1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ch:22 Friction clutches"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-1 - Page 588"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The force is 1759.3 N\n",
"\n",
"The Torque is 44.33 Nm\n",
"\n",
"The Power is 1393 W\n",
"\n",
"The angular acceleration is 6.16 rad/sec**2\n",
"\n",
"The time taken is 5.1 sec\n",
"\n",
"The energy is 3553.06 Nm\n"
]
}
],
"source": [
"from __future__ import division\n",
"from math import sqrt, pi\n",
"u=0.28 #(coefficient of friction)\n",
"N=300 #(Engine rpm)\n",
"I=7.2 \n",
"Pmax= 0.1# \n",
"R1=70#\n",
"R2=110#\n",
"n=2# #(Both sides of the plate are effective)\n",
"#Using Uniform Wear Theory\n",
"#Axial Force W\n",
"W=n*pi*Pmax*R1*(R2-R1)#\n",
"#Frictional Torque Tf\n",
"Tf=u*W*(R1+R2)/2*(10**-3)#\n",
"w=2*pi*N/60#\n",
"#Power P\n",
"P=Tf*w#\n",
"#Torque = Mass moment of inertia*angular acceleration\n",
"a=Tf/I#\n",
"t=w/a# \n",
"#Angle turned by driving shaft theta1 through which slipping takes place\n",
"theta1=w*t#\n",
"#angle turned by driven shaft theta2\n",
"theta2=a*(t**2)/2#\n",
"E=Tf*(theta1-theta2)#\n",
"print \"\\nThe force is %0.1f N\"%(W)#\n",
"print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
"print \"\\nThe Power is %0.0f W\"%(P)#\n",
"print \"\\nThe angular acceleration is %0.2f rad/sec**2\"%(a)#\n",
"print \"\\nThe time taken is %0.1f sec\"%(t)#\n",
"print \"\\nThe energy is %0.2f Nm\"%(E)#\n",
"\n",
"#The difference in the answer of energy 'E' is due to rounding-off of values."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-2 - Page 589"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The Torque is 254.65 Nm\n",
"\n",
"The width is 50 mm\n",
"\n",
"The force is 6283 N\n",
"\n",
"The Axial force per spring is 800 N\n",
"\n",
"The Spring stiffness is 80 N/mm\n",
"\n",
"The Spring wire diameter is 11 mm\n",
"\n",
"The Mean coil diameter is 66 mm\n",
"\n",
"The Free length is 110 mm\n"
]
}
],
"source": [
"from math import sqrt, pi\n",
"#Power P\n",
"P=80*10**3# #(Watt)\n",
"N=3000# #(Engine rpm)\n",
"w=2*pi*3*10**3/60\n",
"Tf=8*10**4/w#\n",
"Rm=100##(mm)\n",
"p=0.2 #N/mm**2\n",
"u=0.22 \n",
"# let width b= (R1-R2). \n",
"#Axial force W=2*pi*Rm*b*p\n",
"#Torque T=u*W*Rm\n",
"b=Tf/(u*2*pi*(Rm**2)*p)#\n",
"b=50# \n",
"R2=Rm+b#\n",
"R1=Rm-b#\n",
"Di=2*R1# #inner diameter\n",
"W=2*pi*Rm*b*p#\n",
"n=8# #n is number of springs\n",
"#Axial force per spring W1\n",
"W1=W/n#\n",
"W1=W1+15#\n",
"#axial deflection del\n",
"Del=10# \n",
"#stiffness k\n",
"k=W1/Del#\n",
"# Spring index C\n",
"C=6#\n",
"#number of coils n1\n",
"n1=6# #Assumption\n",
"d=k*n*n1*(C**3)/(80*10**3)#\n",
"d=11# # Rounding off to nearest standard value\n",
"D=C*d#\n",
"clearance=2#\n",
"FL=((n1+2)*d)+(2*Del)+clearance# # two end coils, therefore (2*del)\n",
"\n",
"print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
