATgeOLmL/ZvGgAFw/PFw771w882psunN\nwAAzs7z0z/HYzwHrFi2vS7pT6arMOtm6znwMGATMUuqIWAeYKWlIRLxQWnjMmDEMGjQIgJaWFgYP\nHszw4cOBwl8ufWF5ww3huONaue02+OIXh7PPPjBiRCsrrZS2Dx8+vK7i9XL9LLerl3hqtdy+rl7i\nqeZya2srkydPBlj8+7KS8uz470/q+N8FeB64j647/ocBv2jv+M+2DwKuK+34L9r+NE3W8d8dDwww\ns6XRMB3/EbEQGA/cBDwKXB4RsyWNlTQ2K3M98JSkOcBEYFz7/pKmAvcAG0t6VtLBHZ0mr/gbVUcD\nA6ZNa611WHWj9C/4ZuZcFDgX+cmzuYyIuAG4oWTdxJLl8Z3sO7qM42+wVAH2Ye0DA846C8aOhXnz\n4KijoH+u/8XNzJbkucuawJw5MG4cvPACTJwIQ4fWOiIzq1cN01xm9WPDDeGmm+D73/eMAWZWXa5k\nmkBraysSHHggPPIILFgAm24KV1wBzXaz57b3AueiwLnIjyuZJuMZA8ysmtwn08QWLEgDA845Jw17\n9sAAM6t0n4wrGfPAADNbzB3/1mPdtTc308AAt70XOBcFzkV+XMkYgAcGmFku3FxmHfrrX9NDnOuv\nD+efDzlMaWRmdcjNZVYVPXmVgJlZZ1zJNIHetjcP6IOvEnDbe4FzUeBc5MeVjHWrmQYGmFlluU/G\nesSvEjDr2/ycTJlcyeTLAwPM+iZ3/FuP5dHe3KgDA9z2XuBcFDgX+XElY73WFwcGmFllubnMKiIC\npk6Fo49O/TQ/+QmsumqtozKznnJzmdUlzxhgZh1xJdMEqtneXO+vEnDbe4FzUeBc5KfbSkbSByR9\nWdIJkk7OPieVewJJIyQ9JulJScd0UmZCtn2WpC2K1k+SNF/SQyXlz5Q0Oyt/pSQ3zNSZRh0YYGaV\n1W2fjKSbgNeAmcD77esj4uxuDy71Ax4HdgWeA+4HRkfE7KIyI4HxETFS0lDg3IgYlm3bAXgTuCQi\nNivaZzfgtohYJOn0LJ5jS87tPpk64VcJmDWOSvfJlPOKqrUj4vO9PP4QYE5EzAWQNA3YC5hdVGYU\nMAUgIqZLapG0RkT8KyLukjSo9KARcUvR4nRgn17GZ1XQPmPA1KlpxgAPDDBrHuX0ydwj6dO9PP7a\nwLNFy/OydT0t05VDgOt7FV2TqIf25noZGFAPuagXzkWBc5Gfcu5kdgAOlvQ08G62LiKinIqn3F8h\npbdmZe0n6QRgQURc1tH2MWPGMCh7FL2lpYXBgwczfPhwoHBRebn6yxdeCOed18p3vwuTJw/n/PNh\n7tzqnL9dPeWjVsttbW11FU8tl9va2uoqnmout7a2MnnyZIDFvy8rqZw+mfazthcUQHsTWDf7DgNO\niYgR2fJxwKKIOKOozK+B1oiYli0/BuwUEfOLzn9dcZ9Mtn4McCiwS0T8p4Nzu0+mzi1YkAYEnHNO\nmg/tqKOgfzl/9phZbqr+nExWmbSQ+k72BFYtp4LJzAA2kjRI0gDgAODakjLXAl+FxZXSa+0VTGck\njQC+B+zVUQVjjWGAZwww6/PKGcJ8JPA74EPAR4DfSTqinINHxEJgPHAT8ChweUTMljRW0tiszPXA\nU5LmABOBcUXnngrcA2ws6VlJB2ebzgNWAm6R9ICkC8r7us2ptKmo3lTzVQL1notqci4KnIv8lNM4\n8Q1gaES8BZANGb4XmFDOCSLiBuCGknUTS5bHd7Lv6E7Wb1TOua1xtA8MGDEiNZ1tuqlfJWDWF5TT\nJ/MQMCQi3smWlwfuK+0jqTfuk2lsfpWAWW3UYu6yi4Hpkk6R9EPSXcykSgVg1hHPGGDWN5TT8X8O\ncDDwKvAyMCYifp53YFY5jdrenMfAgEbNRR6ciwLnIj+d9slIWiUi/i1pIPA0MDfbFJIGRsQr1QjQ\nzDMGmDWuTvtkJP05IvaQNJcOHo6MiPVzjm2puE+mb3rllTQw4PrrPTDALA+V7pPxS8usIXlggFk+\nqt7xL+m2ctZZ/eqL7c29HRjQF3PRW85FgXORn04rGUnLS1od+JCkgUWfQfRsAkuzXHjGALP611Wf\nzFHAkcBawPNFm94ALoyI8/MPr/fcXNZcItLAgKOP9sAAs6VR9T4ZSYdHxHmVOmG1uJJpTh4YYLZ0\navEw5r8lfbX0U6kALH/N1N48cCBceCFMmwYnnwx77glz