summaryrefslogtreecommitdiff
path: root/Manufacturing_Science_by_A._Ghosh_And_A._K._Mallik/ch3_2.ipynb
blob: 4b196f651076ac3e63d3a0c10dc53f5c2be6b01c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
{
 "metadata": {
  "name": "",
  "signature": "sha256:b01632c5e1d052fcab2b601597f0c6e72de59cc1f1354d4c2bee4e077a3161c7"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter - 03, Forming Processes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 1 on page no. 112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "from math import tan, sqrt, atan, log\n",
      "# Given that\n",
      "A = 150*6 # Cross-section of strips in mm**2\n",
      "ti = 6 # Thickness in mm\n",
      "pA = 0.20 # Reduction in area\n",
      "d = 400 # Diameter of steel rolls in mm\n",
      "Ys = 0.35# Shear Yield stress of the material before rolling in KN/mm**2\n",
      "Ys_ = 0.4# Shear Yield stress of the material after rolling in KN/mm**2\n",
      "mu = 0.1 # Cofficient of friction\n",
      "\n",
      "tf =0.8*ti\n",
      "Ys_a = (Ys + Ys_)/2\n",
      "r=d/2\n",
      "thetaI = sqrt((ti-tf)/r)\n",
      "lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))\n",
      "lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)\n",
      "thetaN  =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r))))\n",
      "print \"\"\"The final srip thickness is %0.2f mm,\\nThe avg shear yield stress during the process is %0.3f KN/mm**2,\n",
      "The angle subtended by the deformation zone at the roll centre is %0.4f rad, \n",
      "The location of neutral point is %0.3f rad.\"\"\"%(tf,Ys_a,thetaI,thetaN)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The final srip thickness is 4.80 mm,\n",
        "The avg shear yield stress during the process is 0.375 KN/mm**2,\n",
        "The angle subtended by the deformation zone at the roll centre is 0.0775 rad, \n",
        "The location of neutral point is 0.023 rad.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 2 on page no. 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import exp, ceil\n",
      "# Given that\n",
      "A = 150*6 # Cross-section of strips in mm**2\n",
      "w = 150 # Width of the strip in mm\n",
      "ti = 6 # Thickness in mm\n",
      "pA = 0.20 # Reduction in area\n",
      "d = 400 # Diameter of steel rolls in mm\n",
      "Ys = 0.35# Shear Yield stress of the material before rolling in KN/mm**2\n",
      "Ys_ = 0.4# Shear Yield stress of the material after rolling in KN/mm**2\n",
      "mu = 0.1 # Cofficient of friction\n",
      "v = 30 # Speed of rolling in m/min\n",
      "tf =0.8*ti\n",
      "Ys_a = (Ys + Ys_)/2\n",
      "r=d/2\n",
      "thetaI = sqrt((ti-tf)/r)\n",
      "lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))\n",
      "lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)\n",
      "thetaN  =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r))))\n",
      "Dtheta_a = thetaN/4\n",
      "Dtheta_b = (thetaI- thetaN)/8\n",
      "print \"The values of P_after are:\\n\"\n",
      "for i in range(0,5,1):\n",
      "    theta = i*Dtheta_a\n",
      "    y = (1/2)* (tf+r*theta**2)\n",
      "    lamda = 2*sqrt(r/tf)*atan(theta*sqrt(r/tf))\n",
      "    p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lamda))\n",
      "    print \"%0.3f \\t\\t\"%p_a,\n",
      "\n",
      "I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)# By Simpson's rule\n",
      "print \"\\n\\nThe values of P_before are:\\n\"\n",
      "for i in range(0,8,1):\n",
      "    theta1 = i*Dtheta_b + thetaN\n",
