summaryrefslogtreecommitdiff
path: root/Mass_-_Transfer_Operations/Chapter12_1.ipynb
blob: 9416a787082693aa8a32ceab7faed25b51479bd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
{

 "metadata": {

  "name": "",

  "signature": "sha256:7b3124ef7f3febbf9fbbcfec34e4b1fa9fd03169d0e2aea25265368468350ca6"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter 12: Drying"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.1: Page 660"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.1\n",

      "# Page: 660\n",

      "\n",

      "print'Illustration 12.1 - Page: 660\\n\\n'\n",

      "\n",

      "# Solution\n",

      "\n",

      "#****Data****#\n",

      "F=1000;# [kg]\n",

      "Xo=0.8;# [wt. fraction water]\n",

      "X1=0.05;# [wt. fraction water]\n",

      "#************#\n",

      "\n",

      "Yo=Xo/(1-Xo);# [kg water/kg dry solid]\n",

      "Y1=X1/(1-X1);# [kg water/kg dry solid]\n",

      "solid=F*(1-X1);# [kg]\n",

      "print\"Moisture to be evaporated: \",solid*(Yo-Y1),\" kg\\n\","

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.1 - Page: 660\n",

        "\n",

        "\n",

        "Moisture to be evaporated:  3750.0  kg\n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.2: Page 665"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.2\n",

      "# Page: 665\n",

      "\n",

      "print'Illustration 12.2 - Page: 665\\n\\n'\n",

      "\n",

      "# Solution\n",

      "\n",

      "# ***Data***#\n",

      "Y1 = 0.05;# [kg water/kg dry air]\n",

      "Yair = 0.01;# [kg water/kg dry air]\n",

      "TempG1 = 95;# [OC]\n",

      "width = 1;# [m]\n",

      "apart = 100.0/1000;# [m]\n",

      "deep = 38.0/1000;# [m]\n",

      "Rate_evaporation=7.5*10**(-3);# [kg/s]\n",

      "#*****************#\n",

      "\n",

      "# From Table 7.1: (Pg 234)\n",

      "vH = (0.00283+(0.00456*Y1))*(TempG1+273);# [cubic m/kg dry air]\n",

      "freeArea = width*(apart-deep)*11;# [square m]\n",

      "# Rate of air flow at 1:\n",

      "Rate_air1 = 3*freeArea/vH;# [square m]\n",

      "Y2 = Y1+(Rate_evaporation/Rate_air1);# [kg water/kg dry air]\n",

      "# Assuming adiabatic drying:\n",

      "# From adiabatic saturation curve, Fig 7.5: (Pg 232)\n",

      "TempG2 = 86.0;# [OC]\n",

      "# Overall Water Balance:\n",

      "G = Rate_evaporation/(Y1-Yair);# [kg dry air/s]\n",

      "# Rate of air flow at 3:\n",

      "Rate_air3 = Rate_air1+G;# [kg dry air/s]\n",

      "# Rate of air flow at 4:\n",

      "Rate_air4 = Rate_air3;# [kg dry air/s]\n",

      "# Volumetric Rate through fan:\n",

      "Rate_fan = Rate_air3/vH;# [cubic m/s]\n",

      "print\"Percentage of air recycled is:\",round((Rate_air1/Rate_air3)*100,2),\"%\\n\",\n",

      "print\"\\n\"\n",

      "\n",

      "# From Fig. 7.5 (page 232):\n",

      "# Saturated enthalpy at adiabatic saturation temp.\n",

      "Enthalpy1 = 233.0;# [kJ/kg dry air]\n",

      "Enthalpy2 = 233.0;# [kJ/kg dry air]\n",

      "# Enthalpy of fresh air:\n",

      "Enthalpy_air = 50.0;# [kJ/kg dry air]\n",

      "# Assuming complete mixing, by Enthalpy mixing:\n",

      "Enthalpy3 = ((Enthalpy1*Rate_air1)+(Enthalpy_air*G))/Rate_air3;# [kJ/kg dry air]\n",

      "Enthalpy4 = Enthalpy3;# [kJ/kg dry air]\n",

      "# From table 7.1: (Pg 234)\n",

      "Temp_dry = ((Enthalpy3*1000.0)-(2502300.0*Y1))/(1005.0+(1884.0*Y1));\n",

      "Power = (Enthalpy2-Enthalpy3)*Rate_air3;# [kW]\n",

      "# From Fig. 7.5, (Pg 232)\n",

      "DewPoint1 = 40.4;# [OC]\n",

      "DewPoint2 = 41.8;# [OC]\n",

      "DewPoint3 = 40.4;# [OC]\n",

      "DewPoint4 = 40.4;# [OC]\n",

      "print\"At Point 1\\n\"\n",

      "print\"Enthalpy of air:\",Enthalpy1,\" kJ/kg dry air\\n\",\n",

      "print\"Dew Point of air: \",DewPoint1,\" degree C\\n\"\n",

      "print\"\\n\"\n",

      "print\"At Point 2\\n\"\n",

      "print\"Enthalpy of air: \",Enthalpy2,\" kJ/kg dry air\\n\"\n",

      "print\"Dew Point of air: \",DewPoint2,\" degree C\\n\"\n",

      "print\"\\n\"\n",

      "print\"At Point 3\\n\"\n",

      "print\"Enthalpy of air: \",Enthalpy3,\" kJ/kg dry air\\n\",\n",

      "print\"Dew Point of air: \",DewPoint3,\" degree C\\n\"\n",

      "print\"\\n\"\n",

      "print\"At Point 4\\n\"\n",

      "print\"Enthalpy of air: \",Enthalpy4,\" kJ/kg dry air\\n\"\n",

      "print\"Dew Point of air: \",DewPoint4,\" degree C\\n\"\n",

      "print\"\\n\"\n",

      "print\"Dry bulb temparature of air: \",Temp_dry,\" OC\\n\"\n",

      "print\"Power delivered by heater: \",Power,\" kW\\n\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.2 - Page: 665\n",

        "\n",

        "\n",

        "Percentage of air recycled is: 90.65 %\n",

        "\n",

        "\n",

        "At Point 1\n",

        "\n",

        "Enthalpy of air: 233.0  kJ/kg dry air\n",

        "Dew Point of air:  40.4  degree C\n",

        "\n",

        "\n",

        "\n",

        "At Point 2\n",

        "\n",

        "Enthalpy of air:  233.0  kJ/kg dry air\n",

        "\n",

        "Dew Point of air:  41.8  degree C\n",

        "\n",

        "\n",

        "\n",

        "At Point 3\n",

        "\n",

        "Enthalpy of air:  215.89174489  kJ/kg dry air\n",

        "Dew Point of air:  40.4  degree C\n",

        "\n",

        "\n",

        "\n",

        "At Point 4\n",

        "\n",

        "Enthalpy of air:  215.89174489  kJ/kg dry air\n",

        "\n",

        "Dew Point of air:  40.4  degree C\n",

        "\n",

        "\n",

        "\n",

        "Dry bulb temparature of air:  82.5843748998  OC\n",

        "\n",

        "Power delivered by heater:  34.3125  kW\n",

        "\n"

       ]

      }

     ],

     "prompt_number": 3

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.3: Page 671"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.3\n",

      "# Page: 671\n",

      "\n",

      "print'Illustration 12.3 - Page: 671\\n\\n'\n",

      "\n",

      "# Solution\n",

      "import numpy\n",

      "import matplotlib.pyplot as plt\n",

      "%matplotlib inline\n",

      "# ***Data***#\n",

      "SsByA = 40;\n",

      "x1 = 0.25;# [moisture fraction]\n",

      "x2 = 0.06;# [moisture fraction]\n",

      "#***********#\n",

      "\n",

      "X1 = x1/(1-x1);# [kg moisture/kg dry solid]\n",

      "X2 = x2/(1-x2);# [kg moisture/kg dry solid]\n",

      "# Fig. 12.10 (Pg 668) indicates that both constant and falling rate periods are involved.\n",

      "\n",

      "# Constant Rate period:\n",

      "# From Fig. 12.10 (Pg 668):\n",

      "Xc = 0.200;# [kg moisture/kg dry solid]\n",

      "Nc = 0.3*10**(-3);# [kg/square m.s]\n",

      "# From Eqn. 12.4:\n",

      "thetha1 = SsByA*(X1-Xc)/Nc;# [s]\n",

      "\n",

      "# Falling Rate Period:\n",

      "# From Fig. 12.10 (Pg 668):\n",

      "# Data=[x N*10^3]\n",

      "Data = numpy.array([[0.2 ,0.3],[0.18 ,0.266],[0.16 ,0.239],[0.14 ,0.208],[0.12, 0.180],[0.10 ,0.150],[0.09 ,0.097],[0.08, 0.070],[0.07 ,0.043],[0.064 ,0.025]]);\n",

      "Val = zeros(10);\n",

      "# Val=[(1/N)*10^(-3)]\n",

      "for i in range(0,10):\n",

      "    Val[i] = 1/Data[i,1];\n",

      "\n",

      "plt.plot(Data[:,0],Val);\n",

      "plt.grid();\n",

      "plt.xlabel(\"x [kg moisture / kg dry solid]\");\n",

      "plt.ylabel(\"10^(-3) / N\");\n",

      "plt.title(\"Graphical Integration Falling Rate Period\");\n",

      "# Area under the curve:\n",

      "Area = 1060.0;\n",

      "# From Eqn. 12.3:\n",

      "thetha2 = SsByA*Area;# [s]\n",

      "thetha = thetha1+thetha2;# [s]\n",

      "print\"Total Drying Time: \",round(thetha/3600,2),\"h\\n\",\n",

      "#the answers are slightly different in textbook due to approximation while here answers are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.3 - Page: 671\n",

        "\n",

        "\n",

        "Total Drying Time:  16.72 h\n"

       ]

      },

      {

       "metadata": {},

       "output_type": "display_data",

       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JwshkJBJQgghgQxEVgXDqkGRISwGlM37\ncwGRRFwQULiCCFe8gnBVwOuOIBeQgIKACAjKFiSD7IowEIIsEcKaBEIWEhJDSL6/P0510tPp6emZ\nPt1VNfN9PU8/07V/unq6T9c5VadkZjjnnHMFfdIO4JxzLlu8YHDOOdeOFwzOOefa8YLBOedcO14w\nOOeca8cLBuecc+14wdBDSDpL0m8qTH9S0kfquY08k7SFpCWSlHYWAEmzJU1Mnq/Z71nLmVXJPmru\nxnLNklZL6tXfjb36xdeTpM9IeljSUknzJD0k6bg6brLiBSlm9j4z+2u9tiGpRdLL1awkCx++4i9e\nADN7ycwGWx0u7Ele69Lky2qJpAVVLGblntc551RJKwoZJf1F0nurXLam97Ro+cI+ekHSad1ZF0Cy\nj2Z3d/nezguGOpB0CvBT4DxgpJmNBL4CfEjSeh0sU+t70YhfkLG3UZfMkvpWMZvVa/sd2Cn5shps\nZsO6uGyjchpwnpkNBjYDXgIu7+I6as06JNn+EcB3JH20SxuX+tW4fYcXDNFJGgJ8FzjOzG4ws7cB\nzKzNzI4ys3eS+aZKukjSrZKWAi2SPibpMUmLJb0k6cyi9RZ+UX1J0quSXksKoAID1pN0haS3kqqj\nXYuWny1p3+R5X0nfkjQrmfcRSaOTaT9Ltr04Gf/hbu6HVklnS7ov2cYdkoYnkwtHLouSX4cfSJY5\nRtJTya/V2yVtUbS+AyQ9I2mRpF9KukfSF5JpUyTdL+nHkuYDZ0raStLdkuZLekPSb5P3hqRaZgvg\nlmT73yj9xStpM0k3S3pT0nOSvliU5SxJ13W0r6vcP+M6ytfJcqU5K+1nJB0t6cVkO98u/j+oxMz+\nDfweWHPEUOn/k268p51s/yFgZmH7nfxvrJZ0vKTngGeKxm2VPB8i6UpJryev/wwpVMVJ6iPpf5P3\n4F/Ax6rJ1+OZmT8iPoBJwEqgTyfzTQUWAROS4QHA3sB7k+EdgbnAoclwM7AauAoYCLwPeB3YN5l+\nFrA82b6A7wMPFm3vBWBi8vxU4Alg66JtDUuefxYYSvjRcDIwB1ivaBu/6eD1tAAvFw23As8B7wHW\nB6YDP0imjU1eS5+i+Q9N5t822fYZwP3JtI2BxcBhybQTgXeAY5LpU5J9fkIyfX1gHLAv0D9Z/h7g\nJ+X2R8n+7ZMM/xW4AFgPeH+yr/epZl+X2TergXEl46rOV7zfy+SstJ93AJYAeybb+WGy3yZ2kPNy\n4Jzk+YbAb4C7i6ZX+v/s0ntaZtuF19U32acfAt4G9ulsPclydwBNwICicVslz68Ebkxe01hC4VH4\n3/kK8E9gNOH/fjqwik4+vz39kXqAnvYAjgLmlIx7AFgILAM+nIybCkztZF0/BX6cPC98cLYpmn4e\ncGny/CzgzqJpOwDLioaLv2ieAQ6u8vUsAHYs2ka1BcN04FtFw8cBt5W8luIvkdsKH9ZkuE/yxbAF\ncHTpFwqhmqO4YHixk9dxGPBouf1RmgnYHHgX2LBo+veBy6vZ12W2vZpQsC1MHj/tSj4qFwyV9vN3\ngKuKpg0EVtBxwTCVUOAtJHw5/gvYuIv/n9W8p5uXWVdh+YXJ/9xTwFerWU+yXEuZfb4VoaBZAWxX\nNO3LwPTk+d3Al4um7V/6Onrjw6uS4nsT2FhFbQZmtqeZDU2mFcYb0K6xVtIHJE1PDnkXAccCw2mv\neJmXCHXBBfOKni8D1lf5tosxhA/9OpJqlaeSKpuFwBDCL9rumFv0fDkwqMK8Y4GfSVqYbPfNZPxo\nYBTwSsn8pcOl+3KkpGskvSJpMeHXb+m+7MhmwAJLqgETLyVZCqrd1wU7m9nQ5PGfNeYr1dF+3oyi\n/WRmy1m7X8sx4IfJ/2oz4Qv16MLEKv8/i1V6Tzsy3MyGmdkOZnZBF9bT0YkPGxOOll4sGlf8Xo5i\n3c9Ur+cFQ3wPEj5Qh3Vj2auBm4AxZtYE/Ip136MtSp6/2o3tvEyoemhH0l6EaqZPmllT8gWxmPiN\nn+XOqHmJ8MttaNFjQzN7kFCdNaYop4qHO1jn9wm/et9nZkOAz9F+X1Y6q+c1YJik4oJsC9YtjGrR\nWb4YXqP9fhtI54WPAMzsZUKV3X9LGpxMq/T/2ZX39KEuvo5q1tPR+zmfUM3YXDSu+L2cw7qfqV7P\nC4bIzGwRofH5Qkn/IWlw0sA1nlDHWVDuy3YQsNDM3pG0B3Ak6/7Df1vSQIXTCKcA13Yj5qXAOZLe\no2AnScOS7b8LzJe0nqTvABt1Y/0FHRUob5DUuxeN+xXwLUk7wJoGw08m024FdpR0qMJZJycAm3ay\n7UGE6oa3FBrWTy2ZPq9k+2skX4oPAD+QNEDSTsAxwG872WZXdJavKzraz38ADpY0QeFsuLMqzLvO\neszsLmAWcHxR5o7+P7v6nnZFt9djZquA64DvSRokaSzwdda+l9cBJ0oaLWkocHo38vU4XjDUgZn9\nkNBw+03CYf5cwj/3NwlHFBA+UKVf+scDZ0t6C/hvyn/p30P4sN5FOOy/q8L6OvoV9WPCB+JOwhHB\nJYSGyzuA24FngdmEaoniQ+ty26i0PSt5bgBmtgz4HnB/Uj2wh5ndRGgzuSapWpkBfDSZfz7wSeB8\nwi/A7YFHCEdmHeX6LrBL8vpuIXxJFs/zA0Ihu1DSyWXyHkH4lfkacAPwHTO7u8L2urJfqslXunzp\nvuxo/cX7eSbwNeCa5HUsITSir6C8cq/rh4Qvzv5U+P/s6ntaYfvrjux8PeWWKx73NUIh/DxwL+EE\njsuTaZcQ/u8fJ/xPVXofeg0lDS7120A4p/wR4BUzOzj5ZXotod5wNvCp5Fe2q0DhKs7ngX5mtjrd\nNOlK6vJfBo40s3vSzpMXSdXYQuA9ZvZiZ/O73qsRRwwnEc4wKJRApwPTzGwb4C/4oZurgsJ1DE2S\nBgDfSkZ3ta6615F0sKQNJG0I/C/whBcKrjN1LRgkjQEOItRpF+ovDwGuSJ5fQfcaaXur3nyIO4FQ\nhfYG4SKkw8ysoyoRt9YhhBMUXiXU/38m3TguD+palSTp94SzLzYCvpFUJS1MznYpnF2yoDDsnHMu\nfXU7YpD0ceB1M3uMDs6EsFAq9eZfwc45lzn17HBqT+AQSQcRznjZSKGPmnmSNjWzuZJGEc6SWIck\nLzCcc64bzKyma4/qdsRgZt8ys83NbEtCvebdZvY54GZgcjLbZMIFMx2to+zjxReN0aPTv2zczDjz\nzDNTz9ATMnpOz5n1R15yxtDI6xgKic8F9pf0LDAxGe6S0aNh/nxYvjxmvO6ZPXt22hE6lYeM4Dlj\n85xx5SVnDA3pu9zCueb3JM8XAPvVsr6+fWHsWJg9G7bfPkJA55xza+T2yuettoJ/le0GrrGmTJmS\ndoRO5SEjeM7YPGdceckZQ92vfO4uSVYp2wknwLbbwoknNjCUc85lnCQsq43P9TZuHDz/fNopoLW1\nNe0IncpDRvCcsXnOuPKSM4bcFgxZqUpyzrmeJrdVSTNmwGc+AzNnNjCUc85lXIyqpNwWDEuXwiab\nhL99cnvc45xzcfXqNoZBg2DwYJg7t/N56ykP9Y55yAieMzbPGVdecsaQ24IBstMA7ZxzPUluq5IA\njjoK9t8fJk+uOJtzzvUavboqCfyIwTnn6iHXBUMWTlnNQ71jHjKC54zNc8aVl5wx5L5g8CMG55yL\nK9dtDK+9Brvskv6ZSc45lxW9vo1h003hrbfCtQzOOefiyHXB0KcPbLklvPBCehnyUO+Yh4zgOWPz\nnHHlJWcMuS4YIBsN0M4515Pkuo0B4KSTwk17Tj65AaGccy7jen0bA/i1DM45F1vuC4a0q5LyUO+Y\nh4zgOWPznHHlJWcMdS0YJK0v6WFJbZKekvSDZPxZkl6R9FjymNTdbfgRg3POxVX3NgZJG5jZMkn9\ngPuAbwD7AkvM7McVlquqjWH5chg6FN5+G/r2jRbbOedyKRdtDGa2LHm6HtAXWJgM1xS8YOBAGD4c\nXn01xtqcc87VvWCQ1EdSGzAPmG5mhXuufU3S45Iuk9RUyzbSrE7KQ71jHjKC54zNc8aVl5wxNOKI\nYbWZjQfGAB+R1AJcBGwJjAfmAD+qZRtpN0A751xP0q9RGzKzxZL+DOxmZq2F8ZIuBW4pt8yUKVNo\nbm4GoKmpifHjx9PS0gKsLb1bWloYNw6mT29l3DjKTu/twy0tLZnKU2m4ICt5fH/Wf9j3Z23Dra2t\nTJ06FWDN92Wt6tr4LGlj4F0zWyRpIHAH8F1gppnNTeb5OrC7mR1ZsmxVjc8AV10Ft9wC11wTN79z\nzuVNHhqfRwF3J20MDwO3mNlfgPMlPSHpcWBv4Ou1bCTN7rdLf0lkUR4ygueMzXPGlZecMdS1KsnM\nZgC7lBl/dMzt+LUMzjkXT+77SgIwg402gldegSFD6hzMOecyLA9VSQ0h+d3cnHMulh5RMEB6p6zm\nod4xDxnBc8bmOePKS84YelTB4EcMzjlXux7RxgBw4YXwxBPwq1/VMZRzzmWctzEU8aufnXMujh5V\nMKRRlZSHesc8ZATPGZvnjCsvOWPoMQVDc3M4XXXlyrSTOOdcvvWYNgYI936ePj0cPTjnXG/kbQwl\n/Apo55yrXY8qGNJogM5DvWMeMoLnjM1zxpWXnDH0uILBjxicc642PaqN4dpr4fe/h+uvr1Mo55zL\nOG9jKOFHDM45V7seVTCMGxfaGBp5EJSHesc8ZATPGZvnjCsvOWPoUQXD0KGhp9UFC9JO4pxz+dWj\n2hgAdtkFLr4Ydt+9DqGccy7jvI2hjEJ1knPOue7pcQVDoxug81DvmIeM4Dlj85xx5SVnDHUrGCSt\nL+lhSW2SnpL0g2T8MEnTJD0r6U5JTTG361c/O+dcberaxiBpAzNbJqkfcB/wDeAQYL6ZnS/pNGCo\nmZ1eZtlutTHcdRd873uhzyTnnOttMt/GYGbLkqfrAX2BhYSC4Ypk/BXAYTG36dcyOOdcbepaMEjq\nI6kNmAdMN7OZwEgzm5fMMg8YGXObW2wBc+fCihUx19qxPNQ75iEjeM7YPGdceckZQ796rtzMVgPj\nJQ0B7pC0T8l0k9RhfdGUKVNobm4GoKmpifHjx9PS0gKsfZPKDY8ZA9dd18rmm5efHnO4oF7r703D\nbW1tmcqT92Hfn71jf7a2tjJ16lSANd+XtWrYdQyS/htYDnwRaDGzuZJGEY4ktiszf7faGAAOOABO\nPhkmTaopsnPO5U6m2xgkbVw440jSQGB/4DHgZmByMttk4KbY2/b7PzvnXPfVs41hFHB30sbwMHCL\nmf0FOBfYX9KzwMRkOKpGNkAXDumyLA8ZwXPG5jnjykvOGOrWxmBmM4BdyoxfAOxXr+1CuJbhgQfq\nuQXnnOu5elxfSQCPPQaTJ8MTT0QO5ZxzGRejjaFHFgyLF8Po0bBkSeht1TnneotMNz6nacgQWH99\neP31+m8rD/WOecgInjM2zxlXXnLG0CMLBvAroJ1zrrt6ZFUSwBFHwMc+BkcdFTGUc85lnFclVeBH\nDM451z09tmBoVPfbeah3zENG8Jyxec648pIzhh5bMPjVz8451z09to3hpZdgwgR49dWIoZxzLuP8\nOoYKVq2CDTeEhQth4MCIwZxzLsO88bmCvn1h7Fh44YX6bicP9Y55yAieMzbPGVdecsbQYwsG8DOT\nnHOuO3psVRLAV78KW28NJ50UKZRzzmWcVyV1wo8YnHOu63p0wTBuXP1PWc1DvWMeMoLnjM1zxpWX\nnDH06ILBjxicc67renQbw9KlMGIEvP029OnRRaBzzgXextCJQYNCF9xz5qSdxDnn8qNHFwxQ/+qk\nPNQ75iEjeM7YPGdceckZQ10LBkmbS5ouaaakJyWdmIw/S9Irkh5LHpPqlaERDdDOOdeT1LWNQdKm\nwKZm1iZpEPAP4DDgU8ASM/txhWVrbmMAOPNMMIOzz655Vc45l3mZb2Mws7lm1pY8Xwr8ExidTG7I\n3Zj9zCTnnOuahrUxSGoGdgYeSkZ9TdLjki6T1FSv7da7KikP9Y55yAieMzbPGVdecsbQrxEbSaqR\nrgdOMrOlki4CCpU75wA/Ar5QutyUKVNobm4GoKmpifHjx9PS0gKsfZM6G95mmxaef776+bs6XFCv\n9fem4ba2tkzlyfuw78/esT9bW1uZOnUqwJrvy1rV/ToGSf2BPwG3mdlPy0xvBm4xsx1LxkdpYzAL\n3W/PmweDB9e8Ouecy7S6tjFIWippSZnHckmrqgwo4DLgqeJCQdKootkOB2Z09wV0ngG23LL+3W87\n51xP0WHBYGaDzGxw4QGMAr4HzAXW+eXfgQ8BRwH7FJ2aeiBwnqQnJD0O7A18vbaXUVk9G6ALh3RZ\nloeM4Dlj85xx5SVnDJ22MSQNw/8JTAauBnYzszerWbmZ3Uf5wue2roSslV/L4Jxz1euwjUHSCOAU\n4NPAr4Gfm9nihgWL1MYA8POfwzPPwC9/GWV1zjmXWTHaGCodMcwG5hMKhWXAF5I2AwCrdHFa1owb\nB7femnYK55zLh0rXMfwQuDx5PggYnPwtPM8Nb2NoTTtCVTxnXJ4zrrzkjKHDIwYzO6uBOeqquRle\neglWrYK+fdNO45xz2daj78dQbMwYuO++UEg451xPlfm+krLkwx+GW25JO4VzzmVfpQvc9ixqbM69\n446DCy8MV0LHlId6xzxkBM8Zm+eMKy85Y6h0xHA08KikayVNSbrQzq2PfCS0L9x9d9pJnHMu2zpt\nY5C0PXAgcADQBNwN3A7cb2ZVdY3RrWCR2xgALroIpk2DG26IulrnnMuMGG0MXWp8lrQBsA+hoJhg\nZrvWsvFOthW9YFiyBMaOhccfh803j7pq55zLhIY3PpvZMjP7s5l9tZ6FQr0MHgyf/SxcfHG8deah\n3jEPGcFzxuY548pLzhh6zVlJBccfD5deCitWpJ3EOeeyqddcx1Bsv/3gmGPgyCPrsnrnnEtNQ6uS\nJK0vaUAtG8uKE07wDvWcc64jla5j6CPpE5J+L+lV4AXgRUmvSrpe0uF5vc7h4IPh5Zehra32deWh\n3jEPGcFzxuY548pLzhgqHTG0ArsC/wtsZWajzGxTYKtk3O7APXVPWAf9+sGxx/pRg3POlVPpfgwD\nzKxiE20183Q7WB3bGCDcA3q77UKvq0OH1m0zzjnXUHVtYyj3hS9peGfz5MXIkXDQQTB1atpJnHMu\nWyq1MUyUNEvSQ5L2kPQM8DdJ/5K0ewMz1s0JJ4T+k1av7v468lDvmIeM4Dlj85xx5SVnDJ3dqOdw\n4OvAncAXzWwc8Emgqru3Sdpc0nRJMyU9KenEZPwwSdMkPSvpzuS+0g03YQIMGhS6yXDOORdUamN4\nzMx2Tp7/08y2Lzet4spDx3ubmlmbpEHAP4DDgM8D883sfEmnAUPN7PSSZevaxlBw6aVw883h4Zxz\neVfv6xiKp/1X0UYF9K9m5WY218zakudLgX8Co4FDgCuS2a4gFBapOPJIeOABmD07rQTOOZctlQqG\n70jaEMDMbioavxVwZVc3JKkZ2Bl4GBhpZvOSSfOAkV1dXywbbABHHw2/+lX3ls9DvWMeMoLnjM1z\nxpWXnDFUuufzH0vHSdrUzP4FnN+VjSTVSH8ATjKzJcXXxZmZSSpbZzRlyhSak3txNjU1MX78eFpa\nWoC1b1KM4eOOg913b2XiRDjggK4tXxAzT28dbmtry1SevA/7/uwd+7O1tZWpyemVzZHuXdzVbrcf\nNbNdurQBqT/wJ+A2M/tpMu5poMXM5koaBUw3s+1KlmtIG0PBpEmhWunooxu2Seeciy6Nez53aWNJ\ne8RlwFOFQiFxMzA5eT4ZuKl02Ubz/pOccy7oasFwSRfn/xBwFLCPpMeSxyTgXGB/Sc8CE5PhVB10\nULga+pFHurZc4ZAuy/KQETxnbJ4zrrzkjKHDNgZJg81sSfE4M7uws3lK5r+Pjguf/boStN769oXj\njgtHDZdfnnYa55xLT6XrGO4CngH+CDxiZguS8cOB3QinmG5tZnX5gm90GwPA/Pmw9dYwaxYMH975\n/M45lzV1v+ezpInAkYQqoc2S0a8B9wFXmVlrLRuvGCyFggFg8mR43/vg1FMbvmnnnKtZ3Rufzexu\nM/uimW1vZkOSx/Zm9qV6FgppOuEEuOgiWLWquvnzUO+Yh4zgOWPznHHlJWcMve6ez53ZY49QjXT7\n7Wkncc65dHRWldQPuMTMPt+4SGu2nUpVEoSuuK+9Fm67LZXNO+dct9W1Kim5WvlPwN9r2UAeffrT\n4bTVWbPSTuKcc41XqSrpHuDW0lNUe4OBA+Hznw9tDZ3JQ71jHjKC54zNc8aVl5wxVCoYhgAvNypI\n1hx3HFxxBSxblnYS55xrrErXMYwCbgTOLeldtSHSbGMo+PjH4fDD4QtfSDWGc85Vrd73fJ4D7A/0\n2q/FQv9JKZdPzjnXUJ1dx7AE+ESDsmTORz8Kb70FDz3U8Tx5qHfMQ0bwnLF5zrjykjOGTq9jMLOV\njQiSRX36rO0/yTnneotKbQxNwOmEPpFGAga8Tugi+1wzW1TXYBloYwBYsADGjYNnnoFNNkk7jXPO\nVVbvLjGuAxYCLcAwMxsG7AMsSqb1CsOGwSc+AZdemnYS55xrjEoFQ7OZnWdmcws/3c1sjpmdCzQ3\nJF1GnHBCuCf0u++uOy0P9Y55yAieMzbPGVdecsZQqWB4UdI3JY0sjJC0qaTTgJfqHy07dtkFRo+G\nP/0p7STOOVd/ldoYhhHaGA4htDEAzCPclvPcwv0Z6hYsI20MBVddFfpQmjYt7STOOdexut+PIU1Z\nKxhWrICxY+Gee2DbbdNO45xz5dX9fgwVNtzw3lbTNmBAuAL6wpKeo/JQ75iHjOA5Y/OcceUlZwzd\nvR/D2dXMJOnXkuZJmlE07ixJr0h6LHlM6maGhjv2WPjtb2Hp0rSTOOdc/VRqY5hRdkKwjZkN6HTl\n0l7AUuBKM9sxGXcmsMTMftzJspmqSio4/HCYNCkUEs45lzUxqpL6VZi2CTCJcC1DqQeqWbmZ3Sup\nucykmkKn6YQT4OST4ctfBuX2VTjnXMcqVSX9GRhkZrNLH4R7NdTia5Iel3RZcoV1buy7L7zzDtx3\nXxjOQ71jHjKC54zNc8aVl5wxdHjEYGbHVJh2RA3bvIi1bRTnAD+igx5cp0yZQnNzMwBNTU2MHz+e\nlpYWYO2blMbw8cfDmWe28p3vrM2aZp6eMtzW1papPHkf9v3ZO/Zna2srU6dOBVjzfVmrup+umlQl\n3VJoY+jCtEy2MQAsXgzNzfDUUzBqVNppnHNurdROV61FcgOggsOBSo3cmTRkSLgv9CWXpJ3EOefi\nq2vBIOl3hIbqbSW9LOkY4DxJT0h6HNgb+Ho9M9TLCSfAxRfDnXe2ph2lU4XDzqzznHF5zrjykjOG\nSmcl1ayDtohf13ObjbLjjrD33nDOOTBxIvSr6550zrnG8S4xarBiBRx6KIwcCZdfHm7s45xzacpl\nG0NPMmAA3HADPP88nHii3xvaOdczeMFQo7/9rZU//QkefBC+/e2005SXl7pRzxmX54wrLzlj8Jrx\nCIYMgdtvD20OG20Ep52WdiLnnOs+b2OI6NVXYa+94NRT4bjj0k7jnOuN6t1Xkuui0aPhrrvCkcPg\nwXDUUWkncs65rvM2hhqV1jtutRXccQd84xtw003pZCqVl7pRzxmX54wrLzlj8COGOthhB/jzn+HA\nA2HQINhvv7QTOedc9byNoY7uvRc+8Qn44x9hzz3TTuOc6w38OoaM22sv+M1vws192trSTuOcc9Xx\ngqFGndU7TpoEv/xlqFZ6+unGZCqVl7pRzxmX54wrLzlj8DaGBvh//y/cJ/qAA0L10tixaSdyzrmO\neRtDA/385/CLX8Bf/+r3cXDO1Ydfx5AzJ54Ib70VjhzuuQeGDUs7kXPOrcvbGGrU1XrHM84I7Q6T\nJsGSJfXJVCovdaOeMy7PGVdecsbgBUODSXD++bDzznDwwbB8edqJnHOuPW9jSMmqVXD00eH+0Tfc\nAOutl3Yi51xP4Ncx5FjfvjB1ari5z+c+FwoK55zLAi8YalRLvWP//nDddTB/PnzlK/W70U9e6kY9\nZ1yeM6685IyhrgWDpF9LmidpRtG4YZKmSXpW0p2SmuqZIevWXz90mTFjBpxyit8FzjmXvrq2MUja\nC1gKXGlmOybjzgfmm9n5kk4DhprZ6WWW7dFtDKUWLIB99gl9K515ZtppnHN5lfk2BjO7F1hYMvoQ\n4Irk+RXAYfXMkBfDhsGdd8Lvfgdnn+1HDs659KTRxjDSzOYlz+cBI1PIEE3MeseRI6G1Fa69Ntw/\nOlbhkJe6Uc8Zl+eMKy85Y0j1ymczM0kdfv1NmTKF5uZmAJqamhg/fjwtLS3A2jcp7eGCmOtvbYUJ\nE1qZNQuuuaYFKTuvt57DbW1tmcqT92Hfn71jf7a2tjJ16lSANd+Xtar7dQySmoFbitoYngZazGyu\npFHAdDPbrsxyvaqNodSCBaHrjAkT4Gc/C6e1OudcZzLfxtCBm4HJyfPJQEZugJktw4bBX/4C//hH\nOJV19eq0Eznneot6n676O+ABYFtJL0v6PHAusL+kZ4GJyXBuFQ7p6mHIkHD/6GeegWOO6f5FcPXM\nGJPnjMtzxpWXnDHUtY3BzI7oYJLfBblKgwfDrbfCoYfCUUfBlVeGC+Occ65evK+knFi+PFzjsMEG\n4ZTW9bxvJedcGXltY3DdMHAg3HQTvPsu/Md/wL//nXYi51xP5QVDjRpZ7zhgAFx/fSgkDj20+i67\n81I36jnj8pxx5SVnDF4w5Ez//nD11TBiBHzsY/D222kncs71NN7GkFOrVsGXvgTPPQd//jNstFHa\niZxzWeBtDL1Y375w6aXwvveFC+EWLUo7kXOup/CCoUZp1jv26QMXXggf/CDsuy+8+Wb5+fJSN+o5\n4/KcceVF+uFGAAAPdElEQVQlZwxeMOScBD/5Cey3H0ycCK+/nnYi51zeeRtDD2EW7uNw/fWhK41R\no9JO5JxLQ4w2hlR7V3XxSOE+DgMGwN57w913w5gxaadyzuWRVyXVKGv1jmecAcceGwqH2bPDuKxl\n7IjnjMtzxpWXnDH4EUMPdMop4cihpQXuuivtNM65vPE2hh7s//4PzjkHpk2D7da544VzrifyNgZX\n0Ze/HI4cJkyAnXaCbbZp/9hqqzDdOeeKeRtDjbJe7zh5Mlx2WStnngm77gpz5oQL4w47LNzvYdw4\nOPBAOOkkuOACuPPO0DbR3Xs/1CLr+7LAc8blObPHjxh6gWHDQnvDxIntx69cGQqBZ58Nj5kz4cYb\nw/P580OhUXqUsc02oZ8m1XSg6pzLMm9jcGW9/TbMmrW20Ch+rFrVvqDYeuu1f73PJufSFaONwQsG\n12Vvvhk67ystMJ57LhQM5Y4yvD3DucbIdcEgaTbwFrAKWGlme5RMz0XB0NraSktLS9oxKmpUxtWr\n4bXXyh9lvPQSjB5dvtDYfPPQ71Me9iV4ztg8Z1x5PyvJgBYzW5BiBhdRnz7hausxY8q3Z7zwwtoj\niyefhBtuaN+eMWQIvP/9sNlmoUuP4r8bbxzW75yrvzSPGF4AdjOzsn2C5uWIwdWu0J7xr3+FI445\nc9b9u3gxjBy5boFR+nfECC9AXO+W96qk54HFhKqki83skpLpXjC4Nd55B+bODQVFR4XHa6+FAmST\nTSoXHqNGhQKkb9+0X5Vz8eW9YBhlZnMkjQCmAV8zs3uLpueiYMhDvWMeMkKcnIUCpKOCo/B30aJQ\nOBQXGB0dgZQWIL1pfzaC54wr120MZjYn+fuGpBuBPYB7i+eZMmUKzc3NADQ1NTF+/Pg1b0zhYpO0\nhwuykifPw21tbVHWt8UW8PzzrQwdCocfXn7+adNaWbgQxo5tYc6cMP255+DFF8Pws8+28uabsHRp\nC5tsAoMGtTJ8OOy4Ywv//jfceGMrTU1hfSNGwHPPtbLRRrDvvj1vf/pwtvdna2srU6dOBVjzfVmr\nVI4YJG0A9DWzJZI2BO4EvmtmdxbNk4sjBtezrVwJ8+a1P9qYOxfeeCPcFOmNN9Y+Fi6EpqZQlTVi\nxNpHR8PDh0M/v8TURZbbqiRJWwI3JoP9gKvM7Acl83jB4HJl1apwjUe5QqN4uPC8UJBUU4iMGBHO\nzPKCxHUmtwVDNfJSMLTmoN4xDxmh9+VctQoWLChfaJQbXrAgnNJbTSGyySYwY0Yr++9fe856623v\ne73luo3Bud6ub9+1X+TVKBQk5QqNZ56B++5rP+3NN6F//1CYbLRR9/8OHuxncPU2fsTgXA9lBsuX\nw1tvhdN4u/K3+PnSpbDBBuULjq4UMgMHeueLjeBVSc65ulu9OhQOXS1cSv+uXBkKie4evRSe9++f\n9h7JNi8YMiAP9Y55yAieM7as5Vy5ct2jkcWL4aGHWhk9uqXqAqZ//84Lj87+DhrU9Svks7Y/O+Jt\nDM653OjfP5yiO3x4+/GDB4f7hVSjUD3WWeHx2mvw9NNhuNw8y5aF7XblqKU3nRHmRwzOuV5n1SpY\nsmTdAqNSgXP++aE34KzzqiTnnHPtxCgYvB/KGhUuTc+yPGQEzxmb54wrLzlj8ILBOedcO16V5Jxz\nPYhXJTnnnIvOC4Ya5aHeMQ8ZwXPG5jnjykvOGLxgcM451463MTjnXA/ibQzOOeei84KhRnmod8xD\nRvCcsXnOuPKSMwYvGJxzzrXjbQzOOdeDeBuDc8656FIrGCRNkvS0pOcknZZWjlrlod4xDxnBc8bm\nOePKS84YUikYJPUFLgAmATsAR0jaPo0stWpra0s7QqfykBE8Z2yeM6685IwhrSOGPYBZZjbbzFYC\n1wCHppSlJosWLUo7QqfykBE8Z2yeM6685IwhrYJhNPBy0fAryTjnnHMpS6tg6DGnG82ePTvtCJ3K\nQ0bwnLF5zrjykjOGVE5XlfRB4Cwzm5QM/xew2szOK5qnxxQezjnXSLm8taekfsAzwL7Aa8DfgCPM\n7J8ND+Occ66dfmls1MzelfRV4A6gL3CZFwrOOZcNmb3y2TnnXDoa3vhczYVtkn6eTH9c0s5F45sk\nXS/pn5KeStoqspjzvyTNlDRD0tWSBqSVU9J2kh6U9G9Jp3Rl2SzklLS5pOnJ/nxS0olZzFk0va+k\nxyTdksWMWfoMdZIzS5+hzyaf8Sck3S9pp2qXzULObn2GzKxhD0K10SygGegPtAHbl8xzEHBr8vwD\nwENF064Ajkme9wOGZC1nsszzwIBk+Fpgcoo5RwC7Af8DnNKVZTOSc1NgfPJ8EKFtKnM5i6afDFwF\n3JzFjBn7DHX0nmftMzShsJ8IF+U+VO2yGcnZ5c9Qo48Yqrmw7RDCPy9m9jDQJGmkpCHAXmb262Ta\nu2a2OGs5gbeAlcAGSSP7BsCraeU0szfM7JEkU5eWzUJOM5trZm3J86XAP4HNspYTQNIYwg+GS4Ga\nzgqpR8asfYYq7MusfYYeLNpPDwNjql02Czm78xlqdMFQzYVt5eYZA2wJvCHpckmPSrpE0gYZyzna\nzBYAPwJeIpxxtcjM7koxZz2W7aoo25LUDOxM+Kevh1pz/gQ4FVgdM1SJWjJm7TNUVsY/Q18Abu3m\nsrWoJeca1X6GGl0wVNvSXfprywiHvbsAF5rZLsDbwOkRs5Vurxrr/CqUNA74T8Ih32bAIEmfjRet\nnVrOHGjkWQc1b0vSIOB64KTkV089dDunpI8Dr5vZY9TvaAFq25dZ/AytI6ufIUn7AMcAhfr9TH6G\nyuQsjK/6M9ToguFVYPOi4c0JJV+lecYk414BXjGzvyfjryf8k2ct527AA2b2ppm9C9wA7Jliznos\n21U1bUtSf+APwG/N7KbI2YrVknNP4BBJLwC/AyZKujJyPqgtY9Y+Qx3J3Gcoaci9BDjEzBZ2ZdkM\n5OzyZ6jRBcMjwNaSmiWtB3wauLlknpuBo2HNFdKLzGyemc0FXpa0TTLffsDMrOUkNOx8UNJASUpy\nPpVizoLSX7FdWTa1nMk+vAx4ysx+Wqd8Bd3OaWbfMrPNzWxL4DPA3WZ2dMYyZu0zVDYn8DQZ+gxJ\n2oJQOB1lZrO6smwWcnbrM1SPFvROWtcPJHx5zgL+Kxl3LHBs0TwXJNMfB3YpGv9+4O/J+Buo0xkV\nEXJ+k/CBm0FooO6fVk7CGQkvA4uBhYR620EdLZu1nMCHCXX2bcBjyWNS1nKWrGNv6nRWUoT3PDOf\noU5yZukzdCnwZtH/398qLZu1nN35DPkFbs4559rxW3s655xrxwsG55xz7XjB4Jxzrh0vGJxzzrXj\nBYNzzrl2vGBwzjnXjhcMrtuSi22WS3q0aHhGSlk2k/T7CtOHSDquzhk+KOn/Ssa1KFIX3JKmSPpF\njHVVsa0176Wk3ST9rIP5ZksallyM1iZphaRhjcjo6scLBlerWRb63UmVmb1mZp+sMMtQ4PiurldS\nVz4jBwK3dXUbtZLUt57rN7NHzOykjiYn8yw3s/GETu9cznnB4MqStHty048BkjZMbvCxQxeW3yrp\nwXNXSRtIui65UcgNkh6StGuZZWZL+r7CjW4ekbSLpDslzZJ0bDKPJP1Q4QYuT0j6VDK++BfueyU9\nnKynTdJ7gHOBccm48yXtXfxLXtIFkiYX5ThX0j+AT0o6QNIDkv6RvI4NO3jZE4EOewFN9umjkraU\nNELStGS/XlL45V1mmc9LekbSwxT1FyRpqqRfSXoIOF/Ss5I2Tqb1UbiZy/CSde2dvP7HkhwbdrQ/\nS5Zbc9QjaXjynjwp6RLq22GgS0kq93x22Wdmf5d0M+EmKgOB35hZVf3VSNqW0JHcZDObIekbwJtm\n9l5J7yVcml/uknsDXjSznSX9GJhKuPnIQOBJ4GLgE4RuHXYi3Ojl75LuKVnPV4CfmdnVCv359yP0\nNPleM9s5ydhSZttW9Hy+me2afNn+AdjXzJYr3DnrZOCckte8MbDSzJZ0sE/2BH5O6NzsFUkXAHeZ\n2XmSPkroJrl0mVHAWYSO7t4CpgOPFs2yGTDBzEzSYuCzwM8IfQu1mdmbJas8BTjezB5U6G57BdXt\nz2JnAn81s/+RdFC53C7//IjBVXI2cACht8vzq1xmE+Am4EgzK7Q3fIhwYxHMbCbwRIXlCx2DzQAe\nNLO3zWw+sELhRjMfAq624HXgHsJNTIo9AHxL0jeBZjP7N13/ZXtt8veDwA7AA5IeI3ScuEWZ+Q8A\n7uhgXdsTCrWPm1mhR8zifXIHoa+gUh8AplvoZXRlkqnwOgz4va3t0+bXSTYIXS5fXmZ99wM/kfQ1\nYKiZraK6/VlsL+C3Se5bO8jtcs4LBlfJxsCGhM7sBla5zCLgRcIXSLFqv5hXJH9XA+8UjV/N2iPc\ncvfrWDtg9jvgYGA5cKtC//Sl3qX9/3/p63u76Pk0M9s5ebzXzL5UZn2TgNvLjDdgTpKltC2ms31i\nJfOUzr9szYyhwJknaSKwO2XaOszsPMIv/IHA/cmRXbn1dtaBmlcf9XBeMLhKLga+DVwNnFflMu8Q\nqieOlnREMu5+oNAWsAOwYxXrKfflY8C9wKeTevQRwEeAv7VbUNrKzF4ws18Af0y29xYwuGi2F4Ed\nJK0nqYnQPlDOw8CHFG4eQ1Ivv3XJ9gTsZGaPd/A6FgEfB34gae9kfPE+OYDQOF7qb8DeCmf99Ac+\nSeUv7UsJv+avKzqSKM45zsxmmtn5hB5Wt6OK/Vnir8CRyfoO7CC3yzlvY3BlSToaWGFm1yicmfOA\npBYza+1kUTOzZQp3NJsmaQlwIXCFpJmEvvZnErpaXmfZkuelw5jZjZImELqNNuBUM3td4ZaFhfk/\nJekown2D5wDfM7NFku5PGqhvNbPTJF1HaLt4gfZ198Uv5g1JU4DfSRqQjD4DeK5otl0JXRmXXUWy\nT15P9sltkj4PfDdZ5+eAB4G5QLv2CTObI+msZPqiMtso/fK/hVCFVK4aCeCk5OhpNeF132pmK6vY\nn8XbKuQ+glBl92IH23I55t1uu25LvjxuMbOKRwBJwdLfzFYkv7ynAdtYuDtX7kk6A3jOzK7rwjLr\nAavMbFXyxfzLWk/7lbQb8CMz27vTmetE4Q52u1q4b7PLKT9icLV4Fxgi6dFOvtQ2BO5OqkMEHNdT\nCgUAM/teNxbbArguKTTfAcq1W1RN0umEs7GOrGU9NWx/feAhwnfK6jQyuHj8iME551w73vjsnHOu\nHS8YnHPOteMFg3POuXa8YHDOOdeOFwzOOefa8YLBOedcO/8fn0E/Bf9S/E0AAAAASUVORK5CYII=\n",