5xa2N1MuuuNcFDgX+Smnktmm6LMjcApp\nRmazuuUZA8zqQ4+HMEtqIc2m3NtXMleFm8us3Zw5MG4cvPACTJwIQ4fWOiKz+lWL5rJSbwN1/SCm\nWbFqvkrAzJZUznMy1xV9/gw8DlyVf2hWKW5vLrxKYOLEVhYsSK8SuOKKNCqtWfm6KHAu8lPO+2TO\nLvp5IfD/IuLZnOIxy9Uqq6SBAe0zBkye7BkDzPLkaWWsaS1YkAYEnHNOGvZ81FHQv5w/u8z6sKo9\nJyPpTTqYGDMTEbFKpYLIgysZK5cHBpgVVK3jPyJWioiVO/nUdQVjS3J7c0FHuWjWgQG+Lgqci/yU\nNbpM0uaSDpc0XtLm5R5c0ghJj0l6UtIxnZSZkG2fJWmLovWTJM3PXv9cXH6gpFskPSHp5mxItdlS\naR8Y8MgjeGCAWQWVM63MkcChwJWAgC8CF0XEhG7260caibYr8BxwPzA6ImYXlRkJjI+IkZKGAudG\nxLBs2w7Am8AlEbFZ0T4/A16KiJ9lFddqEXFsB+d3c5n1WvGrBC64ANZbr9YRmVVHLZ6T+QYwNCJO\niogTgWGkSqc7Q4A5ETE3It4DpgF7lZQZBUwBiIjpQIukNbLlu0ivfC61eJ/s3y+WEYtZj7TPGLDt\ntjBkCNx4Y60jMmtM5T6MuaiTn7uyNlA81Hke//2KgHLKlPpIRMzPfp4PfKTMeJqW25sLepKLAQPg\nhBPgj3+Eb3wjzYX2/vv5xVZtvi4KnIv8lDNg82JguqTi5rJJZexXbltV6W1Z2W1cERGSOi0/ZswY\nBmUPQLS0tDB48GCGDx8OFC4qLzfXcrue7L/DDjBhQiunngr33juc3/8eHn64Pr7P0iy3tbXVVTy1\nXG5ra6ureKq53NrayuTJkwEW/76spLKek5G0FbA9qQK4KyIeKGOfYcApETEiWz4OWBQRZxSV+TXQ\nGhHTsuXHgJ3a71SyF6RdV9In8xgwPCL+JWlN4I6I+EQH53efjFXUwoXwgx+k99b84Q8e6mx9Uy1e\nv/wx4JGIOBd4CNihzBFdM4CNJA2SNAA4ALi2pMy1wFez8wwDXitqCuvMtcDXsp+/BlxdRixmS61/\nfzj9dJgwIb1C4IILPPrMrDvl9MlcCSyUtCEwEVgXuKy7nSJiITAeuAl4lDRz82xJYyWNzcpcDzwl\naU527HHt+0uaCtwDbCzpWUkHZ5tOB3aT9ATw2WzZulDaVNTMKpGLvfaCv/0tTU/zla/AW28tfVy1\n4OuiwLnITzl9MosiYqGkvYHzIuI8Sd02lwFExA3ADSXrJpYsj+9k39GdrH+FNCzarGY+9rFU0Xz7\n22n02Z/+BJ/4r0ZbMyvnOZnpwLnA8cCeEfG0pIcj4lPVCLC33Cdj1fLb36a5zy64APbbr9bRmC2d\nqs1dVnTCTYGxwN8iYqqk9YH9izvw65ErGaumv/8d9t03NaX97Gew7LK1jsisd6re8R8Rj0TEEREx\nNVt+ut4rGFuS25sL8srFllvCzJlpss2dd4bnnsvlNBXl66LAuchPb96MaWYdWG01uOYaGDkSttkG\nbr+91hGZ1Z7fJ2OWg9tuSyPPjjwyze68jP+cswZR9T6ZRuVKxmpt3jzYf3/44AdhypR0p2NW72rx\nMOZ1kq7N/m3/+XeSjpT0gUoFYvlxe3NBNXOxzjrQ2gobbABbb50m3Kwnvi4KnIv8lHMT/zRpyv0L\ngYuAN7LPxtmymXViwAD4xS/gtNPgc5+DSeXM+mfWh5QzhHlGRGzd0TpJj0TEprlG2EtuLrN6M3s2\n7LNPen3A+efD8svXOiKz/1aL98msKOmjRQF8FFgxW1xQqUDM+rpPfhLuuw/eeQe22w6eeqrWEZnl\nr5xK5mjgLkmtklqBu4DvSVqRwsvDrI65vbmg1rlYaSX4/e/h61+HYcPguutqF0utc1FPnIv8lDN3\n2Y2k/pdPkKb6f4L0Kpf/AL/IMTazPkmC8ePTYID9909zoJ16aprl2ayvKadP5uKIOLhoeSXg2oj4\nbN7BLQ33yVgjePFFOPDA9MbNqVPhI37Pq9VYLfpk5km6IDv5asDNwKWVCsCsmX3oQ3DjjbD99unO\n5u67ax2RWWWVM3fZicBbkiYCtwDnRMTFuUdmFeP25oJ6zEW/fqm57Ne/hr33TkOeq3ETXo+5qBXn\nIj+dVjKS9sk+ewP3AkOBB4DI1plZBe2xB0yfDr/7HRxwALzxRq0jMlt6nfbJSJpM6uhfvKp4ubif\nph65T8Ya1X/+k+Y8u/PO9DK0TevySTTrqzx3WZlcyVijmzIFvvtdOPfcNDjArBpq0fFvDc7tzQWN\nlIuvfS3N5nzyyWnI87vvVvb4jZSLvDkX+cm1kpE0QtJjkp6UdEwnZSZk22dJ2qK7fSUNkXSfpAck\n3S9pmzy/g1ktffrTMGNGegnajjvCM8/UOiKznumqT2Y70iuXe9XmJKkf8DiwK/AccD8wOiJmF5UZ\nCYyPiJGShgLnRsSwrvbNZh04LSJukrQ78P2I2LmD87u5zPqMCDj7bDjrLLjkkjTZplkeqtlc9lXg\n75IulzRG0ho9PPYQYE5EzI2I94BpwF4lZUaRTU0TEdOBluw8Xe37T2DV7OcWUiVk1qdJqX/m8svh\n4IPTkOdFi2odlVn3Oq1kIuKbEbEFcAowEJgs6V5JP5W0Y3a30ZW1gWeLludl68ops1YX+x4LnC3p\nGeBM4Lhu4mh6bm8uaPRc7LRTaj679Vb4whfg5Zd7f6xGz0UlORf56Xa2pKx5azZwjqQVgJ2B/YGf\nA1t1tWuZMfT0tuy3wBERcZWk/YBJwG4dFRwzZgyDBg0CoKWlhcGDBzN8+HCgcFF5ubmW29VLPL1Z\nXnNNOOmkVi66CLbaajh//CO89VbPj9fW1lYX36celtva2uoqnmout7a2MnnyZIDFvy8rKbchzJKG\nAadExIhs+ThgUUScUVTm10BrREzLlh8DdgLW72xfSf+OiFWy9QJei4hVKeE+GWsGV14J3/wm/OhH\ncNhhqVnNbGk00hDmGcBGkgZJGgAcAFxbUuZaUt9Pe6X0WkTM72bfOZJ2yn7+LGlWaLOmtPfe8Ne/\nwi9/mYY8v/12rSMyW1JulUxELATGAzcBjwKXZ6PDxkoam5W5HnhK0hxgIjCuq32zQx8G/ExSG/Dj\nbNm6UNpU1Mz6Yi423hjuvTf9PHQoPFHmn119MRe95VzkJ9c3WETEDcANJesmliyPL3ffbP0M0jxq\nZpZZYYU0Q8CFF6YZndsn2zSrta6ek9kcOBt4iTSCaxKwJfAgcHBEzKlWkL3hPhlrVjNmwH77wT77\nwGmnwbLL1joiayTV7JP5NXAucA1wD3AhsBrwM+CCSgVgZpW19daponn0UdhlF/jnP2sdkTWzriqZ\nD0TEdRExFXgrIqZGxKKIuA74UJXiswpwe3NBs+Ri9dXh//4PdtstVTp33vnfZZolF+VwLvLTVSVT\n/LDlOSXbfANuVueWWQZOPBEuvji9n+bMM6vzMjSzYl31yXwT+H1EvFGyfkPSfGNHVSG+XnOfjFnB\nM8/A/vvDmmvC5Mmw6n89WWaW+H0yZXIlY7akBQvg6KPhxhvhiitg881rHZHVo6o+jClppKS/SHo5\n+9wpaY9Kndyqw+3NBc2ciwED4Lzz4Ic/hF13hWOPba11SHWjma+LvHX6nIykQ4GxwPeBmdnqrYDT\nJa1T+ryLmTWGAw9MdzG77w6vvprevPmBD9Q6KuuruuqTmQ1sHxEvl6xfHbg7Ij5Rhfh6zc1lZl17\n4w34+tfhH/9IzWfrr1/riKweVLW5rLSCKVrn395mDW7lldP7aQ46CIYNg+uvr3VE1hd1Vcn8W9Lg\n0pXZTABvdFDe6pTbmwuci4LW1lYkOOqoNJvz2LFpyPP779c6surzdZGfriqZo4FrJJ0iaU9JoyT9\nkDQb8tHVCc/MquEzn4GZM+Huu2HECHjxxVpHZH1Fl0OYs1chfxvYJFv1KPDLiPhXFWJbKu6TMeu5\nhQvhpJPgd79LTWnbblvriKzaqvacjKQPAx+KiEdK1m8KvBARdf23jisZs9677ro0KODEE2H8eL8M\nrZlUs+P/POCDHaxfnTRxpjUItzcXOBcFXeVizz3TO2ouvjgNeX7zzerFVQu+LvLTVSWzYUT817R6\nEfEXwM8Km/VxG2yQ+mhWXBGGDIHZs7vfx6xUV81lT0TExj3dVi/cXGZWOZMmwTHHwPnnp8k2re+q\nZnPZnI6mkJE0EvhHpQIws/p3yCFw881w/PFw5JFpHjSzcnRVyRwF/FzSZEmHSzpC0hRSf0xdz8Bs\nS3J7c4FzUdDTXGyxRRrm/PTTMHw4zJuXS1g14esiP51WMhHxBPBp4C/A+sBHgTuBT0fE4+UcXNII\nSY9JelLSMZ2UmZBtnyVpi3L2zSq92ZIelnRGObGY2dJraYGrr4ZRo2CbbeC222odkdW73Kb6l9QP\neBzYFXgOuB8YHRGzi8qMJL2bZqSkocC5ETGsq30l7QwcD4yMiPckfaij4dTukzHL1x13wJe/DN/+\nNhx3XHpJmjW+qs5dlp1wW0n3S3pT0nuSFkn6dxnHHgLMiYi5EfEeMA3Yq6TMKGAKQERMB1qyB0C7\n2vdbwGnZeur9eR2zvmrnneH++9OcZ6NGpRmdzUqV87fH+cCBwJPAB4CvAxeUsd/awLNFy/OydeWU\nWauLfTcCdpR0r6RWSVuXEUtTc3tzgXNRUIlcrL02tLbCxhvDVlulPptG5OsiP52+T6ZYRDwpqV9E\nvA9cLKkNOLa73cqMoae3Zf2B1bJmtW2APwAbdFRwzJgxDBo0CICWlhYGDx7M8OHDgcJF5eXmWm5X\nL/HUcrmtra0ix1t2WRg1qpVVVoERI4Zz2mnwsY+lyTfr6ft2tdzW1lZX8VRzubW1lcmTJwMs/n1Z\nSd32yUj6C7Ab8Bvgn8C/gK9FRJcPZEoaBpwSESOy5eOARRFxRlGZXwOtETEtW34M2Ik00KDDfSXd\nAJze/qCopDnA0A7ee+M+GbMqe/xx2Hvv9PDmL38JK6xQ64isp6reJwN8NSs3HngbWAfYp4z9ZgAb\nSRokaQBwAGkG52LXZsdvr5Rei4j53ex7NfDZbJ+NgQEdvffGzKrv4x+H6dPTczTbbQdz5tQ6Iqu1\nTisZSR+WtGnW+f5ORLweEacAvwVe7+7AEbGQVDHdRJq9+fJsdNhYSWOzMtcDT2V3IxOBcV3tmx16\nErCBpIeAqWSVlHWutKmomTkXBXnlYqWV0izOhx2WKpprrsnlNBXl6yI/XfXJnEfHHfyrAyeQBgN0\nKSJuAG4oWTexZHl8uftm698DDuru3GZWOxKMG5cGA+y/P9xzD/zkJ9C/rF5g60u6mrtsZkRs1cm2\nRyJi01wjW0rukzGrDy+9lJ6nWbAApk6FNdaodUTWlWr2yazcxbZlKxWAmfVtH/xgepZmxx1h663h\nrrtqHZFVkyfIbAJuby5wLgqqmYt+/eCHP4Tf/Ab22w/OOQfqqaHB10V+umohPQr4P0n7ATNJz7Ns\nBWwHfKEKsZlZHzNiRBp9tu++qZ9m0iRYZZVaR2V56vI5GUkfIHXwt/e/PAJcFhH/qUJsS8V9Mmb1\n69134aij4Pbb4YorYLPNah2Rtat0n0xuE2TWmisZs/p36aXwne/Az38OX/lKraMxqM3DmNbg3N5c\n4FwU1EMuDjoo3c2cemoa8vzuu7WJox5y0Ve5kjGzmtpsszSb8/z5sMMO8P/+X60jskpyc5mZ1YWI\nNOrszDNh8uQ0SMCqr+p9Mtn0LcGSsyW/TnqR2I/rdd4wVzJmjemuu2D0aPjGN+DEE9PwZ6ueWvTJ\n3Aj8mTTK7MvAdaQJLOcDkysViOXH7c0FzkVBveZihx1gxoz0npqRI9OMAXmr11z0BeVUMrtGxHER\n8VBEPBgRxwM7RcTpwKB8wzOzZrTGGnDrrTB4cJr/7L77ah2R9VY5zWUPAodmr0dG0hDgoojYXNID\nEbFFFeLsMTeXmfUNV1+dZnQ+5RT41rfS5JuWn1r0yWwDXAyslK16g/QK5keAPSLiD5UKppJcyZj1\nHXPmwD77pJFoEyfCiivWOqK+qxZ9Mg9FxKeAwcDgiNgMmBMRb9VrBWNLcntzgXNR0Ei52HBD+Nvf\n0qsChg6EQvQeAAATiUlEQVRNb+CspEbKRaMpp5K5UtKyEfFaRLwmaU3g1rwDMzMrtsIKcPHFcOSR\naXDAFVfUOiIrRznNZYcCI4F9gXVJr0H+bkTcnH94vefmMrO+a+bMNMnml74EZ5wBy/rlIxVTk7nL\nJI0HRgAfBb4ZEXdXKoC8uJIx69teeSVNS/P663D55bD22rWOqG+oWp+MpKOzz3eA5Uh3MbOAYdk6\naxBuby5wLgoaPRcDB8J118Huu8M228Add/T+WI2ei3rW3ZsxVyr69yrgyaJ13ZI0QtJjkp6UdEwn\nZSZk22dJ2qLcfbMKcJGkgeXEYmZ9zzLLwAknwCWXwIEHwumnw6JFtY7KiuU2d5mkfsDjwK7Ac6Rp\naEZHxOyiMiOB8RExUtJQ4NyIGNbdvpLWBS4CPg5sFRGvdHB+N5eZNZFnn4X994cPfximTIGWllpH\n1Jgaaar/IaShznMj4j1gGrBXSZlRwBSA7GHPFklrlLHvOcD3c4zdzBrMuuvCnXfCRz+aZgloa6t1\nRAb5VjJrA88WLc/L1pVTZq3O9pW0FzAvIh6sdMB9ldubC5yLgr6YiwEDYMIE+MlPYLfd0pDncvTF\nXNSL/jkeu9y2qrJvyyQtDxwP7FbO/mPGjGHQoEEAtLS0MHjwYIYPHw4ULiovN9dyu3qJp5bLbW1t\ndRVPJZfXWKOVs86C008fzt13w377tbLccp2Xb8tue+ol/mout7a2MnnyZIDFvy8rqdM+GUknd7JP\nAETEqV0eWBoGnBIRI7Ll44BFEXFGUZlfA60RMS1bfgzYCVi/o31Js0HfBrydHWIdUp/NkIh4oeT8\n7pMxa3JvvAGHHgpPPJEe3txgg1pHVP+q2SfzFvBmySdI85Z1OFKsxAxgI0mDJA0ADiA9yFnsWuCr\nsLhSei0i5ne2b0Q8HBEfiYj1I2J9UjPalqUVjJkZwMorw9SpcPDBMGxYGvJs1dVpJRMRZ0XE2RFx\nNmkk1/LAwaRO+PW7O3BELATGAzcBjwKXR8RsSWMljc3KXA88JWkOMBEY19W+HZ2m7G/axEqbipqZ\nc1HQLLmQ4PDD4ZprYNy4NOT5/feXLNMsuaiFLvtkJK0O/C/pZWWXkO4aXi334BFxA3BDybqJJcvj\ny923gzK++TWzsmy7bZqO5sAD4XOfS3c4H/5wraPq+7rqkzkL+BJwIXBBRLxRzcCWlvtkzKwj778P\nJ5+cnqWZNg0+85laR1RfqjZ3maRFwALgvQ42R0SsUqkg8uBKxsy68uc/wyGHwPHHwxFH+GVo7arW\n8R8Ry0TEByJi5Q4+dV3B2JLc3lzgXBQ0ey722APuvTdNSfPZz7byRkO11TSOPB/GNDOra+uvD3ff\nnd60uc028MgjtY6o78lt7rJac3OZmfXE5Mnwve+lGQNGj651NLVTk/fJNCJXMmbWU7NmwT77pNcH\nnH12mqam2TTSBJlWJ5q97b2Yc1HgXBS052LzzWHGjDSj8447pn9t6biSMTMr0tICV10Fe++d+mlu\nrusXzdc/N5eZmXWitTU9vPmtb6WZApZpgj/L3SdTJlcyZlYJzz8PBxyQ5kG79FJYffVaR5Qv98lY\nj7ntvcC5KHAuCrrKxVprwe23wyabwNZbpz4bK58rGTOzbiy7LJx1VvrsvjtMnAhuKCmPm8vMzHrg\niSfSMOctt4Rf/QpWWKHWEVWWm8vMzGpo443TdDSLFqV31Dz5ZK0jqm+uZJqA294LnIsC56Kgp7lY\nccU059m4cWkW56uuyieuvsCVjJlZL0jwzW+m2Zz/93/TlDQLF9Y6qvrjPhkzs6X08svwla/A22+n\nd9SsuWatI+o998mYmdWZ1VdPdzS77JKGOd95Z60jqh+5VzKSRkh6TNKTko7ppMyEbPssSVt0t6+k\nMyXNzspfKWnVvL9HI3Pbe4FzUeBcFFQiF8ssAyedBJMmpYc3zzzTw5wh50pGUj/gfGAEsAkwWtIn\nS8qMBDaMiI2Aw4BflbHvzcCmEbE58ARwXJ7fw8ysXJ//PNx3H1xxRRrq/PrrtY6otvK+kxkCzImI\nuRHxHjAN2KukzChgCkBETAdaJK3R1b4RcUtELMr2nw6sk/P3aGjDhw+vdQh1w7kocC4KKp2L9daD\nv/wl9c1svTU8+GBFD99Q8q5k1gaKJ8uel60rp8xaZewLcAhw/VJHamZWQcstB7/8JZxySuqrueSS\nWkdUG3lXMuW2SPZqJIOkE4AFEXFZb/ZvFm57L3AuCpyLgjxz8eUvwx13wE9+AoccAv/6V26nqkv9\ncz7+c8C6Rcvrku5IuiqzTlZm2a72lTQGGAns0tnJx4wZw6BBgwBoaWlh8ODBi2+L2y8qLzfXcrt6\niaeWy21tbXUVTy2X29racj3+Sy+1cs45cOutw9lkExgxopX/+R8YNar237+1tZXJkycDLP59WUm5\nPicjqT/wOKkieB64DxgdEbOLyowExkfESEnDgF9ExLCu9pU0Ajgb2CkiXurk3H5Oxszqzrx58KMf\nwZ/+BEcckR7kXHnlWkdV0FDPyUTEQmA8cBPwKHB5VkmMlTQ2K3M98JSkOcBEYFxX+2aHPg9YCbhF\n0gOSLsjze5iZVco666RZnKdPT/OebbghnH02vPNOrSPLh5/4bwKtra2Lb5ObnXNR4FwU1DIXDz+c\nnq+57z74wQ9Sv82AATUJBWiwOxkzM+vapz4FV16ZJtm86