"print \"\\nThe width is %0.0f mm\"%(b)#\n",
"print \"\\nThe force is %0.0f N\"%(W)#\n",
"print \"\\nThe Axial force per spring is %0.0f N\"%(W1)#\n",
"print \"\\nThe Spring stiffness is %0.0f N/mm\"%(k)#\n",
"print \"\\nThe Spring wire diameter is %0.0f mm\"%(d)#\n",
"print \"\\nThe Mean coil diameter is %0.0f mm\"%(D)#\n",
"print \"\\nThe Free length is %0.0f mm\"%(FL)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-3 - Page 589"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The Speed factor is 1.3 \n",
"\n",
"The clutch poweris 123 KW\n"
]
}
],
"source": [
"#Power P\n",
"P=40*10**3 #Watt\n",
"n1=100# #rpm\n",
"n2=400# #rpm\n",
"#Speed factor Ks\n",
"Ks=0.9+0.001*n2#\n",
"#Clutch power Pc\n",
"Pc=P*n2/(n1*Ks)*10**-3#\n",
"print \"\\nThe Speed factor is %0.1f \"%(Ks)#\n",
"print \"\\nThe clutch poweris %0.0f KW\"%(Pc)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-4 - Page 590"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UXGWV7/HvJiG6eIntC1c0oI2QQUCwEYx4gTWNyXBb\nmGWSyzgkF3EaFHMhcQwvA4IOIGsYDQqDaAjx5SYXGQ3Im+giBhAqojcEgqkEISGJ0kMSlIUgaBwd\nE3vfP041pyiqu09V13n/fdbqlXqqzql+sld3PV17n2eXuTsiIiKj2S3tCYiISD5owRARkUi0YIiI\nSCRaMEREJBItGCIiEokWDBERiSTWBcPM+sxso5ltNrOLRjjuvWa2y8xOafVcERFJRmwLhpmNA74K\n9AGHArPN7JBhjlsA/LDVc0VEJDlxvsOYAmxx9wF33wksA6Y3Oe6TwK3Ac22cKyIiCYlzwZgEbK0b\nb6vd9zIzm0SwECyq3TW07XzUc0VEJFlxLhhReo5cC3zag/4kVvuKeq6IiCRofIzPvR3Yv268P8E7\nhXpHAcvMDOBNwAfNbGfEczEzLSwiIm1wdxv9qFeK8x3GGmCymXWb2QTgVOCu+gPc/R3ufoC7H0BQ\nxzjb3e+Kcm7dc+jLncsuuyz1OWTlS7FQLBSLkb/aFds7DHffZWbzgBXAOOCb7r7BzObUHl/c6rlx\nzbUIBgYG0p5CZigWIcUipFiMXZwpKdx9ObC84b6mC4W7nzHauSIikh7t9C6I/v7+tKeQGYpFSLEI\nKRZjZ2PJZ6XNzDzP8xcRSYOZ4RkrekuCKpVK2lPIDMUipFiEFIuxi7WGISLx+cUv4Hvfgz32gNe/\nHrq6gn+Hbnd1pT1DKRqlpERyZs0auOoqeOABOOUUcIff/hZefDH4d+jrpZfg+ONh2TJ485vTnrVk\nSbspKb3DEMkBd1ixIlgotmyB886Db34T9t57+HP+8he44gp473vh1lthypTk5ivFpBpGQSg/GypS\nLHbuhJtugne/Gy68EM48M0hFzZ8/8mIBMG4cnHBCheuug7/9W1iyJJk5Z1WRfi7SoncYIhm0Ywd8\n4xtwzTUweTJ88Ytw4olgLScRYMYMOPjg4N9HH4V/+zfYfffOz1mKTzUMkQx59lm47jpYvBimToV/\n+ic4+ujOPPdLL8FHPhL8+93vqq5RZrqsViTHNm2COXPgkEOC4vXq1XDzzZ1bLABe97rgqqoTTgjq\nGg8/3LnnlnLQglEQys+G8hSL1auDK52OOw7e8hZ48klYuBAOPLAzz98Yi912g899jlLWNfL0c5FV\nqmGIJGxwEO6+O6hLPP00nH8+3Hgj7LlncnNQXUPaoRqGSEL+/Gf49reDheI1rwmuevq7v4PxKf7Z\nprpGOamGIZJRv/sdfOlL8I53BAvGl78c/FU/a1a6iwWoriGt0YJREMrPhrISi2eegU9/Gg44AH72\nM/j+9+Gee2DatPYuj21HlFiUpa6RlZ+LPNOCIdJhGzbAxz4G73oX/Od/Bq08vv1tOPLItGc2shkz\nYOVK+MIXYN68YNOgSD3VMEQ65Kc/DVp3PPRQ8IJ7zjnwxjemPavWqa5RfKphiKRgcDCoARx7LHz0\no9DXB089Bf/8z/lcLEB1DRmeFoyCUH42lEQs/uu/guZ/hx4K//IvQW+nTZvg7LODduNZ0W4siljX\n0O/I2MW6YJhZn5ltNLPNZnZRk8enm9k6M1trZo+a2QfqHhsws/W1x/Q3jmTCiy/CggVBIfu22+CG\nG4K/wD/84aDZX9GoriH1YqthmNk44ElgGrAdeASY7e4b6o7Z093/ULt9OHCHux9UGz8FHOXuL4zw\nPVTDkERs2wbXXhv8pX3yyXDBBXDEEWnPKjmqaxRLFmsYU4At7j7g7juBZcD0+gOGFouavYDfNDxH\nQhcfijT3859Df3+wOAwOwtq1wa7sMi0WoLqGBOJcMCYBW+vG22r3vYKZzTCzDcBy4B/rHnLgPjNb\nY2ZnxTjPQlB+NjTWWLjDj38c5O7/5m/gr/4q+AyKa66Bt72tM3NMSid/LvJe19DvyNjFuc80Uq7I\n3e8E7jSz44FvAQfXHjrW3X9lZvsA95rZRnd/MKa5ivCXv8CddwatO154IWgtfuut8NrXpj2zbFEf\nqvKKc8HYDuxfN96f4F1GU+7+oJmNN7M3uvvz7v6r2v3PmdkdBCmuVy0Y/f39dHd3A9DV1UVPTw+9\nvb1A+BdFGca9vb2Zmk+exu97Xy833ghXXFHhda+DK6/s5UMfggcfrPDQQ+nPb6zjIZ18/kMOgauv\nrnDllTB1ai/f/S5s2JCN/+9w46H7sjKfJMeVSoWlS5cCvPx62Y44i97jCYreU4FngId5ddH7QOCX\n7u5m9h7gu+5+oJntAYxz99+b2Z7APcDn3P2ehu+hore07YUXYNEi+MpXgrz8hRcGbcaTattRBIOD\nQZpqyRJ9bnieZK7o7e67gHnACuAJ4GZ332Bmc8xsTu2wU4DHzGwt8GVgVu3+fYEHzawKrAZ+0LhY\nyCs1/jVZZqPF4umn4dxz4aCDYMsW+NGPgj5Pxx9fvMUi7p+L3XJU19DvyNjF2ivT3ZcTFLPr71tc\nd/sq4Kom5/0S6IlzblI+69YF9Ynly+HMM2H9ethvv7RnVQyqa5SDeklJobnDAw8EPZ7Wrw92ZM+Z\nE1wmKp2n/Rr5kLmUlEiadu2CW24JahNz58Lf/33Q4+nCC7VYxEn7NYpNC0ZBKD8b+NOfYP78Cgcf\nHOTVL70UHn88SEG95jVpzy55afxcZLWuod+RsdNnekthDA7C7NlBUfvGG4MOspKe+rrGz34WbHxU\nXSPfVMOQwrjkEvjJT+C++2DChLRnI0NU18ge1TCk1L71LVi2LOggq8UiWxrrGo88kvaMpF1aMAqi\nzPnZVavg/PPhrrtgn33KHYtGWYlFfV3j5JOhtuk4UVmJRZ6phiG59h//AaecEhRW3/WutGcjo2nc\nr6G6Rr6ohiG5tWNH+NGo55+f9mykFaprpEs1DCmVwUE4/XQ4+mg477y0ZyOtUl0jn7RgFETZ8rOf\n/Sw8/3zQPLCx/1PZYjGSLMci6bpGlmORF6phSO4MXRG1erWuiCoC1TXyQzUMyZVVq2D6dLj/fhW5\ni0Z1jeSohiGFpyuiik11jezTglEQRc/P7tgBH/pQcDXUySePfGzRY9GKvMUizrpG3mKRRaphSObp\niqjyUV0jm1TDkMxTj6jyUl0jHqphSCGpR1S5qa6RLVowCqKI+dnGHlFRFTEW7SpCLDpV1yhCLNIW\n64JhZn1mttHMNpvZRU0en25m68xsrZk9amYfiHquFJuuiJJGM2bAypXw+c/DJz8JO3emPaPyia2G\nYWbjgCeBacB24BFgtrtvqDtmT3f/Q+324cAd7n5QlHNr56iGUUDqESUjUV1j7LJYw5gCbHH3AXff\nCSwDptcfMLRY1OwF/CbquVJMuiJKRqO6RnriXDAmAVvrxttq972Cmc0wsw3AcuAfWzlXQkXJz47U\nIyqqosSiE4oai3bqGkWNRZLi3IcRKVfk7ncCd5rZ8cC3zOydrXyT/v5+uru7Aejq6qKnp4fe3l4g\n/AHROB/jSy6psGQJrF/fy4QJ7T/fkLT/P1kYV6vVTM2n0+OuLli5spcZM+B736swdy5Mm9b8+Gq1\nmvp80xpXKhWW1lbVodfLdsRZwzgGuNzd+2rji4FBd18wwjm/IEhHTY5yrmoYxaEeUTIWqmu0Jos1\njDXAZDPrNrMJwKnAXfUHmNmBZkHiwczeA+Duz0c5V4pDV0TJWKmukYzYFgx33wXMA1YATwA3u/sG\nM5tjZnNqh50CPGZma4EvA7NGOjeuuRZBYzomL1rpERVVXmMRhzLFYrdR6hplikVcYu0l5e7LCYrZ\n9fctrrt9FXBV1HOlWHRFlMRBfajio15Skhr1iJI4qa4xvCzWMESGpR5RErfGusa6dWnPKP+0YBRE\nnvKz7faIiipPsYhb2WMxVNf4zGfgH/6hkvZ0ck8LhiRKV0RJGs48E7ZuhccfT3sm+aYahiRGPaIk\nTZdfDs89BwsXpj2T9LVbw9CCIYkYHAzeWbzhDfCNb7Tf9kOkXdu3w+GHw8AATJyY9mzSpaJ3yWU9\nV92JHlFRZT0WSVIsQps3V5g6FW66Ke2Z5JcWDImdroiSrJg7N0hJKTHRHqWkJFbqESVZ4h78HC5c\nCLUefaWklJRkjq6Ikqwxg3POgeuvT3sm+aQFoyCylquOo0dUVFmLRZoUi9BQLE4/Pegu8Mwz6c4n\nj7RgSMepR5Rk2cSJMGsWfO1rac8kf1TDkI5TjyjJuscfhxNPDC6xLWNjQtUwJBN0RZTkwWGHweTJ\ncOedac8kX7RgFEQWctVx94iKKguxyArFItQYi3PO0a7vVmnBkI54+mldESX5MnMmbNqk/lKtUA1D\nxmzHDjjuuKDQrR5Rkidl7S+lXlKSCvWIkjwra38pFb1LLq1cdZI9oqJS3j6kWISaxWLSJNRfqgWx\nLhhm1mdmG81ss5ld1OTx08xsnZmtN7OfmtkRdY8N1O5fa2YPxzlPac9NN+mKKMk/9ZeKLraUlJmN\nA54EpgHbgUeA2e6+oe6Y9wNPuPtLZtYHXO7ux9Qeewo4yt1fGOF7KCWVEvWIkqIoY3+pLKakpgBb\n3H3A3XcCy4Dp9Qe4+yp3f6k2XA3s1/AcGUlySD1dESVFov5S0cW5YEwCttaNt9XuG87HgLvrxg7c\nZ2ZrzOysGOZXKEnlqtPsERWV8vYhxSI0UizUXyqa8TE+d+RckZmdAJwJHFt397Hu/isz2we418w2\nuvuDjef29/fT3d0NQFdXFz09PfTW3lcO/YBo3Jnx/fdXuPRSOOqoXs47L/35DDcekpX5pDmuVquZ\nmk+a42q1OuzjEyfC8cdXuOQSWLo0G/Pt5LhSqbB06VKAl18v2xFnDeMYgppEX218MTDo7gsajjsC\nuB3oc/ctwzzXZcAOd7+64X7VMBKkHlFSZGXqL5XFGsYaYLKZdZvZBOBU4K76A8zsbQSLxUfqFwsz\n28PM9q7d3hM4EXgsxrnKKHRFlBSd+kuNLrYFw913AfOAFcATwM3uvsHM5pjZnNphlwKvBxY1XD67\nL/CgmVUJiuE/cPd74pprETSmYzpp1aqgTXnaPaKiijMWeaNYhKLEQv2lRhZnDQN3Xw4sb7hvcd3t\njwMfb3LeL4GeOOcm0eiKKCmTmTNh/vwgPXXYYWnPJnvUGkSGpR5RUkZl6C+lXlLSUeoRJWVVhv5S\nWSx6S4I6navOYo+oqJS3DykWoaixUH+p4WnBkFfRFVFSduov1ZxSUvIKQz2iHnhART8pr6L3l1JK\nSsas/oooLRZSZuov1ZwWjIIYa656qEfUBRdkt0dUVMrbhxSLUKuxUH+pV9OCIQwOBr8cRx0F556b\n9mxEsmHiRJg1C772tbRnkh2qYYh6RIkMo6j9pVTDkLboiiiR4am/1CtpwSiIdnLVQz2ivv/9fPSI\nikp5+5BiEWo3FuovFdKCUVK6IkokmpkzYdOmID1VdqphlNBQj6iPfjR4hyEiIytafyn1kpJI1CNK\npHVF6y+lonfJRc3P5rlHVFTK24cUi9BYYqH+UgEtGCWiK6JE2qf+UkpJlYZ6RImMTZH6SyklJcPS\nFVEiY6f+UlowCmO4/GyRekRFpbx9SLEIdSIWZe8vFeuCYWZ9ZrbRzDab2UVNHj/NzNaZ2Xoz+6mZ\nHRH1XBmdekSJdFbZ+0sNW8Mws2+5++lmNt/dr235ic3GAU8C04DtwCPAbHffUHfM+4En3P0lM+sD\nLnf3Y6KcWztfNYwRqEeUSOcVob9UHDWMo8zsrcCZZvaGxq8Izz0F2OLuA+6+E1gGTK8/wN1XuftL\nteFqYL+o58rIdEWUSDzK3F9qpAXjBuBHwMHAow1fayI89yRga914W+2+4XwMuLvNc0uvPj9b1B5R\nUSlvH1IsQp2MRVn7S40f4bEz3P0QM7vB3f93G88dOVdkZicAZwLHtnpuf38/3d3dAHR1ddHT00Nv\n7Zq3oR+QMo2ffRbOPbeXJUvguecqVCrZml8S4yFZmU+a42q1mqn5pDmuVqsde76ZM+HssyssWQJn\nnJGN/99I40qlwtKlSwFefr1sx0g1jLXufmTbT2x2DEFNoq82vhgYdPcFDccdAdwO9Ln7lhbPVQ2j\njnpEiSQnz/2lOt5Lysy2AdcAzZ7U3f2aUSY0nqBwPRV4BniYVxe93wbcD3zE3R9q5dzacVowatQj\nSiRZee4vFUfRexywN7BXk6+9R3tid98FzANWAE8AN7v7BjObY2ZzaoddCrweWGRma83s4ZHObfU/\nVyann14pfI+oqBpTU2WmWIQ6HYsy9pcaqYbxa3f/3Fie3N2XA8sb7ltcd/vjwMejnivN3X473H8/\nrF+vK6JEkjR3bvB19tnl+EMtthpGEpSSgpdegkMPhZtvDuoXIpKcvPaXiqOG8UZ3f37MM4uRFozg\nr5udO8u781QkbQsXwsqVcMstac8kuo7XMLK+WAg89FCQjvrCF5SrrqdYhBSLUFyxKFN/KTUfzKmd\nO2HOHLj66uDKKBFJR5n6S+nzMHLqi1+Ee++FFSvKUWwTybK89ZfS52GUyMAALFigS2hFsqIs/aW0\nYOSMe1DoPu88OPDA8H7lqkOKRUixCMUdizL0l9KCkTO33hq8w7jggrRnIiL1Zs6ETZuC9FRRqYaR\nI9pzIZJteekv1fF9GHlQtgVDey5Esi0v/aVU9C64+j0XzShXHVIsQopFKIlYFL2/lBaMHNCeC5H8\nmDs3SEkVMfmhlFQOaM+FSH7kob+UahgFNTAARx8Nq1e/8jJaEcmurPeXUg2jgIbbc9GMctUhxSKk\nWISSjEVR+0tpwcgw7bkQyaei9pdSSiqjtOdCJN+y3F9KKamCueQSOPlkLRYieVXE/lJaMDJotD0X\nzShXHVIsQopFKI1YFK2/VKwLhpn1mdlGM9tsZhc1efydZrbKzP5kZuc3PDZgZuvNbK2ZPRznPLNE\ney5EiqNo/aViq2GY2TjgSWAasB14BJjt7hvqjtkHeDswA/itu19d99hTwFHu/sII36NwNQztuRAp\nliz2l8piDWMKsMXdB9x9J7AMmF5/gLs/5+5rgJ3DPEepXjL1ORcixXPWWfCd78Dvfpf2TMYuzgVj\nErC1brytdl9UDtxnZmvM7KyOziyDWtlz0Yxy1SHFIqRYhNKKRZH6S42P8bnHmis61t1/VUtb3Wtm\nG939wcaD+vv76e7uBqCrq4uenh56a/vxh35A8jC+9VZ4/PEK8+cDpD+fPI+HZGU+aY6r1Wqm5pPm\nuFqtpvb9586F/v4KhxwCJ5yQ/PevVCosXboU4OXXy3bEWcM4Brjc3ftq44uBQXdf0OTYy4Ad9TWM\nKI8XpYahPRcixZa1/lJZrGGsASabWbeZTQBOBe4a5thXTNzM9jCzvWu39wROBB6Lca6p0p4LkWIz\nCy6xvf76tGcyNrEtGO6+C5gHrACeAG529w1mNsfM5gCY2b5mthU4F/ismT1tZnsB+wIPmlkVWA38\nwN3viWuuaWpnz0UzjemYMlMsQopFKO1YFKG/VJw