       "text": [

        "<matplotlib.figure.Figure at 0x772c470>"

       ]

      }

     ],

     "prompt_number": 1

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.4: Page 676"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.4\n",

      "# Page: 676\n",

      "\n",

      "print'Illustration 12.4 - Page: 676\\n\\n'\n",

      "\n",

      "# Solution (a)\n",

      "\n",

      "#***Data***#\n",

      "# For rectangular pan:\n",

      "l = 0.7;# [m]\n",

      "b = 0.7;# [m]\n",

      "zS = 0.025;# [m]\n",

      "zM = 0.0008;# [m]\n",

      "d = 0.1;# [m]\n",

      "Y1 = 0.01;# [kg water/kg dry air]\n",

      "TempG = 65.0;# [OC]\n",

      "v = 3.0;# [m/s]\n",

      "TempR = 120.0;# [OC]\n",

      "#*************#\n",

      "\n",

      "# From Table 7.1: (Pg 234)\n",

      "vH = (0.00283+(0.00456*Y1))*(TempG+273.0);# [cubic m/kg dry air]\n",

      "Density_G = (1+Y1)/vH;# [kg/cubic m]\n",

      "G = v*Density_G;# [kg/square m.s]\n",

      "de = 4*d*l/(2*(l+d));# [m]\n",

      "# From Eqn. 12.20:\n",

      "hc = 5.90*G**0.71/de**0.29;# [W/square m.K]\n",

      "# Assume:\n",

      "e = 0.94;\n",

      "# Estimate:\n",

      "TempS = 38;# [OC]\n",

      "# From Eqn. 12.14:\n",

      "hR = e*5.729*10**(-8)*((273+TempR)**4-(273+TempS)**4)/((273.0+TempR)-(273+TempS));\n",

      "A = l*b;# [square m]\n",

      "Am = A;# [square m]\n",

      "As = 4*l*zS;# [square m]\n",

      "Au = Am+As;# [square m]\n",

      "# Thermal Coductivities:\n",

      "kM = 45;# [W/m.K]\n",

      "kS = 3.5;# [W/m.K]\n",

      "# By Eqn. 12.16:\n",

      "Uk = 1/(((1/hc)*(A/Au))+((zM/kM)*(A/Au))+((zS/kS)*(A/Am)));# [W/squre m.K]\n",

      "# From Table 7.1: (Pg 234)\n",

      "Cs = 1005+(1884*Y1);# [kJ/kg]\n",

      "# At estimated 38 OC\n",

      "lambdaS = 2411.4;# [kJ/kg]\n",

      "# From Eqn. 12.18:\n",

      "# (Ys-Y1)*lambdaS*10^3/Cs = ((1+(Uk/hc))*(TempG-Temps))+((hR/hC)*(TempR-TempS))\n",

      "# On Simplifying:\n",

      "# Ys = 0.0864-(10.194*10**(-4)*TempS)\n",

      "# The eqn. is solved simultaneously with the saturated humidity curve of the psychometric chart for the air water mixture.\n",

      "# From Fig. 12.12: (Pg 677)\n",

      "Ys = 0.0460;# [kg water/kg dry air]\n",

      "TempS = 39;# [OC]\n",

      "# At 39 OC\n",

      "lambdaS = 2409.7;# [kJ/kg]\n",

      "# From Eqn. 12.17:\n",

      "Nc = (((hc+Uk)*(TempG-TempS))+(hR*(TempR-TempS)))/(lambdaS*10**(3));# [kg water evaporated/square m.s]\n",

      "print\"The Evaporation Rate: \",round(Nc*A,8),\" kg/s\\n\"\n",

      "\n",

      "# Solution (b)\n",

      "# When no radiation or conduction of heat through the solid occurs, the drying surface assumes wet bulb temparature of the air.\n",

      "# From Fig. 12.12 (Pg 677)\n",

      "TempS = 28.5;# [OC]\n",

      "Ys = 0.025;# [kg water/kg dry air]\n",

      "lambdaS = 2435;# [kJ/kg]\n",

      "# From Eqn. 12.17:\n",

      "Nc = hc*(TempG-TempS)/(lambdaS*10**3);# [kg/aquare m.s]\n",

      "print\"The Evaporation Rate: \",round(Nc*A,8), \"kg/s\\n\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.4 - Page: 676\n",

        "\n",

        "\n",

        "The Evaporation Rate:  0.0003851  kg/s\n",

        "\n",

        "The Evaporation Rate:  0.00016105 kg/s\n",

        "\n"

       ]

      }

     ],

     "prompt_number": 14

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.5: Page 684"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.5\n",

      "# Page: 684\n",

      "\n",

      "print'Illustration 12.5 - Page: 684\\n\\n'\n",

      "\n",

      "# Solution \n",

      "from scipy import integrate\n",

      "import math\n",

      "#***Data***#\n",

      "x1 = 0.025;# [moisture fraction]\n",

      "x2 = 0.001;# [moisture fraction]\n",

      "zS = 0.018;# [m]\n",

      "dp = 2*10**(-4);# [m]\n",

      "Density_S = 1350;# [kg dry solid/cubic m]\n",

      "#***********#\n",

      "\n",

      "X1 = x1/(1-x1);# [kg water/kg dry air]\n",

      "X2 = x2/(1-x2);# [kg water/kg dry air]\n",

      "# From Fig 7.5 (Pg 232)\n",

      "Y1 = 0.0153;# [kg water/kg dry air]\n",

      "Tempas = 24;# [OC]\n",

      "Yas = 0.0190;# [kg water/kg dry air]\n",

      "Gs = 0.24;# [kg dry air/square m.s]\n",

      "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg dry air/square m.s]\n",

      "# From Eqn. 12.26:\n",

      "Nmax = Gs*(Yas-Y1);# [kg evaporated/square m.s]\n",

      "viscosity_air = 1.8*10**(-5);# [kg/m.s]\n",

      "X3=lambda X : 1/(Nmax*(1-math.exp(-(0.273/dp**0.35)*((dp*Gav/viscosity_air)**0.215)*(Density_S*zS*X)**0.64)));\n",

      "Value = integrate.quad(X3,X2,X1);\n",

      "# From Eqn. 12.3:\n",

      "thetha = Density_S*zS*Value[0];# [s]\n",

      "print\"The time for drying: \",round(thetha/60,3),\" min\\n\","

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.5 - Page: 684\n",

        "\n",

        "\n",

        "The time for drying:  12.593  min\n"

       ]

      }

     ],

     "prompt_number": 18

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.6: Page 685"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.6\n",

      "# Page: 685\n",

      "\n",

      "print'Illustration 12.6 - Page: 685\\n\\n'\n",

      "\n",

      "# Solution \n",

      "\n",

      "import math\n",

      "#***Data***#\n",

      "Y1 = 0.01;# [kg water/kg dry air]\n",

      "Gs = 1.1;# [kg dry air/square m.s]\n",

      "dia = 13.5/1000;# [m]\n",

      "l = 13.0/1000;# [m]\n",

      "zS = 50.0/1000;# [m]\n",

      "Density_S = 600.0;# [kg dry solid/square m.s]\n",

      "a = 280.0;# [square m/cubic m]\n",

      "#************#\n",

      "\n",

      "# From Fig 7.5 (Pg 232)\n",

      "Yas = 0.031;# [kg water/kg dry air]\n",

      "Gav = Gs+(Gs*(Y1+Yas)/2.0);# [kg/square m.s]\n",

      "viscosity_air = 1.9*10**(-5);# [kg/m.s]\n",

      "Area = (2.0*math.pi*dia**2.0/4)+(math.pi*dia*l);# [square m]\n",

      "dp = (Area/math.pi)**0.5;# [m]\n",

      "# From Table 3.3 (Pg 74)\n",

      "Re = dp*Gav/viscosity_air;\n",

      "e = 1.0-(dp*a/6);# [fraction voids]\n",

      "jD = (2.06/e)*Re**(-0.575);\n",

      "# For air water mixture:\n",

      "Sc = 0.6;\n",

      "# From Eqn. 12.33:\n",

      "kY = jD*Gs/Sc**(2.0/3);# [kg H2O/square m.s.deltaX]\n",

      "# From Eqn. 12.30:\n",

      "NtG = kY*a*zS/Gs;\n",

      "# From Eqn. 12.25:\n",

      "Nmax = Gs*(Yas-Y1);# [kg/square m.s]\n",

      "# From Eqn. 12.31:\n",

      "N = Nmax*(1-math.exp(-NtG));# [kg water evaporated/square m.s]\n",

      "Y2 = (Yas-Y1)*(N/Nmax)+Y1;# [kg water/kg dry air]\n",

      "# From Fig 7.5 (Pg 232)\n",

      "Tempas = 33.0;# [OC]\n",

      "# From eqn. 12.2:\n",

      "Rate = N/(Density_S*zS);# [kg H2O/(kg dry solid).s]\n",

      "print\"Humidity of the exit air: \",round(Y2,4),\" kg water/kg dry air\\n\"\n",

      "print\"Temparature of exit air: \",Tempas,\" degree C\\n\"\n",

      "print\"Rate of Drying: \",round(Rate,7),\" kg H2O/(kg dry solid).s\\n\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.6 - Page: 685\n",

        "\n",

        "\n",

        "Humidity of the exit air:  0.0302  kg water/kg dry air\n",

        "\n",

        "Temparature of exit air:  33.0  degree C\n",

        "\n",

        "Rate of Drying:  0.0007409  kg H2O/(kg dry solid).s\n",

        "\n"

       ]

      }

     ],

     "prompt_number": 26

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.7: Page 700"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.7\n",