ir4xCfSSLT33691ZJXhOxkzszpy551w\nwgnw6qtw6qmw995pMs5qqfSdjCsZM7M6EwE33pgqGykNf/7856tT2bi5zHqsdPhuM3MuCpyLgnrL\nhZRe8zxjBhx3HHznO7DjjmkWgUbjSsbMrE4tswzsuy889BAceiiMGQMjRqTKp1G4uczMrEEsWAC/\n/S38+McwdGh63mbTTSt7DjeXmZk1qQED4Fvfgjlz0mufP/tZOOgg+Mc/ah1Z51zJNIF6a2+uJeei\nwLkoaLRcLL88HH10ephzo43SXc03v5lmE6g3rmTMzBrUKqukBzkffxxWXRU23zwNEnjxxVpHVuA+\nGTOzPuKf/4Sf/hQuuwzGjUt3Oy0tPTuG+2TMzKxDa64J550HM2fCc8+lprTTT4e33qpdTK5kmkCj\ntTfnybkocC4K+louBg2CSZPgrrvggQfSJJznnQfvvlv9WFzJmJn1UZ/4BFx+OdxwA9x0E2y8cRoC\nvXBh9WJwn4yZWZO45540Vc3zz8MPfwj7758e+CzmucvK5ErGzOy/RcBtt6XK5j//SQ92fuELhXnR\n3PFvPdbX2puXhnNR4FwUNFMuJNh1V7j33jRjwPHHw7bbwu2353O+/vkc1szM6pkEo0alu5jLL4ex\nY2G99XI4T19tUnJzmZlZ+d57D265BfbYw30yZXElY2bWcw3VJyNphKTHJD0p6ZhOykzIts+StEV3\n+0oaKOkWSU9IullSD59nbT7N1N7cHeeiwLkocC7yk1slI6kfcD4wAtgEGC3pkyVlRgIbRsRGwGHA\nr8rY91jglojYGLgtW7YutLW11TqEuuFcFDgXBc5FfvK8kxkCzImIuRHxHjAN2KukzChgCkBETAda\nJK3Rzb6L98n+/WKO36FPeO2112odQt1wLgqciwLnIj95VjJrA88WLc/L1pVTZq0u9v1IRMzPfp4P\nfKRSAZuZWWXlWcmU2+teTgeTOjpe1rPv3v1uzJ07t9Yh1A3nosC5KHAu8pPnczLPAesWLa9LuiPp\nqsw6WZllO1j/XPbzfElrRMS/JK0JvNBZAFLFBkg0vClTpnRfqEk4FwXORYFzkY88K5kZwEaSBgHP\nAwcAo0vKXAuMB6ZJGga8FhHzJb3cxb7XAl8Dzsj+vbqjk1dyCJ6ZmfVObpVMRCyUNB64CegH/DYi\nZksam22fGBHXSxopaQ7wFnBwV/tmhz4d+IOkrwNzgf3z+g5mZrZ0+uzDmGZmVnsNMUFmmQ91Dpf0\ngKSHJbUWrZ8r6cFs231F60+RNC9b/4CkEVX4KkttKXPRIukKSbMlPZo1UTbsA64VzsXQbH1TXReS\nPl70XR+Q9LqkI7JtTXVddJOLprousvXHSXpE0kOSLpO0XLa+Z9dFRNT1h9RcNgcYRBoQ0AZ8sqRM\nC/AIsE62/MGibU8DAzs47snAd2r9/aqciynAIdnP/YFVs59/Bnw/+/kY4PRaf9ca5qLprouiMssA\n/wTWbdbrootcNNV1ke3zFLBctnw58LXeXBeNcCdTzkOdBwJ/ioh5ABHxUsn2zgYBNNrggF7nQtKq\nwA4RMSlbvzAiXs/2acQHXPPKBTTRdVFiV+AfEdH+jFpTXRclSnMBzXVd/Bt4D1hBUn9gBQojfHt0\nXTRCJVPOQ50bAQMl3SFphqSDirYFcGu2/tCS/Q5XmjPttw3SFLA0uVgfeFHSxZL+LukiSStk2xrx\nAde8cgHNdV0U+x/gsqLlZrsuipXmAprouoiIV4CzgWdII3xfj4hbs316dF00QiVTzsiEZYEtgZHA\n54ETJW2Ubds+IrYAdge+LWmHbP2vSL9sBpNui8+uaNT5WJpc9M/WXxARW5JG8/3XvG+R7oEbYTRI\nXrlotusCAEkDgD2BP3Z4gua4LoBOc9FU14WkjwFHkZrN1gJWlPTl/zpBGddFI1Qy5TzU+Sxwc0S8\nExEvA38BNgeIiOezf18EriLdQhIRL0QG+E37+jrX21x8Ols/LyLuz8r9iXRxQfaAK4C6ecC1jlQy\nF1eQ5aLJrovNi7bvDszM/j9p10zXRZe5aMLrYivgnoh4OSIWAlcC22X79Oi6aIRKZvFDndlfGAeQ\nHsgsdg2wvaR+WbPHUOBRSStIWhlA0orA54CHsuU1i/b/Uvv6OtfbXMzObm+flbRxVm4XUocfFB5w\nhS4ecK0zlczFrmS5aLLr4tGi7aOBqSX7NNN10WUumvC6