1DNx9ObC84b7Fdbd/Dezf5NQdQE+cc8sC7bkQ\nKY/6/lKXX572bNqjXlIp0p4LkXLJSn+pLNYwZATacyFSPnnvL6UFIwVj3XPRTNr52SxRLEKKRSgr\nschzfyktGCnQ51yIlFee+0uphpEw7bkQkbT7S+kzvXNi7tzg6qiifRKXiES3fTscfniQaZg4Mfnv\nr6J3DnRqz0UzWcnPZoFiEVIsQlmKRV77S2nBSIj2XIhIvblzg5RUnpIkSkklRHsuRKRemv2lVMPI\nsIEBOPpoWL26c5fRikj+LVwIK1fCLbck+31Vw8ioOPZcNJOl/GzaFIuQYhHKYizy1l9KC0bMtOdC\nRIZT318qD5SSipH2XIjIaNLoL6WUVAbpcy5EZDR56i+lBSMmce65aCaL+dm0KBYhxSKU5Vjkpb+U\nFowYaM+FiLQiL/2lVMOIgfZciEirkuwvpX0YGaE9FyLSjiT7S6nonQFJ7bloJsv52aQpFiHFIpT1\nWOShv1SsC4aZ9ZnZRjPbbGYXNXn8nWa2ysz+ZGbnt3JuFmnPhYiMRdb7S8WWkjKzccCTwDRgO/AI\nMNvdN9Qdsw/wdmAG8Ft3vzrqubXjMpOS0p4LERmrpPpLZTElNQXY4u4D7r4TWAZMrz/A3Z9z9zXA\nzlbPzRrtuRCRsTILLrG9/vq0Z9JcnAvGJGBr3Xhb7b64z01c0nsumsl6fjZJikVIsQjlJRZZ7i81\nPsbnHkuuKPK5/f39dHd3A9DV1UVPTw+9tfdyQz8gcY537YLzz+/l6qth/fr4v5/Go4+HZGU+aY6r\n1Wqm5pPmuFqtZmo+I41nzYJLLqnQ39+Z56tUKixduhTg5dfLdsRZwzgGuNzd+2rji4FBd1/Q5NjL\ngB11NYxI52ahhqE9FyLSaXH3l8piDWMNMNnMus1sAnAqcNcwxzZOvJVzUzMwAAsWwKJFWixEpHOy\n2l8qtgXD3XcB84AVwBPAze6+wczmmNkcADPb18y2AucCnzWzp81sr+HOjWuu7Uhzz0UzjemYMlMs\nQopFKG+xyGJ/qThrGLj7cmB5w32L627/Gtg/6rlZMrTn4o470p6JiBTRzJkwf36QnjrssLRnE1Br\nkDZoz4WIJCGu/lLqJZWguXODjrR5+ZQsEcmnuPpLZbHoXUhZ2HPRTN7ys3FSLEKKRSiPschafykt\nGC3Q51yISNKy1F9KKakWaM+FiCQtjv5SqmHETJ9zISJpWbgQVq6EW27pzPOphhGjrO25aCaP+dm4\nKBYhxSKU51hkpb+UFowI9DkXIpKmiRNh1qz0r8xUSmoU2nMhIlnQyf5SSknFRJ9zISJZkIX+Ulow\nRpDVPRfN5Dk/22mKRUixCBUhFmn3l9KCMQztuRCRrJk5EzZtCtJTaVANYxjacyEiWdSJ/lLah9FB\n2nMhIlnVif5SKnp3SB72XDRThPxspygWIcUiVJRYpNlfSgtGg9tu054LEcm2tPpLKSVVR3suRCQP\nxtpfSimpDvjMZ7TnQkSyzyy4xPb665P9vrEuGGbWZ2YbzWyzmV00zDHX1R5fZ2ZH1t0/YGbrzWyt\nmT0c5zwhKHDfdls+9lw0U5T8bCcoFiHFIlS0WKTRXyq2BcPMxgFfBfqAQ4HZZnZIwzEnAQe5+2Tg\nE8Ciuocd6HX3I919SlzzhGDPxSc+oT0XIpIfafSXiq2GYWbvBy5z977a+NMA7v6FumNuAB5w95tr\n443AX7v7s2b2FHC0uz8/wvfoSA3jS1+Ce+7RngsRyZd2+0tlsYYxCdhaN95Wuy/qMQ7cZ2ZrzOys\nuCY5MBCkoRYt0mIhIvmSdH+pOBeMqH/6D/cyfZy7Hwl8EJhrZsd3ZlqhvO65aKZo+dmxUCxCikWo\nqLFIsr/U+Bifezuwf914f4J3ECMds1/tPtz9mdq/z5nZHcAU4MHGb9Lf3093dzcAXV1d9PT00Fu7\nzmzoB2S48RVXVHj8cbjjjmjHa5yP8ZCszCfNcbVazdR80hxXq9VMzadT45kze5k/H5YsqXDAAc2P\nr1QqLF26FODl18t2xFnDGA88CUwFngEeBma7+4a6Y04C5rn7SWZ2DHCtux9jZnsA49z992a2J3AP\n8Dl3v6fhe7Rdw9CeCxEpilb7S2Wyl5SZfRC4FhgHfNPdP29mcwDcfXHtmKErqf4AnOHuPzOzdwC3\n155mPPDv7v75Js/f9oIxbx78+c/pf4KViMhYtdpfKpMLRtzaXTBWr4YZM4IrDIpyGW2lUnn5rWjZ\nKRYhxSJU9Fh8+MNwwglBTWM0WbxKKpO050JEiiiJ/lKle4ehPRciUkSt9JdSSioCfc6FiBTZwoWw\nciXccsvIxyklNYoi7blopvGS0jJTLEKKRagMsYi7v1RpFgx9zoWIFF3c/aVKkZLSngsRKYso/aWU\nkhqBPudCRMoizv5ShV8w8v45F1GVIT8blWIRUixCZYpFXP2lCr1gaM+FiJTRzJmwaVOQnuqkQtcw\ntOdCRMpqpP5S2ofRQHsuRKTMRuovpaJ3naLvuWimTPnZ0SgWIcUiVLZYTJoEU6fCTTd17jkLuWBo\nz4WISOf7SxUuJaU9FyIigeH6SyklVaM9FyIiAbPgEtvrr+/M8xVqwSjLnotmypafHYliEVIsQmWN\nRSf7SxVmwdCeCxGRV+tkf6nC1DC050JEpLnG/lKlrmEMDARpqEWLtFiIiDTqVH+pWBcMM+szs41m\nttnMLhrmmOtqj68zsyNbORfKueeimbLmZ5tRLEKKRajssehEf6nYFgwzGwd8FegDDgVmm9khDcec\nBBzk7pOBTwCLop47RHsuAtVqNe0pZIZiEVIsQmWPRSf6S8X5DmMKsMXdB9x9J7AMmN5wzIeA/wvg\n7quBLjPbN+K5AHzqU7B4MUyYENd/Ix9efPHFtKeQGYpFSLEIlT0Wu+8eXBg0lktsx3duOq8yCdha\nN94GvC/CMZOAt0Y4F9CeCxGRqM46K+gv1a4432FEvfxqTGXqMu65aGZgYCDtKWSGYhFSLEKKRdhf\nql2xXVZrZscAl7t7X218MTDo7gvqjrkBqLj7stp4I/DXwAGjnVu7P7/XBIuIpKidy2rjTEmtASab\nWTfwDHAqMLvhmLuAecCy2gLzors/a2bPRzi3rf+wiIi0J7YFw913mdk8YAUwDvimu28wszm1xxe7\n+91mdpKZbQH+AJwx0rlxzVVEREaX653eIiKSnFzs9B7LBsCiGS0WZnZaLQbrzeynZnZEGvNMQtTN\nnWb2XjPbZWb/M8n5JSni70ivma01s5+bWSXhKSYmwu/Im8zsh2ZWrcWiP4Vpxs7M/o+ZPWtmj41w\nTGuvm+6e6S+ClNQWoBvYHagChzQccxJwd+32+4CH0p53irF4P/C62u2+Msei7rj7gR8Ap6Q97xR/\nLrqAx4H9auM3pT3vFGNxOfD5oTgAzwPj0557DLE4HjgSeGyYx1t+3czDO4x2NwC+OdlpJmLUWLj7\nKnd/qTYHBMjLAAAD3UlEQVRcDeyX8ByTEnVz5yeBW4HnkpxcwqLE4n8Bt7n7NgB3/03Cc0xKlFj8\nChj6lOuJwPPuvivBOSbC3R8EfjvCIS2/buZhwRhuc99oxxTxhTJKLOp9DLg71hmlZ9RYmNkkgheL\nRbW7ilqwi/JzMRl4g5k9YGZrzOz0xGaXrCix+DpwmJk9A6wDPpXQ3LKm5dfNOC+r7ZR2NwAW8cUh\n8v/JzE4AzgSOjW86qYoSi2uBT7u7m5kxxk2iGRYlFrsD7wGmAnsAq8zsIXffHOvMkhclFpcAVXfv\nNbMDgXvN7N3u/vuY55ZFLb1u5mHB2A7sXzfen2AlHOmY/Wr3FU2UWFArdH8d6HP3kd6S5lmUWBxF\nsMcHglz1B81sp7vflcwUExMlFluB37j7H4E/mtmPgXcDRVswosTivwNXArj7L8zsKeBggr1jZdLy\n62YeUlIvbwA0swkEm/gaf+HvAj4KL+8wf9Hdn012mokYNRZm9jbgduAj7r4lhTkmZdRYuPs73P0A\ndz+AoI5xdgEXC4j2O/I94DgzG2dmexAUOZ9IeJ5JiBKLjcA0gFrO/mDgl4nOMhtaft3M/DsMH8MG\nwKKJEgvgUuD1wKLaX9Y73X1KWnOOS8RYlELE35GNZvZDYD0wCHzd3Qu3YET8ufhXYImZrSP4o/lC\nd38htUnHxMy+Q9Bq6U1mthW4jCA12fbrpjbuiYhIJHlISYmISAZowRARkUi0YIiISCRaMEREJBIt\nGCIiEokWDBERiUQLhkiLzGyg1j6+amb3mdlbI5zzFjNbYWZvN7M/1rUZ/4aZ7VY75igz+3L8/wOR\n9mjBEGmdA73u3gP8BLg4wjl9wA9rt7e4+5HAEQSfXz8TwN0fdfeyNsKTHNCCITI2DwEHAtTaUdxf\n+zCa+8ysvk/P/wCWU9fszd0HgYfrzu81s+8nN3WR1mjBEGnP0At/H/Dz2u2vAEvc/d3AvwPXAZjZ\nOOBgd9/4iicwey1B64afI5IDme8lJZJRD5jZG4BdwLtq9x0DzKjdvgm4qnb7fQQfZjXkQDNbS5CO\n+pG7F/UzS6Rg9A5DpD29wNsJUlJn1d3f7DM3PkiQjhryi1oN40DgnWZ2dFyTFOkkLRgibXL3vwDz\ngfPNbC/g/wGzag+fBvy4dvsDwH1Nzn8e+AxB91SRzNOCIdK6l1s8u/uvCT5/ZC7B54efUWubfRrw\nKTPbB/iTu/9hmPPvBP6bmU2p3a/20ZJZam8uEiMzOw2Y5O5XjXqwSMZpwRARkUiUkhIRkUi0YIiI\nSCRaMEREJBItGCIiEokWDBERiUQLhoiIRKIFQ0REIvn/nx/g/9fIFs8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f74c4109e50>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib.pyplot import plot, xlabel, ylabel, show, grid\n",
"\n",
"# plot Torque vs Ro/Ri\n",
"#x=Ro/Ri\n",
"#According to Uniform Wear theory\n",
"x=[0, 0.2, 0.4, 0.577, 0.6, 0.8, 1.0]#\n",
"n=len(x)#\n",
"Tf = range(0,n)\n",
"for i in range(0,n):\n",
" Tf[i]=(x[i]-(x[i]**3))#\n",
"\n",
"plot (x,Tf)#\n",
"xlabel(' Ro/Ri ')#\n",
"ylabel('Tf')#\n",
"grid()#\n",
"show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-5 - Page 591"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The angular speed is 146.61 rad/sec\n",
"\n",
"The Torque is 102.314 Nm\n",
"\n",
"The uniform pressure is 0.084 N/mm**2\n",
"\n",
"The Force is 1031.1 N\n"
]
}
],
"source": [
"from math import pi\n",
"n1=4#\n",