      "# Page: 700\n",

      "\n",

      "print'Illustration 12.7 - Page: 700\\n\\n'\n",

      "\n",

      "# Solution \n",

      "\n",

      "import math\n",

      "from numpy.linalg import inv\n",

      "#***Data***#\n",

      "x1 = 3.5;# [percent moisture]\n",

      "x2 = 0.2;# [percent moisture]\n",

      "dia = 1.2;# [m]\n",

      "l = 6.7;# [m]\n",

      "Rate_prod = 900.0;# [kg/h]\n",

      "y2 = 0.5;# [Humidity]\n",

      "TempG2 = 90.0;# [OC]\n",

      "TempG1 = 32.0;# [OC]\n",

      "TempS1 = 25.0;# [OC]\n",

      "TempS2 = 60.0;# [OC]\n",

      "#***********#\n",

      "\n",

      "X1 = x1/(100.0-x1);# [kg H2O/kg dry solid]\n",

      "X2 = x2/(100.0-x2);# [kg H2O/kg dry solid]\n",

      "Ss = Rate_prod*(1-X2);# [kg dry solid/h]\n",

      "Rate_drying = Ss*(X1-X2);# [kg water evaporated/h]\n",

      "Y2 = (y2/(1-y2))/100.0;# [kg water/kg dry air]\n",

      "Tempo = 0.0;# [Base temp,OC]\n",

      "# From Table 7.1: (Pg 234)\n",

      "# Enthalpy of air entering the drier:\n",

      "HG2 = (1005.0+(1884.0*Y2))*(TempG2-Tempo)+(2502300.0*Y2);# [J/kg dry air]\n",

      "# For the outlet air:\n",

      "# HG1 = (1005.0+(1884*Y1))*(TempG1-Tempo)+(2502300*Y1); [J/kg dry air]\n",

      "# HG1 = (1005.0*TempG1)+((1884+TempG1)+2502300)*Y1; [J/kg dry air]\n",

      "CsNH4 = 1507.0;# [J/kg.K]\n",

      "CsH2O = 4187.0;# [J/kg.K]\n",

      "# From Eqn. 11.45:\n",

      "HS2 = CsNH4*(TempS2-Tempo)+(X2*CsH2O*(TempS2-Tempo));# [J/kg dry air]\n",

      "HS1 = CsNH4*(TempS1-Tempo)+(X1*CsH2O*(TempS1-Tempo));# [J/kg dry air]\n",

      "# The estimated combined natural convection and radiation heat transfer coeffecient from the drier to the surrounding:\n",

      "h = 12.0;# [W/square m.K]\n",

      "deltaTemp = ((TempG2-TempS1)+(TempG1-TempS1))/2;# [OC]\n",

      "Ae = math.pi*dia*l;# [square m]\n",

      "Q = h*3600.0*Ae*deltaTemp;# [kJ/h]\n",

      "# Moisture Balance, Eqn. 12.39:\n",

      "# Ss*(X1-X2) = Gs(Y1-Y2)\n",

      "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",

      "# Enthalapy Balance, Eqn. 12.40:\n",

      "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",

      "# Gs*(HG2-HG1) = (Ss*HS2)+Q-(Ss*HS1)\n",

      "# Gs*(HG2-((1005*TempG1)+((1884+TempG1)+2502300)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",

      "# Gs*(HG2-(1005*TempG1))-(Gs*Y1*((1884+TempG1)+2502300)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",

      "# Solving Simultaneously:\n",

      "a = numpy.array([[HG2-(1005.0*TempG1),-((1884.0+TempG1)+2502300.0)],[(-Y2), 1.0]]);\n",

      "b = numpy.array([[((Ss*HS2)+Q-(Ss*HS1))],[(Ss*(X1-X2))]]);\n",

      "c=inv(a)\n",

      "soln =np.dot(c, b)\n",

      "Gs = soln[0];# [kg dry air/h]\n",

      "Y1 = soln[1]/soln[0];# [kg water/kg dry air]\n",

      "# From Fig. 7.5 (Pg 232)\n",

      "Enthalpy_air = 56.0;# [kJ/kg dry air]\n",

      "HeatLoad = Gs*(HG2-Enthalpy_air*1000);# [W]\n",

      "print\"Air Flow Rate: \",round(Gs,2),\" kg/h\\n\"\n",

      "print\"Moisture content of air: \",round(Y1,2),\" kg water/kg dry air \\n\"\n",

      "print\"Heat Load of drier: \",round(HeatLoad/1000),\" kW\"\n",

      "#the answers are slightly different in textbook due to approximation while here answers are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.7 - Page: 700\n",

        "\n",

        "\n",

        "Air Flow Rate:  2681.03  kg/h\n",

        "\n",

        "Moisture content of air:  0.02  kg water/kg dry air \n",

        "\n",

        "Heat Load of drier:  163995.0  kW\n"

       ]

      }

     ],

     "prompt_number": 50

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.8: Page 705"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.8\n",

      "# Page: 705\n",

      "\n",

      "print'Illustration 12.8 - Page: 705\\n\\n'\n",

      "\n",

      "# Solution \n",

      "from scipy.optimize import fsolve\n",

      "import math\n",

      "from numpy.linalg import inv\n",

      "import numpy as np\n",

      "#***Data***#\n",

      "x1 = 8.0;# [percent moisture]\n",

      "x2 = 0.5;# [percent moisture]\n",

      "Rate_prod = 0.63;# [kg/s]\n",

      "# Drying Gas:\n",

      "xCO2 = 0.025;# [mole fraction]\n",

      "xO2 = 0.147;# [mole fraction]\n",

      "xN2 = 0.760;# [mole fraction]\n",

      "xH2O = 0.068;# [mole fraction]\n",

      "TempG2 = 480.0;# [OC]\n",

      "Cs = 0.837;# [kJ/kg.K]\n",

      "Temp1 = 27.0;# [OC]\n",

      "Temp2 = 150.0;# [OC]\n",

      "dp = 200.0*10**(-6);# [m]\n",

      "Density_S = 1300.0;# [kg/cubic m]\n",

      "#***********#\n",

      "\n",

      "X1 = x1/(100-x1);# [kg water/kg dry solid]\n",

      "X2 = x2/(100-x2);# [kg water/kg dry solid]\n",

      "Ss = Rate_prod*(1-X2);# [kg dry solid/s]\n",

      "Water_evap = Ss*(X1-X2);# [kg/s]\n",

      "# Basis: 1 kmol of dry gas:\n",

      "xDry = 1.0-xH2O;# [kmol]\n",

      "XCO2 = 44.0*xCO2;# [kg]\n",

      "XO2 = 32.0*xO2;# [kg]\n",

      "XN2 = 28.0*xN2;# [kg]\n",

      "Xdry = XCO2+XO2+XN2;# [kg]\n",

      "cCO2 = 45.6;# [kJ/kmol.K]\n",

      "cO2 = 29.9;# [kJ/kmol.K]\n",

      "cN2 = 29.9;# [kJ/kmol.K]\n",

      "cH2O = 4.187;# [kJ/kg.K]\n",

      "Mav = Xdry/xDry;# [kg/kmol]\n",

      "Y2 = xH2O*18.02/(xDry*Mav);# [kg water/kg dry gas]\n",

      "cav = ((xCO2*cCO2)+(xO2*cO2)+(xN2*cN2))/(xDry*Mav);# [kJ/kmol.K]\n",

      "# Assume:\n",

      "TempG1 = 120.0;# [OC]\n",

      "cDry = 1.005;# [kJ/kmol.K]\n",

      "Tempo = 0;# [Base Temp,OC]\n",

      "# By Eqn. 7.13:\n",

      "HG2 = (cav+(1.97*Y2))*(TempG2-Tempo)+(2502.3*Y2);# [kJ/kg dry air]\n",

      "# For the outlet air:\n",

      "# HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1); [kJ/kg dry air]\n",

      "# HG1 = (1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1; [kJ/kg dry air]\n",

      "# By Eqn. 11.45:\n",

      "HS1 = (Cs*(Temp1-Tempo))+(cH2O*X1*(Temp1-Tempo));# [kJ/kg dry air]\n",

      "HS2 = (Cs*(Temp2-Tempo))+(cH2O*X2*(Temp2-Tempo));# [kJ/kg dry air]\n",

      "# Q = 0.15*HG2*Gs; [kJ/s]\n",

      "# Moisture Balance, Eqn. 12.39:\n",

      "# Ss*(X1-X2) = Gs(Y1-Y2)\n",

      "# (Gs*Y1)-(Gs*Y2) = (Ss*(X1-X2)) ........(1)\n",

      "# Enthalapy Balance, Eqn. 12.40:\n",

      "# (Ss*HS1)+(Gs*HG2) = (Ss*HG2)+(Gs*HG1)+Q \n",

      "# Gs*(HG2-HG1) = (Ss*HS2)+(0.15*HG2*Gs)-(Ss*HS1)\n",

      "# Gs*(HG2-(0.15*HG2)-((1.005*TempG1)+((1.884+TempG1)+2502.3)*Y1)) = (Ss*HS2)+Q-(Ss*HS1)\n",

      "# Gs*(HG2-(0.15*HG2)-(1.005*TempG1))-(Gs*Y1*((1.884+TempG1)+2502.3)) = (Ss*HS2)+Q-(Ss*HS1)........ (2)\n",

      "a = np.array([[(HG2-(0.15*HG2)-(1.005*TempG1)),-((1.884+TempG1)+2502.3)],[(-Y2), 1.0]]);\n",

      "b = np.array([(Ss*HS2)-(Ss*HS1),(Ss*(X1-X2))]);\n",

      "c=inv(a)\n",

      "soln = np.dot(c, b)\n",

      "Gs = soln[0];# [kg dry air/s]\n",

      "Y1 = soln[1]/soln[0];# [kg water/kg dry gas]\n",

      "HG1 = (1.005+(1.884*Y1))*(TempG1-Tempo)+(2502.3*Y1);# [kJ/kg dry air]\n",

      "Q = 0.15*HG2*Gs;# [kJ/s]\n",

      "# Assuming the sychrometric ratio of the gas as same as that of air:\n",

      "# For Zone II:\n",

      "Tempw = 65.0;# [OC]\n",

      "Temp_A = 68.0;# [OC]\n",

      "# At point A, Fig. 12.28 (Pg 702)\n",

      "Enthalpy_A = Cs*(Temp_A-Tempo)+(X1*cH2O*(Temp_A-Tempo));# [kJ/kg dry air]\n",

      "# At point B, Fig. 12.28 (Pg 702)\n",

      "Temp_B = Temp_A;# [OC]\n",

      "Enthalpy_B = Cs*(Temp_B-Tempo)+(X2*cH2O*(Temp_B-Tempo));# [kJ/kg dry air]\n",

      "\n",

      "# Assuming that the heat losses in the three zones are propotional to the number of transfer units in each zone and to the average temp. difference between the gas and the surrounding air.\n",

      "# Fractional heat loss in each Zone:\n",

      "fr1 = 0.14;\n",

      "fr2 = 0.65;\n",

      "fr3 = 0.20;\n",

      "# Calculations for zone III:\n",

      "Cs3 = cav+(1.97*Y2);# [kJ/(kg dry gas).K]\n",

      "# Heat balance:\n",

      "def f1(TempGD):\n",

      "    return (Gs*Cs3*(TempG2-TempGD))-(Ss*(HS2-Enthalpy_B)+(fr3*Q))\n",

      "TempGD = fsolve(f1,7);# [OC]\n",

      "delta_TempG = Ss*(HS2-Enthalpy_B)/(Gs*Cs3);# [OC]\n",

      "delta_TempM = ((TempG2-Temp2)+(TempGD-Temp_A))/2;# [OC]\n",

      "NtoG3 = delta_TempG/delta_TempM;\n",

      "\n",

      "# Calculations for zone I:\n",

      "Cs1 = 1.005+(1.884*Y1);# [kJ/(kg dry gas).K]\n",

      "# Heat balance:\n",

      "def f2(TempGC):\n",

      "    return (Gs*Cs1*(TempGC-TempG1))-(Ss*(Enthalpy_A-HS1)+(fr1*Q))\n",

      "TempGC = fsolve(f2,7);# [OC]\n",

      "delta_TempG = Ss*(Enthalpy_A-HS1)/(Gs*Cs1);# [OC]\n",

      "delta_TempM = ((TempGC-Temp_A)+(TempG1-Temp1))/2;# [OC]\n",

      "NtoG1 = delta_TempG/delta_TempM;\n",

      "\n",

      "# Calculations for zone II:\n",

      "Cs2 = (cav+Cs1)/2.0;# [kJ/(kg dry gas).K]\n",

      "# Heat balance:\n",

      "True_deltaTemp = TempGD-TempGC;# [OC]\n",

      "delta_Temp = fr2*Q/(Cs1*Gs);# [Change in temp resulting from heat loss,OC]\n",

      "delta_TempG = True_deltaTemp-delta_Temp;# [OC]\n",

      "delta_TempM = ((TempGD-Temp_A)-(TempGC-Temp_A))/log((TempGD-Temp_A)/(TempGC-Temp_A));# [OC]\n",

      "NtoG2 = delta_TempG/delta_TempM;\n",

      "\n",

      "NtoG = NtoG1+NtoG2+NtoG3;\n",

      "\n",

      "# Standard diameters are availaible at 1, 1.2 & 1.4 m.\n",

      "Td = 1.2;# [m]\n",

      "Area = math.pi*Td**2.0/4;# [square m]\n",

      "Gs = Gs/Area;# [kg/square m.s]\n",

      "Ss = Ss/Area;# [kg/square m.s]\n",

      "Gav = Gs*(1+(Y1+Y2)/2.0);# [kg/square m.s]\n",

      "# From Eqn. 12.47:\n",

      "Ua = 237.0*Gav**0.417/Td;# [W/square m.K]\n",

      "HtoG = Gs*Cs2*1000.0/Ua;# [m]\n",

      "Z = NtoG*HtoG;# [m]\n",

      "# Assume:\n",

      "v = 0.35;# [m/s]\n",

      "N = v/(math.pi*Td);# [1/s]\n",

      "# From Eqn. 12.37:\n",

      "K = 0.6085/(Density_S*dp**(1.0/2));\n",

      "# Take:\n",

      "phi_D = 0.05;\n",

      "# From Eqn. 12.35:\n",

      "phi_DO = phi_D-(K*Gav);\n",

      "# From Eqn. 12.35:\n",

      "s = 0.3344*Ss/(phi_DO*Density_S*N**0.9*Td);# [m/s]\n",

      "print\"Height of the drier: \",round(Z,2),\" m\\n\"\n",

      "print\"Drier Slope: \",round(s,5),\" m/m \\n\","

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.8 - Page: 705\n",

        "\n",

        "\n",

        "Height of the drier:  5.89  m\n",

        "\n",

        "Drier Slope:  0.03304  m/m \n"

       ]

      }

     ],

     "prompt_number": 56

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex12.9: Page 709"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 12.9\n",

      "# Page: 709\n",

      "\n",

      "print'Illustration 12.9 - Page: 709\\n\\n'\n",

      "import numpy as np\n",

      "from scipy.optimize import fsolve\n",

      "import matplotlib.pyplot as plt\n",

      "%matplotlib inline\n",

      "# Solution \n",

      "\n",

      "#***Data***#\n",

      "x1 = 0.46;# [fraction moisture]\n",

      "x2 = 0.085;# [fraction moisture]\n",

      "Y1 = 0.08;# [kg water/kg dry solid]\n",

      "Y2 = 0.03;# [kg water/kg dry solid]\n",

      "G = 1.36;# [kg/square m.s]\n",

      "#**********#\n",

      "\n",

      "X1 = x1/(1-x1);# [kg water/kg dry solid]\n",

      "X2 = x2/(1-x2);# [kg water/kg dry solid]\n",

      "# By water balance:\n",

      "SsByGs = (Y1-Y2)/(X1-X2);# [kg dry solid/kg air]\n",

      "# Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.\n",

      "# Comparing with Eqn. 12.22:\n",

      "# (kY*A/(Ss(Xc-X*)))=0.0137*G**1.47\n",

      "# thetha=integrate('(1/(0.0137*G**1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) # [s]\n",