      "    y = (1/2)* (tf+r*theta1**2)\n",
      "    lamda = 2*sqrt(r/tf)*atan(theta1*sqrt(r/tf))\n",
      "    p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lamda)))\n",
      "    print \" %0.3f \\t\\t\"%p_b,\n",
      "\n",
      "I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772))#By Simpson's rule\n",
      "F = r*(I1 + I2)\n",
      "F_ = F*w\n",
      "T = (r**2)*mu*(I2-I1)\n",
      "T_ =T*w\n",
      "W = v*(1000/60)/r\n",
      "P = 2*T_*W\n",
      "print \"\\n\\nThe roll separating force = %d kN, The power required in the rolling process = %0.2f kW\"%(ceil(F_),P/1000)\n",
      "# Answer in the book for the power required in the rolling process is given as 75.6 kW\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The values of P_after are:\n",
        "\n",
        "0.750 \t\t0.787 \t\t0.829 \t\t0.874 \t\t0.924 \t\t\n",
        "\n",
        "The values of P_before are:\n",
        "\n",
        " 0.924 \t\t 0.887 \t\t 0.855 \t\t 0.828 \t\t 0.805 \t\t 0.786 \t\t 0.771 \t\t 0.759 \t\t\n",
        "\n",
        "The roll separating force = 1908 kN, The power required in the rolling process = 77.38 kW\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 3 on page no. 115"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "# Given that\n",
      "A = 150*6 # Cross-section of strips in mm**2\n",
      "w = 150 # Width of the strip in mm\n",
      "ti = 6 # Thickness in mm\n",
      "pA = 0.20 # Reduction in area\n",
      "d = 400 # Diameter of steel rolls in mm\n",
      "Ys = 0.35# Shear Yield stress of the material before rolling in KN/mm**2\n",
      "Ys_ = 0.4# Shear Yield stress of the material after rolling in KN/mm**2\n",
      "mu = 0.1 # Cofficient of friction\n",
      "mu_ = 0.005 # Cofficient of friction in bearing \n",
      "D = 150 # The diameter of bearing in mm\n",
      "v = 30 # Speed of rolling in m/min\n",
      "tf =0.8*ti\n",
      "Ys_a = (Ys + Ys_)/2\n",
      "r=d/2\n",
      "thetaI = sqrt((ti-tf)/r)\n",
      "lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))\n",
      "lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)\n",
      "thetaN  =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r))))\n",
      "Dtheta_a = thetaN/4\n",
      "Dtheta_b = (thetaI- thetaN)/8\n",
      "for i in range(0,5,1):\n",
      "    theta = i*Dtheta_a\n",
      "    y = (1/2)* (tf+r*theta**2)\n",
      "    lamda = 2*sqrt(r/tf)*atan(theta*(pi/180) *sqrt(r/tf))*180/pi\n",
      "    p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lamda))\n",
      "\n",
      "I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)\n",
      "for i in range(0,8,1):\n",
      "    theta1 = i*Dtheta_b + thetaN\n",
      "    y = (1/2)* (tf+r*theta1**2)\n",
      "    lamda = 2*sqrt(r/tf)*atan(theta1*(pi/180) *sqrt(r/tf))*180/pi\n",
      "    p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lamda)))\n",
      "I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772))\n",
      "F = r*(I1 + I2)\n",
      "F_ = F*w\n",
      "T = (r**2)*mu*(I2-I1)\n",
      "T_ =T*w\n",
      "W = v*(1000/60)/r\n",
      "P_ = 2*T_*W\n",
      "Pl = mu_*F_*D*W\n",
      "P = Pl+P_\n",
      "print \"The mill power = %0.2f kW\"%(P/1000)\n",
      "# Answer in the book is given as 79.18 kW  whcih is wrong.\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mill power = 80.95 kW\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4 on page no. 118"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "mu = 0.25 # Cofficient of friction between the job and the dies \n",