eBwYJml5SSL9P9Keo55dF3mObqjUh/SX\nxeOkkRLHZevGAmOLynyX9IviIeCIbN0GpBEVbcDD7ftm2y4BHgRmZUn6SK2/Z565yNZvDtyffecr\nKYyoGgjcCjwB3Ay01Pp71jAXzXhdrAi8BKxccsxmvC46y0UzXhffL1o/BVi2N9eFH8Y0M7PcNEJz\nmZmZNShXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMmZmlhtXMtbQJP1c0pFFyzdJuqho+WxJ/yvp\no5JK38xafJwzs6nOz6hATEdJWr5o+c+SVlna43Zxvg9Jmi5ppqTPlGxrlXR/0fLWku4o45ibSrpd\naZr4JyT9oGjbGEnndXCerSrxfaxvcSVjje6vZNNdSFoGWB3YpGj7tsDdpHmnDuziOIcCm0XEEu/c\nkNSvFzEdSZq1FoCI2CMi/t2L45RrF+DBiNgqIu7uYPuH1IP3n2QV5DXATyPiE6QHV7eTNC4r0tHD\ndY0yt5lVmSsZq1uStslmvV1O0orZncYmJcX+RqpIADYlzezwhtJLyZYDPgk8QHpt9w5KL2c6svgA\nkq4FVgL+Lml/SZMl/VrSvcAZWRz3ZDM2390+HU02FcdZSi91miVpvKTDSRMK3iHptqzcXEkDs5+/\nk5V/qD2ObNqP2ZIuzL7jTZI+0EE+BmV3F7Mk3SppXUmDgTOAvbLvVrpfAGcBJ3RyvL9kd0AzJbXn\n8UDgr5HNuhsR7wDjKUwi2mhT3lsN9a91AGadiYj7swrgx8DywKUR8WhJmeclLZS0Lqmy+RtpOvNt\nSe/EeCgi3lN6K+B3I2LPDs4zStIbkWbrRtLupIpi24iIbP67HSLifUm7Aj8F9gUOA9YDNo+IRZJW\ni4hXJX0HGB5punTI/sLPmpPGkCZXXAaYLulO4DVgQ+CAiDhM0uXAPsDvS0I9D7g4Ii6VdDAwISK+\nJOkkYKuIOKKTVP4N+JKk4cAbRevnA7tFxLtKsxBfBmxDqqxnluToKUkrSVopW3WApO2LimzYybmt\nybmSsXp3Kmmiv3eAwzspcw+pyWw74BxSJbMd8DqpOQ16/tf3H6Mw51ILcImkDUkVRvv/N7sAv4qI\nRQAR8WoXxxOwPXBldmeApCuBHUgTDj4dEQ9mZWeSplgvNYzCC6J+R3pDYfuxu/t+PwZ+QHqTYbsB\nwPmSNgfeJ71bhOw7dne8acWVWjn9PNac3Fxm9e6DpEkLVyLdzXTkbuAzwGakyfzupVDp3NPL875d\n9POPgNsiYjPSWwGL4+hJ5VX6y1sU+jHeLVr/Pp3/AdibpqqIiDtIcQ8rWv+/wD8j4tPA1sBy2fpH\nSVO9F04qbQC8GRFvLkUc1oRcyVi9m0j6C/wyUt9DR+4BvgC8HMmrpLuPbSlUMv8GVu5lDKuQ3g4I\nqbmr3S3A2PbBAZJWy9a/ke1TLIC7gC9m06evSLoruYvyf2HfQ3pjI8CXSe/+6Ikfk+5k2iu2VYB/\nZT9/lfROeEi53l7SLrB4IMAEOs+/WadcyVjdkvRV4N2ImEbquN8m61co9TBpVNm9ReseBF4r6hd5\nEHhfUltpx3+mdGRU8fLPgNMk/Z30i7h9229Ir6d9UFIb6T0kABcCN7Z3/C8+YMQDwGTgvizWiyJi\nVhnnb3c4cLCkWaRK5siist2O7IqIG1jyBVMXAF/LYv848GZW7h3Su+B/IOkxUu6mR8Qve3I+M8BT\n/ZuZWX58J2NmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrlxJWNmZrn5/4wM\nQj9yu23UAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7a1c780>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13.4: Page 758"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# Illustration 13.4\n",
"# Page: 758\n",
"\n",
"print'Illustration 13.4 - Page: 758\\n\\n'\n",
"\n",
"# Solution\n",
"import numpy\n",
"from scipy import interp\n",
"#***Data***#\n",
"# a:oil b:soyabean c:hexane\n",