      "X = np.array([X1, 0.80, 0.60, 0.40, 0.20 ,X2]);# [kg water/kg dry solid]\n",

      "Y = zeros(6);\n",

      "for i in range(0,6):\n",

      "   # From Eqn. 12.54:\n",

      "   Y[i] = Y2+((X[i]-X2)*SsByGs);# [kg water/kg dry gas]\n",

      "\n",

      "# From Fig. 7.5 (Pg 232):\n",

      "Yw = np.array([0.0950, 0.0920, 0.0790, 0.0680, 0.0550, 0.0490]);# [kg water/kg dry gas]\n",

      "X_star = zeros(6);\n",

      "RH=zeros(6)\n",

      "Val = zeros(6);\n",

      "P = 51780.0;# [vapour pressure, kN/square m]\n",

      "for i in range(0,6):\n",

      "    # From Eqn 7.8:\n",

      "    def f(p):\n",

      "         return Y[i]-((p/(101330.0-p))*(18.0/29))\n",

      "    p = fsolve(f,7);# [kN/square m]\n",

      "    RH[i] = (p/P)*100.0;\n",

      "    X_star[i] = (RH[i]/4)/(100.0-(RH[i]/4));# [kg water/kg dry solid]\n",

      "    Val[i] = 1/((X[i]-X_star[i])*(Yw[i]-Y[i]));\n",

      "\n",

      "plt.plot(X,Val);\n",

      "plt.grid();\n",

      "plt.xlabel(\"X kg water/kg dry solid\");\n",

      "plt.ylabel(\"1/((X-X*)*(Yw-Y))\");\n",

      "plt.title(\"Graphical Integration\");\n",

      "plt.show()\n",

      "# Area Under the curve:\n",

      "Area = 151.6;\n",

      "# From Eqn. 12.59:\n",

      "thetha = Area/(0.0137*G**1.47);\n",

      "print\"Time required for drying: \",round(thetha/3600,2),\" h\\n\""

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 12.9 - Page: 709\n",

        "\n",

        "\n"

       ]