      "Y = 7 # Avg yield stress of the lead in N/mm**2\n",
      "h = 6 # Height of die in mm\n",
      "L = 150 # Length of the strip in mm\n",
      "V1 = 24*24*150 # Volume of the strip in mm**3\n",
      "V2 = 6*96*150 # Volume of the die in mm**3\n",
      "w= 96 # Weidth of the die in mm\n",
      "from sympy.mpmath import quad\n",
      "K = Y/sqrt(3)\n",
      "x_ = (h/(2*mu))*(log(1/(2*mu)))\n",
      "l = w/2\n",
      "p1= lambda x:(2*K)*exp((2*mu/h)*x)\n",
      "I1 = quad(p1,[0,x_])\n",
      "p2 = lambda y:(2*K)*((1/2*mu)*(log(1/(2*mu))) + (y/h))\n",
      "I2 = quad(p2,[x_,l])\n",
      "F = 2*(I1+I2)\n",
      "F_ = F*L\n",
      "print \"The maximum forging force = %0.2e N\" %F_ \n",
      "# Answer in the book is given as 0.54*10**6 N which is wrong.\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum forging force = 4.89e+05 N\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5 on page no. 119"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "mu = 0.08# Cofficient of friction between the job and the dies \n",
      "Y = 7 # Avg yield stress of the lead in N/mm**2\n",
      "h = 6 # Height of die in mm\n",
      "L = 150 # Length of the strip in mm\n",
      "V1 = 24*24*150 # Volume of the strip in mm**3\n",
      "V2 = 6*96*150 # Volume of the die in mm**3\n",
      "w= 96 # Weidth of the die in mm\n",
      "K = Y/sqrt(3)\n",
      "x_ = (h/(2*mu))*(log(1/(2*mu)))\n",
      "l = w/2\n",
      "p1 =lambda x:(2*K)*exp((2*mu/h)*x)\n",
      "I = quad(p1,[0,l])\n",
      "F = 2*(I)\n",
      "F_ = F*L\n",
      "print \"The maximum forging force = %0.2e N\"%F_ \n",
      "\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum forging force = 2.36e+05 N\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 6 on page no. 122"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "r = 150 # Radius of the circular disc of lead in mm\n",
      "Ti = 50 # Initial thickness of the disc in mm\n",
      "Tf = 25 # Reduced thickness of the disc in mm\n",
      "mu = 0.25# Cofficient of friction between the job and the dies \n",
      "K = 4 # Avg shear yield stress of the lead in N/mm**2\n",
      "\n",
      "R = r*sqrt(2)\n",
      "rs = (R - ((Tf/(2*mu)) * log(1/(mu*sqrt(3)))))\n",
      "p1 = lambda x:(((sqrt(3))*K)*exp((2*mu/Tf)*(R-x)))*x\n",
      "I = quad(p1,[rs,R])\n",
      "p2 = lambda y:((2*K/Tf)*(R-y) + ((K/mu)*(1+log(mu*sqrt(3)))))*y\n",
      "I_ = quad(p2,[0,rs])\n",
      "F = 2*pi*(I+I_)\n",
      "print \"The maximum forging force = %0.3e N\"%F \n",
      "\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum forging force = 3.649e+06 N\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 7 on page no. 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "Di = 12.7 # Intial diameter in mm\n",
      "Df = 10.2 # Final diameter in mm\n",
      "v = 90 # Drawn speed in m/min\n",
      "alpha=6 # Half angle of dia in degree\n",
      "mu = 0.1# Cofficient of friction between the job and the dies \n",
      "Y = 207 # Tensile  yield stress of the steel specimen in N/mm**2\n",
      "Y_ = 414 # Tensile yield stress of the similar specimen at strain 0.5 in N/mm**2\n",
      "e = 0.5 # Strain\n",
      "\n",
      "e_ =2* log(Di/Df)\n",
      "Y_e = Y + (Y_ - Y)*e_/e\n",
      "Y__ = (Y+Y_e)/2\n",
      "phi = 1 + (mu/tan(alpha*pi/180))\n",
      "Y_f = Y__ * ((phi/(phi-1)) *(1-((Df/Di)**(2*(phi-1)))))\n",
      "p = Y_f * (pi/4)*(Df**2)*v/60\n",
      "Dmax = 1- (1/(phi**(1/(phi-1))))\n",