"n2=3#\n",
"n=(n1+n2-1)#\n",
"R2=80#\n",
"R1=50#\n",
"#According to Uniform Pressure Theory\n",
"#W=p*pi*((R2**2)-(R1**2)) T=n*2*u*W*((R2**3)-(R1**3))/(((R2**2)-(R1**2))*3)\n",
"P=15*10**3#\n",
"N=1400#\n",
"u=0.25#\n",
"w=2*pi*N/60#\n",
"T=P/w#\n",
"W=T*3*((R2**2)-(R1**2))/(n*2*u*((R2**3)-(R1**3)))*10**3#\n",
"p=W/(pi*((R2**2)-(R1**2)))#\n",
"print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
"print \"\\nThe Torque is %0.3f Nm\"%(T)#\n",
"print \"\\nThe uniform pressure is %0.3f N/mm**2\"%(p)#\n",
"print \"\\nThe Force is %0.1f N\"%(W)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-6 - Page 592"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The angular speed is 104.72 rad/sec\n",
"\n",
"The Torque is 47.746 Nm\n",
"\n",
"The Inner radius is 37.5 mm\n",
"\n",
"The Outer radius is 62.5 mm\n",
"\n",
"The number of contacting surfaces is 4 \n",
"\n",
"The max. pressure is 0.4 N/mm**2\n"
]
}
],
"source": [
"from math import pi\n",
"P=5*10**3#\n",
"N=1000#\n",
"w=2*pi*N/60#\n",
"Rm=50#\n",
"pm=0.3#\n",
"Tf=P/w#\n",
"u=0.1#\n",
"R2=50*2/(0.6+1)#\n",
"R1=0.6*R2#\n",
"#According to uniform Wear theory\n",
"W=pm*Rm*(R2-R1)*2*pi#\n",
"n=Tf*(10**3)/(u*W*Rm)#\n",
"pmax=pm*Rm/R1#\n",
"print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
"print \"\\nThe Torque is %0.3f Nm\"%(Tf)#\n",
"print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
"print \"\\nThe Outer radius is %0.1f mm\"%(R2)#\n",
"print \"\\nThe number of contacting surfaces is %0.0f \"%(n)#\n",
"print \"\\nThe max. pressure is %0.1f N/mm**2\"%(pmax)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-7 - Page 593"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The angular speed is 78.54 rad/sec\n",
"\n",
"The Torque is 152.8 Nm\n",
"\n",
"The Inner radius is 81.4 mm\n",
"\n",
"The Outer radius is 101.1 mm\n",
"\n",
"The mean radius is 91.23 mm\n",
"\n",
"The axial force is 1208 N\n"
]
}
],
"source": [
"from math import pi\n",
"P=12*10**3#\n",
"N=750 #Speed=N\n",
"w=2*pi*N/60#\n",
"Tf=P/w#\n",
"p1=0.12#\n",
"a=12.5##Semi-cone angle\n",
"u=0.3#\n",
"k=u*0.18246*1.121/0.21644#\n",
"R1=(Tf*(10**3)/k)**(1/3)#\n",
"R2=R1*1.242#\n",
"Rm=1.121*R1#\n",
"W=2*pi*p1*R1*(R2-R1)#\n",
"print \"\\nThe angular speed is %0.2f rad/sec\"%(w)#\n",
"print \"\\nThe Torque is %0.1f Nm\"%(Tf)#\n",
"print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
"print \"\\nThe Outer radius is %0.1f mm\"%(R2)#\n",
"print \"\\nThe mean radius is %0.2f mm\"%(Rm)#\n",
"print \"\\nThe axial force is %0.0f N\"%(W)#\n",
"\n",
"#The difference in the answer is due to rounding-off of values."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-8 - Page 594"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The Torque is 15.648 Nm\n",
"\n",
"The angular acceleration is 39.120 rad/sec**2\n",
"\n",
"The angular speed is 150.8 rad/sec\n",
"\n",
"The time taken is 3.85 sec\n",