      },

      {

       "metadata": {},

       "output_type": "display_data",

       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2cVHXd//HXGxBv8GYhDMW7RRMR71ZNvK+11Eu7zJtS\nU0tF07ryujIzCzQLLTXUvOtXWVkK3YjiTablLcp6D6SyiCAhJireoKiQ5h20n98f3zMyDDvD2dk5\nc767+3k+Hvtgzpkz57z3DDvfOZ/vOd8jM8M555xrT6+8AzjnnIuXNxLOOefK8kbCOedcWd5IOOec\nK8sbCeecc2V5I+Gcc64sbyRctyDpHEl/qPD8U5I+leU2ujJJm0p6W5LyzuLi4o2Ey4SkoyRNlfSO\npIWSpkj6RoabrHjBj5lta2YPZLUNSc2SXkyzEkmNktok5fb3J2m+pM8Ups3sBTNbx/zCKVfCGwlX\nc5K+A1wOXAgMMrNBwP8Ae0rqW+Y1nf2/WI9vwLXeRiaZJfVOsZhltX3XvXgj4WpK0nrAucA3zOxm\nM/s3gJm1mtlXzOzDZLlxkq6UdLukd4BmSf8tabqkJZJekDSmaL2Fb98nS3pJ0stJY1RgQF9J4yX9\nKykv7Vz0+vmSPps87i3pLEnzkmUfk7RR8twVybaXJPP3qnI/tEj6kaSHkm3cJeljydOFI5rFSYln\n1+Q1J0qaLelNSXdK2rRofftL+oekxZJ+Iel+SV9Nnhsp6WFJl0paBIyRtLmk+yQtkvS6pD8m7w1J\nyWxT4LZk+2eUHt1IGizpVklvSHpG0klFWc6RNLHcvnbdizcSrtZ2B1YH/pJi2aOBH5vZ2sDDwDvA\nV8xsPeC/gW9IOqTkNc3AJ4D9gVGFD37Ct+KDgQnAesCtwM+LXmcsLxedDhwFHGhm6wInAO8lz00D\ndgD6A9cCN5Q7+kn5+40EPg70Bc5I5u+d/LteUuKZmvyeZwKHAQOBB5PfBUkDgRuAUcAA4B+E/Vxc\nGhoBPJts64Jkf5wPbAhsDWwCnANgZscCLwAHJdv/aTvZr0uW2RA4HLhA0j5Fz3+e8vvadSPeSLha\nGwgsMrO2wgxJj0h6S9K7Jd/MbzGzRwHM7AMzu9/MZiXTMwkfVJ8uWf+5ZvaemT0FXEP4IC540Mzu\nTOrqfyR82LfnJOD7ZvZMYVtm9mby+E9m9paZtZnZpYQGb6sq9oMB15jZPDN7H5gINBV2STvL/w/w\nEzP7R7LvfgI0JUcTnwOeMrNbklw/A14tef3LZvaL5Pn3zexZM7vXzJaa2SLgMlbel+2StAmwBzDK\nzD40sxnAb4HjihZLu69dF+eNhKu1N4CBxX0MZraHmfVPnivMN2CFjl5Ju0qaLOk1SYuBrwMfY0XF\nr3kBGFw0vbDo8bvAGmX6OjYmfOteSVJ6mZ2Udd4ifFMeWOZ3XZXiD/L3gLUrLLsZcEXSmL5F2FcA\nGxG+zS8oWb50unRfDpJ0naQFkpYAf2DlfVnOYODNQqkw8UKSpSDtvnZdnL+prtYeBT4ADq3itdcC\ntwAbm1kD8CtW/j+6acnjl6rYzouEktUKJO0NfBc4wswakoZtCbXv4G3vDKIXgK+ZWf+in37JkdYr\nhIatkFPF02XWeQHwH2DbpHx3LCvuy0pnMb0MDJBU3KhtysoNk+sBvJFwNWVmiwkd17+U9EVJ60jq\nJakJ6Fe0aHsfvGsDb5nZh5JGAMew8ofZ2ZLWlLQNod5/fRUxfwv8WNInFGwvaUCy/WXAIkl9Jf0Q\nWLeK9ReUa1xeB9qALYrm/Qo4S9JwCCcASDoiee52YDtJh0jqA/wvsMEqtr028G/gX0mn/HdLnl9Y\nsv2PmNmLwCPATyStLml74ERCWcn1MN5IuJozs4sJncPfI5RcXiV8CH6PcKQBK3YkF5wC/EjSv4Af\n0H4DcD8wD5gEXGxmkyqsr9y35UsJfQR3E44UrgLWAO4C7gTmAvMJJaIXStZX6Rt4pe1/9Foze5fQ\nqfxwUl4aYWa3EE4Zvi4pD80E/itZfhFwBHARsIjQEf0Y4YitXK5zgZ2S3+824KaSZX5CaHDfknR6\nO3mPBhoJRxU3Az80s/sqbM+vr+imlOW1M5LOBL5C+NY0k3AWST/CH/9mhD/EI5Nvn4XlTyQcJp9q\nZndnFs51KZIagX8CfYo7xXuipPb/InCMmd2fdx7XvWV2JJH8UZ8M7GRm2wG9CacdjgbuMbOhwL3J\nNMlh9peA4cABhHKFH+k4x0fXSTRIWh04K5k9Jc9MrmfI8kP4X8BSYK2kjroW4dD1YGB8ssx4lndw\nHgJMSE7Zm08oKYzIMJ/renpySWN3wt/E64RrSA41sw8qv8S5zsuskUjOO7+EUNN9GVhsZvcQhmko\nnD63EBiUPB7MimdPLGDFU+5cD2Zm882sd08tNZnZuWY20MzWNbPdzezveWdyPUOW5aYtgNMInV+D\ngbUlfaV4meRCnI50BDrnnKujPhmu+5PAI2b2BoCkmwmHzK9K2sDMXpW0IfBasvxLhKEDCjamnXPg\nJXnD4ZxzVTCzDl/zk2WfxBxgt+ScdgH7ArMJp+MdnyxzPOHiKQjjvxyVnJ8+BNiSMI7OSswsqp8x\nY8bknqGr5PJMnqkn5IoxU7UyO5IwsxmSfk84n7sNeAL4DbAOMDEZwXI+cGSy/GxJEwkNyTLgFOvM\nb1ZH8+fPzztCu2LM5ZnS8UzpxZgrxkzVyrLchJldRLgAqNibhKOK9pa/gDCcgHPOuQj4dQg1MHLk\nyLwjtCvGXJ4pHc+UXoy5YsxUrUyvuM6CpK5ShXLOuWhIwiLruO4xWlpa8o7QrhhzeaZ0PFN6MeaK\nMVO1vJFwzjlXlpebnHOuB/Byk3POuZrzRqIGYq0/xpjLM6XjmdKLMVeMmarljUSV3nsP2nrkUHPO\nuZ7E+ySqtOuucNllsMceeSdxzrlV8z6JOvvc5+CGG/JO4Zxz2fJGokpHHBEaiba2eOuPMebyTOl4\npvRizBVjpmp5I1Gl4cNhvfVgit9A0jnXjXmfRCeccw4sWRL6JpxzLmbV9kl4I9EJs2bBAQfA889D\nLz8mc85FzDuuc7DNNrDOOnDllS15R2lXjHVRz5SOZ0ovxlwxZqqWNxKddOSR0I3+Pzjn3Aq83NRJ\nXnJyznUFXm7KSaHkNHVq3kmcc672vJGogV12aYnywroY66KeKR3PlF6MuWLMVK1MGwlJW0maXvSz\nRNKpkgZIukfSXEl3S2ooes2Zkp6RNEfS/lnmq5XmZrjxRh/LyTnX/dStT0JSL+AlYATwTWCRmV0k\naRTQ38xGSxoOXAvsAmwETAKGmllb0Xqi6pMAMAtlp6uvht12yzuNc86trCv0SewLzDOzF4GDgfHJ\n/PHAocnjQ4AJZrbUzOYD8wiNStSkMEzHxIl5J3HOudqqZyNxFDAheTzIzBYmjxcCg5LHg4EFRa9Z\nQDiiiFpLSwtHHBFfySnGuqhnSsczpRdjrhgzVasujYSkvsDngZW6d5PaUaX6UVy1pTK22Qb69YNp\n0/JO4pxztdOnTts5EHjczF5PphdK2sDMXpW0IfBaMv8lYJOi122czFvByJEjaWxsBKChoYGmpiaa\nm5uB5S14vacLJadLL23hlFPqv/32ppubm3PdfnvThXmx5Cn9xhdLnhinY/z/5O9f+emWlhbGjRsH\n8NHnZTXq0nEt6TrgDjMbn0xfBLxhZhdKGg00lHRcj2B5x/UninuqY+y4Lpg5Ew46CObPD42Gc87F\nItqOa0n9CJ3WNxfNHgvsJ2ku8JlkGjObDUwEZgN3AKdE2yIUKbTe224La60VT8mp9FtWDDxTOp4p\nvRhzxZipWpmXm8zs38DAknlvEhqO9pa/ALgg61xZKD7Laddd807jnHOd52M31ZiXnJxzMYq23NTT\nbLstrLlmPCUn55zrDG8kaqC4/lgoOcUwllOMdVHPlI5nSi/GXDFmqpY3Ehk48sjQSERcFXPOuVS8\nTyIDZrD11jB+vHdgO+fi4H0SEYmp5OScc53hjUQNtFd/LIzllOdBT4x1Uc+UjmdKL8ZcMWaqljcS\nGdluO1h9dfj73/NO4pxz1fM+iQz94Afw/vtw8cV5J3HO9XTV9kl4I5GhJ5+Egw+G557zC+ucc/ny\njusclas/5l1yirEu6pnS8UzpxZgrxkzV8kYiQ36Wk3Ouq/NyU8ZmzIBDDvGSk3MuX15uitT220Pf\nvvDYY3kncc65jvNGogYq1R+l5cN01FuMdVHPlI5nSi/GXDFmqpY3EnVQuMdEF6qSOecc4H0SdWEG\nW20Ff/oT7LJL3mmccz2R90lEzM9ycs51Vd5I1ECa+mOhkajnQVCMdVHPlI5nSi/GXDFmqlbmjYSk\nBkk3Snpa0mxJu0oaIOkeSXMl3S2poWj5MyU9I2mOpP2zzlcvO+wAq60Gjz+edxLnnEsv8z4JSeOB\n+83sakl9gH7A94FFZnaRpFFAfzMbLWk4cC2wC7ARMAkYamZtRevrcn0SBd//PixdChddlHcS51xP\nE2WfhKT1gL3N7GoAM1tmZkuAg4HxyWLjgUOTx4cAE8xsqZnNB+YBI7LMWE95lJycc64zsi43DQFe\nl3SNpCckXSWpHzDIzBYmyywEBiWPBwMLil6/gHBEEbW09ccddoA+fepXcoqxLuqZ0vFM6cWYK8ZM\n1epTh/XvBPyfmf1d0uXA6OIFzMwkVfpuvdJzI0eOpLGxEYCGhgaamppobm4Glr859ZxubW1NtbwE\nI0a0cMklMGFCfnnznG5tbY0qT0fev3pOF8SSJ+Zpf//an25paWHcuHEAH31eViPTPglJGwCPmtmQ\nZHov4Exgc2AfM3tV0obAZDMbJmk0gJmNTZa/ExhjZlOL1tll+yQApk+HL34Rnn3Wx3JyztVPlH0S\nZvYq8KKkocmsfYFZwG3A8cm844Fbkse3AkdJ6itpCLAlMC3LjPXW1AS9e/tZTs65rqEe10l8E/iT\npBnA9sD5wFhgP0lzgc8k05jZbGAiMBu4AzilKxw2lB5iVlLPC+s6kqtePFM6nim9GHPFmKlaWfdJ\nYGYzCKe0ltq3zPIXABdkGipnRxwRSk5jx3rJyTkXNx+7KQdmsOWWcP31sPPOeadxzvUEUfZJuPb5\nWE7Oua7CG4kaqKb+WLjHRJYHRTHWRT1TOp4pvRhzxZipWt5I5KSpKRxRPPFE3kmcc64875PI0Zln\nhiOJsWPzTuKc6+68T6IL8rGcnHOx80aiBqqtP+64Y/h3+vTaZSkWY13UM6XjmdKLMVeMmarljUSO\n/Cwn51zsvE8iZ088ERqKefP8wjrnXHa8T6KLyrrk5JxzneGNRA10pv6YZckpxrqoZ0rHM6UXY64Y\nM1XLG4kI+FlOzrlYeZ9EBMxgiy3gppuWl5+cc66WMu2TkNRP0jBJWyW3H3U1JIVhOiZOzDuJc86t\nqGwjIWkdSadLmgbMBK4BxgNPSXpM0rclrV2voDGrRf0xi5JTjHVRz5SOZ0ovxlwxZqpWpSOJW4C3\ngc+b2eZmtruZ7ZbcivQg4N/AX+oRsifYaSdoa4PkFtDOORcF75OIyKhR4damF3TrWy455/JQbZ9E\nqkZC0tZAI9AGPG9mczqcsEa6cyPx2GNw9NEwd65fWOecq62ad1xLGiLpZ5LmAb8CjgNOAH4t6VlJ\nV0hqrDZwd1Kr+uPOO8OyZTBjRk1WF2Vd1DOl45nSizFXjJmqValP4kLgNmBrM/u0mR1tZkeZ2aeB\nYcDfgItWtQFJ8yU9KWl60gmOpAGS7pE0V9LdkhqKlj9T0jOS5kjav3O/XtfiZzk552JTttwkaT0z\nW9LpDUjPATub2ZtF8y4CFpnZRZJGAf3NbLSk4cC1wC7ARsAkYKiZtRW9ttuWm8BLTs65bGRxncQT\nko7uRKZipcEOJpxOS/LvocnjQ4AJZrbUzOYD84ARNcrQJdS65OScc51RqZH4DPClpCy0ZSe2YcCk\n5NqKk5N5g8xsYfJ4ITAoeTwYWFD02gWEI4qo1bL+WMuxnGKsi3qmdDxTejHmijFTtfqUe8LMngcO\nlfQ54GFJfyec3ZQ8bQen3MaeZvaKpPWBeyStcGaUmZmkSvWjlZ4bOXIkjY2NADQ0NNDU1ERzczOw\n/M2p53Rra2tN17f55nDppc2cdx7cf3/9f58sp1uTC0FiyZPF+1eL6YJY8sQ87e9f+9MtLS2MGzcO\n4KPPy2pUPAVW0jDgF8Bbyb+Fhc3M7u/wxqQxwDvAyUCzmb0qaUNgspkNkzQ6WfnYZPk7gTFmNrVo\nHd26TwLCVdebbw5//jM0NeWdxjnXHWRxCuxYwlXXPzWzw81sspm1JD+pGghJa0laJ3ncD9ifMMTH\nrcDxyWLHJ9shmX+UpL6ShgBbAtM6+kt1dX7HOudcLCr1SSwDmszsjsIMSX/t4PoHAQ9KagWmAn81\ns7uBscB+kuYS+j7GApjZbGAiMBu4AzilKxw2lB5i1kItxnLKIldneaZ0PFN6MeaKMVO1KvVJnN3O\n7A51IpvZc8BKBZPkdNh9y7zmAqDHD0zxyU/C0qXw5JOwww55p3HO9VQdGrtJ0jVmdkKGedJk6AoH\nFzXx3e/C6qvDeeflncQ519Vldj8JSftKWhMg7waipznySL9jnXMuX2luOnQcMEPSVEkXS/q8pP5Z\nB+tKsqo/fvKT8OGHoeRUjRjrop4pHc+UXoy5YsxUrVU2EmZ2nJkNBQ4DXiScCvt61sFcOMvp8MP9\nLCfnXH5W2Sch6VhgL2B7QuPwEPCQmT2Sfbx28/SYPgmAadPg2GNhzhwfy8k5V73M7ich6Q3gWeBK\noCU5Yyk3Pa2RMIMhQ+DWW2H77fNO45zrqjLruAYGAicCawDnS5om6Y8d3VB3lmX9sTMlpxjrop4p\nHc+UXoy5YsxUrTSNxDrApsBmhLvTNbB8DCdXB4V7TPSgAyjnXCTSlJueBB4GHgQeMLMFFV+QsZ5W\nbgIvOTnnOq/aclPZK64lfcnMrjcz/1jKWXHJyRsJ51w9VSo3HSfpTklb1C1NF1WP+mM1YznFWBf1\nTOl4pvRizBVjpmqVbSTM7L+BXwF/lfRDSQOTe1MPkDSgfhEdwIgR8N578NRTeSdxzvUkafokmoAH\nCPeUKL7p0OYZZyuXp8f1SRSccQasuSb8+Md5J3HOdTVZ3E9iDUk/Bq4DjjGzzcxsSPKTSwPR09Vi\n+HDnnOuISn0SMwgd2zuaWUfvI9Gj1Kv+2NGSU4x1Uc+UjmdKL8ZcMWaqVtmzm4DDkpsAuUgUn+W0\n3XZ5p3HO9QRl+yQkXQ1caWZ/L/P8rsD/1Hv48J7cJwEwZQqccALMnu1jOTnn0qv52E2StgO+C+wG\n/AN4BRCwAbAV8Ajh/td1Pd+mpzcSZrDZZnD77bDttnmncc51FTXvuDazmWZ2HLAdcD5wL3APcB6w\nvZmNrHcDEat61h+l0IE9ceKql42xLuqZ0vFM6cWYK8ZM1ao4dpOk7c3sA+Dd5OrriWY21czeT7sB\nSb0lTZd0WzI9QNI9kuZKultSQ9GyZ0p6RtIcSftX/Vt1c36Wk3OuXipeJyHpCuDnwP+Z2beq2oB0\nOrAzsI6ZHSzpImCRmV0kaRTQ38xGSxoOXAvsAmwETAKGmllbyfp6dLkJvOTknOu4LK6TGJM8PzVM\nakwVoTYGPgf8ltCfAXAwMD55PB44NHl8CDDBzJaa2XxgHjCio9vsCfyOdc65eqnUJ3EuoQ/iemBS\nMt1RlxE6v4uPBgaZ2cLk8UJgUPJ4MFA8wuwCwhFF9PKoP6YpOcVYF/VM6Xim9GLMFWOmalW6TgJg\nVzP7RnLl9a0dWbGkg4DXzGy6pOb2ljEzk1SpdtTucyNHjqSxsRGAhoYGmpqaaG4Omyi8OfWcbm1t\nrfv2P/WpZt55B8aNa2HIkPr+vp2Zbm1tjSpPXu/fqqYLYskT87S/f+1Pt7S0MG7cOICPPi+rscqx\nm6pesXQBcCywjHBXu3WBmwl9Ds1m9qqkDYHJZjZM0mgAMxubvP5OYIyZTS1Zb4/vkyg4/XRYZx04\nt5pjPOdcj5LJ7Usl7STpYklTJS2U9Gry+GJJO1Z6rZmdZWabmNkQ4CjgPjM7lnBEcnyy2PHALcnj\nW4GjJPWVNATYEpjW0V+oJymUnJxzLiuVOq5vB74DPAYcTbh96ZDk8ePAGZL+1oFtFb7+jwX2kzQX\n+EwyTTIEyERgNnAHcEpXOWQoPcSsl113hbffhlmz2n8+r1yVeKZ0PFN6MeaKMVO1KvVJnFDUwVzs\nn8nPdZI+nmYjZnY/cH/y+E1g3zLLXQBckGadDnr1Wn6W0zbb5J3GOdcdreo6iX3NbFLh3zrmKsv7\nJFb0yCNw0klhLCfnnCsnkz4JoFnSnkBzValc5nbbrXLJyTnnOmNVF9P1JYzZ1Leai+l6ijzrj8Ul\np1Ix1kU9UzqeKb0Yc8WYqVqruphuDnAOMKfKi+lcHfhZTs65rKyqT+I0M7tc0qlm9rM65irL+yRW\n1tYGm24Kd98Nw4fnncY5F6Msxm7a1MwuByhtICTt3fGILiuVSk7OOdcZlTquWySNktS7MEPSBpL+\nCFyefbSuI4b645FHrnyPiRhylfJM6Xim9GLMFWOmalVqJHYGNgdaJX1W0mmEEWGnEIbWcBHZbTdY\nssRPhXXO1dYqx25KGodLgZeB3c3sxXoEq5DH+yTKOO006N8fxvh5aM65Eln0SfSX9GvgBOBA4Ebg\nDkmfrT6my5Kf5eScq7VK5abHCTf+2dnM7jKz04CvAOdJmlCXdF1ELPXH3XeHxYuXl5xiyVXMM6Xj\nmdKLMVeMmapVqZH4tJldbGbLCjPMrBXYA5iceTLXYb16wRe/6EcTzrna6dD9JCQ9YWY7ZZgnTQbv\nk6jg4Yfh61+Hp57KO4lzLiZZjd200nY6ugFXX4WS09NP553EOdcddLSRuD2TFF1cTPXH4pJTTLkK\nPFM6nim9GHPFmKlalc5u+rmkdYvnmdn3JW0t6d7so7lqHXFEuLCurS3vJM65rq5sn4Sk