      "print \"Drawing power = %0.3f kW, \\nThe maximum passible reduction with same die = %0.2f mm\"%(p/1000,Dmax)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Drawing power = 25.530 kW, \n",
        "The maximum passible reduction with same die = 0.50 mm\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8 on page no. 130"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "Ri = 30 # Inside radius of cup in mm\n",
      "t = 3 # Thickness in mm\n",
      "Rb = 40 # Radius of the blank in mm\n",
      "K = 210 # Shear yield stress of the material in N/mm**2\n",
      "Y = 600 # Maximum allowable stress in N/mm**2\n",
      "Beta = 0.05\n",
      "mu = 0.1# Cofficient of friction between the job and the dies \n",
      "\n",
      "Fh = Beta*pi*(Rb**2)*K\n",
      "Y_r = (mu*Fh/(pi*Rb*t))+(2*K*log(Rb/Ri))\n",
      "Y_z = Y_r*exp(mu*pi/2)\n",
      "F = 2*pi*Ri*t*Y_z\n",
      "Y_r_ = Y/exp(mu*pi/2)\n",
      "Rp = (Rb/exp((Y_r_/(2*K)) - ((mu*Fh)/(2*pi*K*Rb*t))))-t\n",
      "print \"Drawing force = %d N,\\nMinimum passible radius of the cup which can drawn from the given blank without causing a fracture = %0.2f mm\"%(F,Rp)\n",
      "# Answer in the book given as 62680 N"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Drawing force = 89210 N,\n",
        "Minimum passible radius of the cup which can drawn from the given blank without causing a fracture = 9.20 mm\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 9 on page no. 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import cos, sin\n",
      "# Given that\n",
      "L_ = 20 # Length of the mild steel product in mm\n",
      "h = 50 # Height of the mild steel product in mm\n",
      "L = 50 # Horizontal length of the mild steel product in mm\n",
      "t = 5 # Thickness in mm\n",
      "l=25 # Length of the bend in mm\n",
      "E = 207 # Modulus of elasticity in kN/mm**2\n",
      "n = 517 # Strain hardening rate in N/mm**2\n",
      "Y = 345 # Yield stress in N/mm**2\n",
      "mu = 0.1# Cofficient of friction\n",
      "e = 0.2 # Fracture strain\n",
      "theta = 20 # Bend angle in degree\n",
      "\n",
      "Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82\n",
      "Y_1 = Y+n*e\n",
      "Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1))))\n",
      "M = ((0.55*t)**2)*((Y/6)+(Y_1/3)) + ((0.45*t)**2)*((Y/6)+(Y_2/3))\n",
      "Fmax = (M/l)*(1+(cos((atan(mu))+mu*sin(atan(mu)))))\n",
      "Fmax_ = L_*Fmax\n",
      "alpha = 90 /((12*(Rp+0.45*t)*M/(E*(10**3)*(t**3)))+1)\n",
      "Ls = 2*(((Rp+0.45*t)*pi/4) + 50-(Rp+t))\n",
      "print \"Maximum bending force = %d N,\\nThe required puch angle = %0.2f\u00b0,\\nThe stock length = %0.2f mm\"%(Fmax_,alpha,Ls)\n",
      "# Answer in the book for maximum bending force is given as 4144 N"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum bending force = 4121 N,\n",
        "The required puch angle = 88.68\u00b0,\n",
        "The stock length = 89.18 mm\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 10 on page no. 136"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "L_ = 20 # Length of the mild steel product in mm\n",
      "h = 50 # Height of the mild steel product in mm\n",
      "L = 50 # Horizontal length of the mild steel product in mm\n",
      "t = 5 # Thickness in mm\n",
      "l=25 # Length of the bend in mm\n",
      "E = 207 # Modulus of elasticity in kN/mm**2\n",
      "n = 517 # Strain hardening rate in N/mm**2\n",
      "Y = 345 # Yield stress in N/mm**2\n",
      "mu = 0.1# Cofficient of friction\n",
      "e = 0.2 # Fracture strain\n",
      "theta = 20 # Bend angle in degree\n",