"\n",
"The Energy lost in friction is 4548 Nm\n"
]
}
],
"source": [
"from math import sin,pi\n",
"#semi-cone angle is given as 15 degree\n",
"k=sin(15*pi/180)#\n",
"u=0.3#\n",
"W=300#\n",
"Rm=90/2#\n",
"Tf=u*W*Rm/k#\n",
"Tf=Tf*(10**-3)#\n",
"I=0.4#\n",
"a=Tf/I#\n",
"N=1440#\n",
"w=2*pi*N/60#\n",
"t=w/a#\n",
"#During Slipping\n",
"theta1=w*t#\n",
"theta2=theta1/2#\n",
"U=Tf*(theta1-theta2)#\n",
"print \"\\nThe Torque is %0.3f Nm\"%(Tf)#\n",
"print \"\\nThe angular acceleration is %0.3f rad/sec**2\"%(a)#\n",
"print \"\\nThe angular speed is %0.1f rad/sec\"%(w)#\n",
"print \"\\nThe time taken is %0.2f sec\"%(t)#\n",
"print \"\\nThe Energy lost in friction is %0.0f Nm\"%(U)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-9 - Page 595"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The Torque is 95.49 Nm\n",
"\n",
"The shaft diameter is 25 mm\n",
"\n",
"The width is 40 mm\n",
"\n",
"The Inner radius is 119.8 mm\n",
"\n",
"The Outer radius is 130.2 mm\n"
]
}
],
"source": [
"from math import pi, sin\n",
"P=15*10**3#\n",
"Ka=1.25#\n",
"N=1500#\n",
"w=2*pi*N/60#\n",
"Tf=P/w#\n",
"d=(Tf*16/(50*pi))**(1/3)#\n",
"d=25#\n",
"Rm=5*d#\n",
"Pav=0.12#\n",
"u=0.22#\n",
"b=Tf/(pi*u*Pav*(Rm**2))#\n",
"b=40#\n",
"R1=Rm-(b*sin(15*pi/180)/2)#\n",
"R2=Rm+(b*sin(15*pi/180)/2)#\n",
"print \"\\nThe Torque is %0.2f Nm\"%(Tf)#\n",
"print \"\\nThe shaft diameter is %0.0f mm\"%(d)#\n",
"print \"\\nThe width is %0.0f mm\"%(b)#\n",
"print \"\\nThe Inner radius is %0.1f mm\"%(R1)#\n",
"print \"\\nThe Outer radius is %0.1f mm\"%(R2)#"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## exa 22-10 - Page 596"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"The full speed is 146.6 rad/sec\n",
"\n",
"The engagement speed is 117.29 rad/sec\n",
"\n",
"The number of shoes is 4 \n",
"\n",
"The Torque is 272.8 Nm\n",
"\n",
"The Torque per shoe is 68.2 Nm\n",
"\n",
"The mass per shoe is 1.93 kg\n",
"\n",
"The length of friction lining is 0.16755 m\n",
"\n",
"The width is 115.7 mm\n"
]
}
],
"source": [
"from math import pi\n",
"w2=2*pi*1400/60#\n",
"w1=0.8*w2#\n",
"P=40*10**3#\n",
"T=P/w2#\n",
"n=4#\n",
"T1=T/4#\n",
"R=0.16##Inner radius of drum\n",
"r=0.13##radial distance of each shoe from axis of rotation\n",
"u=0.22##coefficient of friction\n",
"x=u*r*R*((w2**2)-(w1**2))\n",
"m =T1/x#\n",
"l=R*pi/3#\n",
"N=T1/(R*u)#\n",
"p=1*10**5#\n",
"b=N/(p*l)*10**3#\n",
"print \"\\nThe full speed is %0.1f rad/sec\"%(w2)#\n",
"print \"\\nThe engagement speed is %0.2f rad/sec\"%(w1)#\n",
"print \"\\nThe number of shoes is %0.0f \"%(n)#\n",
"print \"\\nThe Torque is %0.1f Nm\"%(T)#\n",
"print \"\\nThe Torque per shoe is %0.1f Nm\"%(T1)#\n",
"print \"\\nThe mass per shoe is %0.2f kg\"%(m)#\n",
"print \"\\nThe length of friction lining is %0.5f m\"%(l)#\n",
"print \"\\nThe width is %0.1f mm\"%(b)#"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|