7wNfBX5g\nZn+S1A8YA3wB+K6Z/bl+MVfI5X0Sq9DWBsl90fnNb2DYsFzjOOciUPM+CTM7n3AHuWMkPQDMAP4D\nbJ9XA+HS6dULJk8ORxR77QXnngsffJB3KudcV7SqPgkjdFavBvQGZpvZu5mn6mJirD/27g3bbdfC\n9Onw+OOw447w0EN5p4pzX3mmdGLMBHHmijFTtSr1SfwAmAT83sx2B/YGDpV0v6RV3lFZ0hqSpkpq\nlTRb0k+S+QMk3SNprqS7JTUUveZMSc9ImiNp/87/em6TTeAvf4Ef/Qi+9CX4xjfCGE/OOZdGpT6J\nK4CzzeztkvkHApeZ2Sor3ZLWMrN3JfUBHgLOAA4GFpnZRZJGAf3NbLSk4cC1hMEDNyI0UEPNrK1k\nnd4nUaXFi2HUKPjb3+BnP4PDDgP5Sc3O9QjV9kl06GK6oo2tYWbvd2D5tYD7gZHATYSruRdK2gBo\nMbNhks4E2szswuQ1dwLnmNmUknV5I9FJDz4IX/sabLUV/PznsPHGeSdyzmUtiwH+zpE0qL3nzOx9\nSRtKqnhLU0m9JLUCC4HJZjYLGGRmC5NFFgKFbQwGFhS9fAHhiCJ6sdYfy+Xae29obYWmptBX8Ytf\nwH/+k2+mPHmmdGLMBHHmijFTtfpUeO4x4DpJfYEngFcIndgbADsBHwA/rbTypFTUJGk94C5J+5Q8\nb5IqHRa0+9zIkSNpbGwEoKGhgaamJpqTcz4Lb049p1tbW3PdfrXT55wDjY0tXHIJ/PGPzVx1FSxa\nlO32W1tbo/n9C9Mxvn8FseSJedrfv/anW1paGDduHMBHn5fVSHM/iU2APYFNk1nPAw+b2YLyr2p3\nPT8A3gNOAprN7FVJGxKOMIZJGg1gZmOT5e8ExpjZ1JL1eLmpxtra4Kqr4Oyzw7hPZ58Na6yRdyrn\nXC3VtU8i1YqlgcAyM1ssaU3gLuBc4L+AN8zswqRhaCjpuB7B8o7rT5S2CN5IZOfll+HUU+HJJ8NF\neIUL8pxzXV8WfRJXSyp7m1JJu0q6psK6NwTuS/okpgK3mdm9wFhgP0lzgc8k05jZbGAiMBu4Azil\nq7QGpYeYsehorsGD4cYb4eKL4dhj4aST4M03881UD54pnRgzQZy5YsxUrUp9EpcB35W0G/APVuyT\n2Ap4hAp9EmY2k9B3UTr/TcKV3O295gLggrThXTYOOQT22Qe+/33YZhu47LJwjYWfLutcz5OmT2J1\nYEdgM0JH8vPAjI6cAltLXm6qr0cfhZNPhs02g1/+MvzrnOt6sig3/UbSYUBfM5tiZteb2UQzm5pX\nA+Hqb/fd4YknYI89YOedw1HFsmWrfp1zrnuoNHbT1UATcLuk+ySNkrRDnXJ1KbHWH2uVq2/fUHp6\n5BG49VbYbbdwnUWemWrJM6UTYyaIM1eMmapVaRTYKWY2xsz2Bo4EXgS+k4zFdLWkI+uW0kVh6FC4\n7z445RTYf/8wxMe7Ptyjc91ah0+BlSTgu8BqyXDideV9EnFYuBBOOw2mToVf/xr22y/vRM65Suo9\ndtOLZrZJh19YA95IxOX228ORxac+BZdcAuuvn3ci51x7sui4nlnuh+XjLTnirT/WI9fnPgdPPQUD\nB8K228Lvfw+V2vAY95VnSifGTBBnrhgzVavSdRIfBw4A3mrnuUeyieO6orXXhksvhWOOCafL/uEP\n8KtfwRZb5J3MOddZle4ncTVwjZk92M5zE8zs6KzDtcfLTXFbuhQuvxwuvBC+9z349rdhtdXyTuWc\ni27spqx4I9E1PPtsuAvea6+FwQN3KTvAi3OuHmreJ+HSi7X+mGeuLbaAu+6C73wHDjooHFG8806c\n+8ozpRNjJogzV4yZquWNhMuMFAYKnDUrDBS47bYwZcqqX+eci4eXm1zdTJoU7lexyy5wxRUwyM+R\nc65uvNzkorfvvjBzJjQ2wnbbwe9+V/l0Wedc/ryRqIFY648x5po2rYWxY+Huu8NpsvvsA3Pn5psp\nxv3kmdKLMVeMmarljYTLRVNT6J849NAwwux558GHH+adyjlXyvskXO6efz4M7fH88+F02d13zzuR\nc92PXyd5yFWSAAAS80lEQVThujQzmDgxDBr4hS/AT34C666bdyrnug/vuM5RrPXHGHOVyySFW6TO\nmhXKTttsA7fckm+mPHmm9GLMFWOmamXaSEjaRNJkSbMkPSXp1GT+AEn3SJor6W5JDUWvOVPSM5Lm\nSNo/y3wuPgMGhJLTH/4Q7lfxhS/Ayy/nncq5nivTcpOkDYANzKxV0trA48ChwAnAIjO7SNIooL+Z\njZY0HLgW2AXYCJgEDDWztqJ1ermph3j/fTj//HAW1I9+FK6x6OXHvs5VJcpyk5m9amatyeN3gKcJ\nH/4HA+OTxcYTGg6AQ4AJZrbUzOYD84ARWWZ08VpjDfjxj2Hy5HBksffeMHt23qmc61nq9r1MUiOw\nIzAVGGRmC5OnFrL8/hSDgQVFL1tAaFSiFmv9McZc1WTadlt46CH48pfh05+GMWPCUUaembLmmdKL\nMVeMmapV6X4SNZOUmm4CvmVmb4c7oAZmZpIq1Y9Wem7kyJE0NjYC0NDQQFNTE83NzcDyN6ee062t\nrbluvytNt7a2Vv36U06B9ddv4Yor4Prrm/nNb6CtrfP5Ynz/CmLJE/O0v3/tT7e0tDBu3DiAjz4v\nq5H5KbCSVgP+CtxhZpcn8+YAzWb2qqQNgclmNkzSaAAzG5ssdycwxsymFq3P+yQcf/4zfPOb4c54\nF14I/fvnnci5uEXZJ6FwyPA7YHahgUjcChyfPD4euKVo/lGS+koaAmwJTMsyo+uaDjssnC7bp084\nXfaGG3wcKOeykHWfxJ7AV4B9JE1Pfg4AxgL7SZoLfCaZxsxmAxOB2cAdwCld4bCh9BAzFjHmqmWm\n9daDX/4yNBBjxsDBB8OLL+abqVY8U3ox5ooxU7Uy7ZMws4co3xDtW+Y1FwAXZBbKdTt77gnTp4ey\n0447wg9/CP/7v9C7d97JnOv6fFgO163MmQNf+xp88EG4KG/77fNO5FwcouyTcK7ehg2DlhY46ST4\n7GfhzDPhvffyTuVc1+WNRA3EWn+MMVc9MvXqBSefDE8+Cf/8Z7jB0b335pupozxTejHmijFTtbyR\ncN3WhhvC9dfDZZfBCSfAyJHwxht5p3Kua/E+CdcjvP02nH12aDQuuQSOOSaMPOtcT+H3k3AuhWnT\nQilqww3hyithyJC8EzlXH95xnaNY648x5so704gR8Nhj0NwMu+wCP/0p3HNPvpnak/d+ak+MmSDO\nXDFmqlZdxm5yLiarrQajR8Phh4frKc46CzbbDIYOhS23DP8Wfjbe2Icndz2bl5tcj/fhh+EsqGee\ngblzV/x56y34xCdWbjyGDoWBA71fw3Ud3ifhXAbeeQfmzVu58Zg7N4wV1V7jseWWsM46eSd3bkXe\nSOSopaXlo6F6YxJjru6U6Y032m885s2Ddddtv/HYYgtYffXsMmUpxkwQZ64YM1XbSHifhHNV+tjH\nYPfdw0+xtrZwX+7ihuP++0M56/nnYfDglRuPoUNh0019vCkXHz+ScK6Oli6F+fOXNx7F/SCvvw6b\nb75y4zF0KAwa5P0frnO83ORcF/fuuyv2fxQ3IB980H7jseWW0NCQd3LXFfh1EjmK9ZzoGHN5pvLW\nWiuMWnv44bDHHi1ccw08/HA4wpg/H37xCzjwwNBhfttt8PWvh1N0Bw2CvfaCE0+EsWPh5pvhqadq\nP7BhLPupVIy5YsxULe+TcK4LGDAAdt01/BQzg1deWfGoY/z48O9zz4UGpLQDfejQcF1IH//rdyl4\nucm5bmrZMnjhhfbPwHr1VWhsbP8MrMGDvf+jO/I+Cedcau+/D88+u3Lj8cwz4dqQ0n6PoUPDRYUf\n+5g3IF1VlI2EpKuB/wZeM7PtknkDgOuBzYD5wJFmtjh57kzgROA/wKlmdnc764yukYjxnGiIM5dn\nSifPTEuWrHz1+TPPwNNPt/Cf/zSz0UahL2TjjWn38aBB9T2V19+/dGK9TuIa4P8Bvy+aNxq4x8wu\nkjQqmR4taTjwJWA4sBEwSdJQM2vLOKNzrsh668EnPxl+irW0hEERX3oJFiwIPy+9FG4ZO2nS8vlv\nvhkainKNyMYbh5JWmosKXf4yLzdJagRuKzqSmAN82swWStoAaDGzYclRRJuZXZgsdydwjplNKVlf\ndEcSzrnlPvwwdKYXGpHiBqXw+JVXwqm75RqSwr8+vEntxHok0Z5BZrYwebwQGJQ8HgwUNwgLCEcU\nzrkupG/fcPbUZpuVX6atDV57beXG4777VmxU+vQpfzRSeOz9JNnK9SQ4MzNJlQ4LusQhQ4z1R4gz\nl2dKp7tn6tULNtgg/JSWtQrMYPHiFRuSl14K9wO55Zbl8955p4VNNmmuWN4aNKi+p/zG+P5VK49G\nYqGkDczsVUkbAq8l818CNilabuNk3kpGjhxJY2MjAA0NDTQ1NX30hhQuYqnndGtra67b70rTra2t\nUeWJ9f0riCVPHtMSzJgRpg84oPzy06a1cthhzSxYEG4gtWgRvPtuM/fdFzrbX38d3n67mUGDYN11\nWxg4EHbcMTQqS5a0sP768PnPNzN4MEyZUpv8BXnuv5aWFsaNGwfw0edlNfLok7gIeMPMLpQ0Gmgw\ns0LH9bXACJKOa+ATpR0Q3ifhnOuopUuX95OU6yt55ZUweu+qylvrrpv3b1OdWE+BnQB8GhhI6H/4\nIfAXYCKwKSufAnsW4RTYZcC3zOyudtbpjYRzruba2sIQKJU63BcsCKf3lnawl3a69+8f7oAYkygb\niSzE2Ei0RFp/jDGXZ0rHM6VXz1xm4TqSSg3JSy/B4sUt9OnTTL9+sPbaK/6kmVc8vdFG8PGPdz57\nVzq7yTnnuiQpnLrb0ADbblt+ucmTw31G3nkH/v3v8G/hp73pt96CF19sf5njjoPTT6/f71jKjySc\nc64H8KHCnXPO1Zw3EjVQetpbLGLM5ZnS8UzpxZgrxkzV8kbCOedcWd4n4ZxzPYD3STjnnKs5byRq\nINb6Y4y5PFM6nim9GHPFmKla3kg455wry/sknHOuB/A+CeecczXnjUQNxFp/jDGXZ0rHM6UXY64Y\nM1XLGwnnnHNleZ+Ec871AN4n4Zxzrua8kaiBWOuPMebyTOl4pvRizBVjpmp5I+Gcc64s75Nwzrke\nwPsknHPO1Vx0jYSkAyTNkfSMpFF550kj1vpjjLk8UzqeKb0Yc8WYqVpRNRKSegM/Bw4AhgNHS9o6\n31Sr1tramneEdsWYyzOl45nSizFXjJmqFVUjAYwA5pnZfDNbClwHHJJzplVavHhx3hHaFWMuz5SO\nZ0ovxlwxZqpWbI3ERsCLRdMLknnOOedyEFsj0SVPW5o/f37eEdoVYy7PlI5nSi/GXDFmqlZUp8BK\n2g04x8wOSKbPBNrM7MKiZeIJ7JxzXUg1p8DG1kj0Af4BfBZ4GZgGHG1mT+cazDnneqg+eQcoZmbL\nJP0fcBfQG/idNxDOOZefqI4knHPOxSW2juuPpLmoTtLPkudnSNox70yShkl6VNL7kr6TdZ6Umb6c\n7J8nJT0safsIMh2SZJou6XFJn8k6U5pcRcvtImmZpC/knUlSs6Qlyb6aLunsvDMV5Zou6SlJLXln\nknRG0T6ambx/DTlnGijpTkmtyX4amWWeDuTqL+nPyd/gVEnbVFyhmUX3Qyg1zQMagdWAVmDrkmU+\nB9yePN4VmBJBpvWBTwLnAd+JZD/tDqyXPD4gkv3Ur+jxdoRrY3LfV0XL3Qf8Ffhi3pmAZuDWrPdP\nBzM1ALOAjZPpgXlnKln+IGBS3pmAc4CfFPYR8AbQJ4JcFwM/SB5vtap9FeuRRJqL6g4GxgOY2VSg\nQdKgPDOZ2etm9hiwNMMcHc30qJktSSanAhtHkOnfRZNrA4syzpQqV+KbwI3A6xFl6vAZKRlnOga4\nycwWAJhZ1u9fRy+yPQaYEEGmV4B1k8frAm+Y2bIIcm0NTAYws38AjZLWL7fCWBuJNBfVtbdMlh+A\nMV7o19FMXwVuzzRRykySDpX0NHAHcGrGmVLlkrQR4Q/qymRW1h12afaVAXskpYHbJQ2PINOWwABJ\nkyU9JunYCDIBIGkt4L+AmyLIdBWwjaSXgRnAtzLOlDbXDOALAJJGAJtR4bMzqrObiqT94yz9hpXl\nH3WMPfypM0naBzgR2DO7OEDKTGZ2C3CLpL2BPxAOe7OUJtflwGgzM0ki+2/waTI9AWxiZu9KOhC4\nBRiac6bVgJ0Ip6qvBTwqaYqZPZNjpoLPAw+ZWdbjYqTJdBbQambNkrYA7pG0g5m9nXOuscAVkqYD\nM4HpwH/KLRxrI/ESsEnR9CaEFrHSMhsn8/LMVG+pMiWd1VcBB5jZWzFkKjCzByX1kfQxM3sj51w7\nA9eF9oGBwIGSlprZrXllKv5AMbM7JP1S0gAzezOvTIRvqovM7D3gPUkPADsAWTUSHfk/dRTZl5og\nXaY9gPMBzOxZSc8Rvgw9lmeu5P/UiYXpJNc/y64xy06UTnS+9AGeJXS+9GXVHde7kX2H7CozFS17\nDvXpuE6znzYldGTtFtF7twXLT7/eCXg2hlwly18DfCHvTMCgon01ApgfQaZhwCRCJ+lahG+jw/N+\n74D1CJ3Da8bw/wm4FBhT9D4uAAZEkGs9oG/y+GRgXMV1Zr0zO/HLHki4+noecGYy7+vA14uW+Xny\n/Axgp7wzARsQvmUtAd4CXgDWzjnTb5M/nOnJz7QI9tP3gKeSPA8Cu8Tyf6po2cwbiZT76n+TfdUK\nPEIdGvuUf3tnEM5wmgmcGkmm44Fr6/F/KeV7NxC4Lfl8mgkcE0mu3ZPn5xBO0liv0vr8YjrnnHNl\nxXp2k3POuQh4I+Gcc64sbyScc86V5Y2Ec865sryRcM45V5Y3Es4558ryRsLVhaRNJP1TUv9kun8y\nvWnJco2SZuaQ7xBJW1f52tWSIc83q1X2ZCju22qxrpTbeyf5d7CkG8os0yJp53plcnHwRsLVhZm9\nSBg4b2wyayzwazN7Ib9UKzgM6NDgeZJ6Jw/3Ah6qeaL2t5nVUDoGYGYvm9kRFZbxC6t6GG8kXD1d\nBuwm6TTCuDY/rbSwpM0lPSFpZ0lrSZooaZakmyVNKf1Wm9ws6Kbk8SGS3k3GhVpD0rPJ/JMlTUtu\nBHOjpDUl7UEYGO7i5KY1QyRtIemOZJTTByRtlbx+nKRfSZoCXJhs+gDCaLaqNnvymgMkPS3pcUKj\nVZh/jqQ/SHoI+L2k+yXtUPT8Q5K2K1nXNskNZaYnI8hukcw/XeGmPDMlrTQqafGRXLJvrpM0W9LN\nwJpkP+ihi0ysA/y5bsjCPcy/R/hA3c/Myo48mXwoTwCON7OZks4gjMe/jcKdtFpZ+VvtdKApebw3\nYSiEEYRRS6ck828ys6uSbfwY+KqZ/VzSrcBtZnZz8ty9hGEM5knaFfglYdRTgMHA7rZ8uIJmYAxh\nWJaqsktaA/gNsI+FweCuL1lmGLCXmX0g6ThgJPBtSUOB1c2stMz1deAKM7s2OfrokzRMI5N90guY\nKqnFzGa09x4A3wDeMbPhSSP0RGlu1/35kYSrtwOBlwl3pCvn44QhsY8p+vDbk3ADFcxsFvBk6Yss\n3NDlWUnDgF0IA6x9ilAOejBZbDtJD0p6EvgyK5aYBCBpbcL4Njckwyn/iqQBIHxI3lBoIBTuQfGm\nmb3fmeyERuA5M3s2mf4jy7+1G+HudB8k0zcCByUf/icSxpkq9ShwVtIoNyb59gJuNrP3LNz46eZk\n/5Szd5KD5HdpL7fr5ryRcHUjqQnYl/AB/G1JG5RZdDHwPOFDaoVVpNjMA4QRgpcC9ybrKG4kxgGn\nmNn2wLmEEkpB4VtyL2Cxme1Y9FN8H+B3ix4fANxZg+yl39BLl/9om2b2LnAPcChwBPCnlVZmNoFQ\nQnsPuF3hfiJWsl61s91SXl7q4byRcHUhSYSO628lndgXU75P4kPCnbOOk3R0Mu9h4MhkXcMpfyTy\nIHAa8IiF22p+DNgq+QYP4Xapr0paDfgKyz8k3ya51aSZ/Qt4TtLhhewK9+Roz38RymedzV64jeTm\nyfTRRc+190H9W+BnhFF9l5Q+KWmImT1nZv8P+EuyzQeBQ5O+hn6ERubB0tcWeYBwK1AkbQuU2weu\nG/M+CVcvJxPuhXBvMv1L4ARJe5tZ6QeVWbgT20GEu3m9nSw/XtIswhDHswhDspeaRij5PJBMzyCM\n5V/wA8K9vl9P/l07mX8dcJWkbwKHE0pRV0o6m9CnMYHl5ZZCqak38Akzm9vZ7Gb2vqSvAX+T9C7h\nw7tf0fasZPknJC2h/VITwJEKtxVdSrjX8vlmtljSuGQfAVxV1B9RvP7C4yuBayTNBp4m25vluEj5\nUOGuS5DUC1gt6bjdglBuGWrZ31i+UqY9gS+b2SmrWK7m2SUNBiabWda3fXU9nB9JuK6iH3BfUiYS\n8I08GwgAM3uYUEpalZpmT85uOg/4drXrcC4tP5JwzjlXlndcO+ecK8sbCeecc2V5I+Gcc64sbySc\nc86V5Y2Ec865sryRcM45V9b/B77dKwo9Y8ZFAAAAAElFTkSuQmCC\n",

       "text": [

        "<matplotlib.figure.Figure at 0x7885c50>"

       ]

      },

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Time required for drying:  1.96  h\n",

        "\n"

       ]

      }

     ],

     "prompt_number": 2

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [],

     "language": "python",

     "metadata": {},

     "outputs": []

    }

   ],

   "metadata": {}

  }

 ]

}