      "F = 3000 # Maximum available force in N\n",
      "\n",
      "Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82\n",
      "Y_1 = Y+n*e\n",
      "Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1))))\n",
      "M = ((0.55*t)**2)*((Y/6)+(Y_1/3)) + ((0.45*t)**2)*((Y/6)+(Y_2/3))\n",
      "Fmax = (M/l)*(1+(cos((atan(mu))+mu*sin(atan(mu)))))\n",
      "Fmax_ = L_*Fmax\n",
      "lmin  = Fmax_*l/F\n",
      "Ls = 2*(((Rp+0.45*t)*pi/4) + 50-(Rp+t))\n",
      "lmax = Ls / 2\n",
      "Fmax_min  = Fmax_*l/lmax\n",
      "print \"Minimum value of die length = %0.2f mm,\\nMinimum required capacity of the machine = %d N\"%(lmin,ceil(Fmax_min))\n",
      "# Answer in the book is give as 2323 N for Minimum required capacity of the machine\n",
      "\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Minimum value of die length = 34.35 mm,\n",
        "Minimum required capacity of the machine = 2312 N\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11 on page no. 141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "d = 50 # Diameter of the billet in mm\n",
      "L =75 # Length of the billet in mm\n",
      "D = 10 # Final diameter of billet in mm\n",
      "Y = 170 # Avg tensile yield stress for aluminium in N/mm**2\n",
      "mu = 0.15 # Cofficient of the friction\n",
      "\n",
      "l = L - ((d-D)/2)*tan(45*pi/180)\n",
      "phi = 1+mu\n",
      "Y_x = Y*(phi/(phi-1))*(((d/D)**(2*(phi-1)))-1)\n",
      "F = (pi/4)*(d**2)*Y_x + (pi/sqrt(3))*(d*l*Y)\n",
      "Pf = pi*Y*(d**2)*((phi/(2*mu))*(((d/D)**(2*mu))-1)-log(d/D)) + (pi/sqrt(3))*Y*d*l\n",
      "Loss_f = (Pf/F)*100\n",
      "Y_X = Y*4.31*log(d/D)\n",
      "F_ = (pi/4)*(d**2)*Y_X + (pi/sqrt(3))*(d*l*Y)\n",
      "Pf_1 = (pi/sqrt(3))*Y*(d**2)*(log(d/D))\n",
      "Pf_2 = (pi/sqrt(3))*(d*l*Y)\n",
      "Pf_ = Pf_1+Pf_2\n",
      "Loss_f_ = (Pf_/F_)*100\n",
      "print \"Maximum force required for extruding the cylindrical aluminium billet = %d N\"%F\n",
      "print \"Percent of the total power input will be lost in friction at the start of the operation = %0.2f %%.\"%(Loss_f_)\n",
      "# Answer in the book given as 2436444 N for max force required for extruding the cylindrical aluminium billet\n",
      "\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum force required for extruding the cylindrical aluminium billet = 2436266 N\n",
        "Percent of the total power input will be lost in friction at the start of the operation = 66.02 %.\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 12 on page no. 149"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Given that\n",
      "d = 50 # Diameter of the steel sheet in mm\n",
      "t = 3 # Thickness of the steel sheet in mm\n",
      "e = 1.75 # True fracture strain\n",
      "Y = 2.1e3 # True fracture stress for the material in N/mm**2\n",
      "\n",
      "C_0 = (t/(1.36*exp(e)))*((2*exp(e))-1)/((2.3*exp(e))-1)\n",
      "p = t*(1/2.45)*((1.9*exp(e))-1)/((2.56*exp(e))-1)\n",
      "F = Y*C_0*pi*d\n",
      "W = (1/2)*(F)*(p)*(10**-3)\n",
      "print \"The proper clearance between die and punch = %0.2f mm\"%C_0\n",
      "print \"Maximum punching force = %0.2f N, \\nEnergy required to punch the hole = %0.2f J\"%(F/1000,W)\n",
      "# Answer in the book given as 45.74 J for energy required to punch the hole\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The proper clearance between die and punch = 0.33 mm\n",
        "Maximum punching force = 108.61 N, \n",
        "Energy required to punch the hole = 48.10 J\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}