"# Data=[100y*(Wt % oil in soln) 1/N(kg soln retained/kg insoluble solid)]\n",
"Data = numpy.array([[0 ,0.58],[20 ,0.66],[30 ,0.70]]);\n",
"# Soyabean feed:\n",
"percent_b = 20.0;# [soluble]\n",
"yF = 1.0;# [mass fraction oil,solid free basis]\n",
"# Solvent:\n",
"RNpPlus1 = 1.0;# [hexane,kg]\n",
"xNpPlus1 = 0;# [mass fraction oil]\n",
"# Leached Solids:\n",
"leached = 0.005;# [fraction of oil to be leached]\n",
"# Miscella:\n",
"percent_miscella = 10.0;# [percent of insoluble solid]\n",
"#**********#\n",
"\n",
"N = zeros(3);\n",
"ystar_By_N = zeros(3);\n",
"for i in range(0,3):\n",
" N[i] = 1/Data[i,1];# [kg insoluble solid/kg soln retained]\n",
" ystar_By_N[i] = Data[i,0]/(100*N[i]);# [kg oil/kg insoluble solid]\n",
"\n",
"# Basis: 1 kg flakes introduced\n",
"# Soyabean feed:\n",
"mass_b = 1-(percent_b/100.0);# [insoluble,kg]\n",
"F = 1.0-mass_b;# [kg]\n",
"NF = mass_b/F;# [kg insoluble solid/kg oil]\n",
"\n",
"# Leached Solids:\n",
"Ratio = leached/(1-leached);# [kg oil/kg insoluble solid]\n",
"# By interpolation:\n",
"Np = interp(Ratio,ystar_By_N,N);\n",
"miscella_b = (percent_miscella/100.0)*mass_b;# [Insoluble solid lost to miscella,kg]\n",
"leached_b = (1-(percent_miscella/100.0))*mass_b;# [Insoluble solid in miscella,kg]\n",
"ENp = leached_b/Np;# [kg soln retained]\n",
"retained_a = Ratio*leached_b;# [oil retained,kg]\n",
"retained_c = ENp-retained_a;# [Hexane retained,kg]\n",
"yNp = retained_a/ENp;# [mass fraction of oil in retained liquid]\n",
"\n",
"# Miscella:\n",
"mass_c = 1.0-retained_c;# [kg]\n",
"mass_a = F-retained_a;# [kg]\n",
"R1 = mass_c+mass_a;# [clear miscella,kg]\n",
"x1 = mass_a/R1;# [mass fraction of oil in the liquid]\n",
"NR1 = miscella_b/R1;# [kg insoluble solid/kg soln]\n",
"\n",
"# The operating diagram is shown in Fig 13.33 (Pg 759).\n",
"# Point R1 represents the cloudy miscella and is therefore is displaced from the axis of he graph at NR1. Point deltaR is located as usual and the stages determined with the N=0 axis for all the stages but the first.\n",
"print\"Between 4 and 5 stages are required\\n\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Illustration 13.4 - Page: 758\n",
"\n",
"\n",
"Between 4 and 5 stages are required\n",
"\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|