summaryrefslogtreecommitdiff
path: root/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_8K1gGKx.ipynb
blob: 6496faeb8c0b2e0abe788e8fb076ad5df652a26c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter9-Beams"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.1 page number 286"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RB= 18.8684 KN\n",
      "RA= 29.989 KN\n",
      "alpha= 25.21 °\n"
     ]
    }
   ],
   "source": [
    "from math import pi,atan,sqrt,cos,sin\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "P1=float(10)                                     #Vertical down Load at 4m from A,KN\n",
    "P2=float(15)                                     #Inclined down Load at angle 30° at 6m from A,KN\n",
    "P3=float(20)                                     #Inclined down Load at angle 45° at 10m from A,KN\n",
    "theta2=30\n",
    "theta3=45\n",
    "#horizontal,vertical component at A  is Ha,Va respectively.\n",
    "\n",
    "Ha=P2*cos(theta2*pi/180)+P3*cos(theta3*pi/180)\n",
    "Rb=(P1*4+P2*6*sin(theta2*pi/180)+P3*10*sin(theta3*pi/180))/12         #reaction at B point,KN\n",
    "\n",
    "print \"RB=\",round(Rb,4),\"KN\"\n",
    "\n",
    "#now vertical component\n",
    "Va=P2*sin(theta2*pi/180)+P3*sin(theta3*pi/180)+P1-Rb\n",
    "\n",
    "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n",
    "\n",
    "print \"RA=\",round(Ra,4),\"KN\"\n",
    "\n",
    "alpha=(atan(Va/Ha))*180/pi\n",
    "\n",
    "print \"alpha=\",round(alpha,2),\"°\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.2 page number 287"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RB= 100.4475 KN\n",
      "RA= 87.0172 KN\n",
      "alpha= 79.45 °\n"
     ]
    }
   ],
   "source": [
    "from math import pi,atan,sqrt,cos,sin\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "P1=float(60)                                     #inclined down to right Load at angle 60 at 1m from A,KN\n",
    "P2=float(80)                                     #Inclined down to left Load at angle 75° at 3m from A,KN\n",
    "P3=float(50)                                     #Inclined down to left Load at angle 60° at 5.5m from A,KN\n",
    "theta1=60                                    \n",
    "theta2=75\n",
    "theta3=60\n",
    "thetaRb=60\n",
    "#horizontal,vertical component at A is Ha,Va  respectively.\n",
    "\n",
    "Rb=(P1*1*sin(theta1*pi/180)+P2*3*sin(theta2*pi/180)+P3*5.5*sin(theta3*pi/180))/(6*sin(thetaRb*pi/180))         #reaction at B point,KN\n",
    "Ha=-P1*cos(theta1*pi/180)+P2*cos(theta2*pi/180)-P3*cos(theta3*pi/180)+Rb*cos(thetaRb*pi/180)\n",
    "print \"RB=\",round(Rb,4),\"KN\"\n",
    "\n",
    "#now vertical component\n",
    "Va=P1*sin(theta1*pi/180)+P2*sin(theta2*pi/180)+P3*sin(theta3*pi/180)-Rb*sin(thetaRb*pi/180)\n",
    "\n",
    "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n",
    "\n",
    "print \"RA=\",round(Ra,4),\"KN\"\n",
    "\n",
    "alpha=(atan(Va/Ha))*180/pi\n",
    "\n",
    "print \"alpha=\",round(alpha,2),\"°\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.3 page number 288\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RA= 91.6503 KN\n",
      "HB= 42.4264 KN\n",
      "VB= 90.7761 KN\n",
      "RB= 100.2013 KN\n",
      "alpha= 64.95 °\n"
     ]
    }
   ],
   "source": [
    "from math import pi,atan,sqrt,cos,sin\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "P1=float(20)                                     #vertical down  Load  at 2m from A,KN\n",
    "P2=float(30)                                     #uniform distributed load from 2m to 6m from A,KN/m(in 4m of span)\n",
    "P3=float(60)                                     #Inclined down to right Load at angle 45° at 7m from A,KN\n",
    "\n",
    "theta3=45\n",
    "#horizontal,vertical component at  B is  Hb,Vb respectively.\n",
    "\n",
    "Ra=(P1*7+P2*4*5+P3*2*sin(theta3*pi/180))/(9)     #reaction at B point,KN\n",
    "\n",
    "print \"RA=\",round(Ra,4),\"KN\"\n",
    "\n",
    "Hb=P3*cos(theta3*pi/180)\n",
    "print \"HB=\",round(Hb,4),\"KN\"\n",
    "#now vertical component\n",
    "Vb=P1+P2*4+P3*sin(theta3*pi/180)-Ra\n",
    "print \"VB=\",round(Vb,4),\"KN\"\n",
    "\n",
    "Rb=sqrt(pow(Hb,2)+pow(Vb,2))\n",
    "\n",
    "print \"RB=\",round(Rb,4),\"KN\"\n",
    "\n",
    "alpha=(atan(Vb/Hb))*180/pi\n",
    "\n",
    "print \"alpha=\",round(alpha,2),\"°\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.4 page number 288"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "no horizontal force  HA=0\n",
      "VA= 74.0 KN\n",
      "MA= 148.0 KN-m\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "#Let the reactions at A be Ha, Va and Ma\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "\n",
    "P1=float(20)                                     #vertical down  Load  at 2m from A,KN\n",
    "P2=float(12)                                     #vertical down  Load  at 3m from A,KN \n",
    "P3=float(10)                                     #vertical down  Load  at 4m from A,KN\n",
    "Pu=float(16)                                     #uniform distributed load from A to 2m from A,KN/m(in 2m of span)\n",
    "##horizontal,vertical component at  A is  Ha,Va respectively.\n",
    "print\"no horizontal force \",\"HA=0\"\n",
    "Va=Pu*2+P1+P2+P3\n",
    "print \"VA=\", round(Va,2),\"KN\"\n",
    "Ma=Pu*2*1+P1*2+P2*3+P3*4\n",
    "print \"MA=\", round(Ma,2),\"KN-m\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.5 page number 288\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "no horizontal force  HA=0\n",
      "VA= 65.0 KN\n",
      "MA= 165.0 KN-m\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "#Let the reactions at A be  Va and Ma\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "\n",
    "P1=float(15)                                     #vertical down  Load  at 3m from A,KN\n",
    "P2=float(10)                                     #vertical down  Load  at 5m from A,KN \n",
    "M=float(30)                                      #CW moment at 4m distance from A, KN-m\n",
    "Pu=float(20)                                     #uniform distributed load from A to 2m from A,KN/m(in 2m of span)\n",
    "##horizontal,vertical component at  A is  Ha,Va respectively.\n",
    "print\"no horizontal force \",\"HA=0\"\n",
    "Va=Pu*2+P1+P2\n",
    "print \"VA=\", round(Va,2),\"KN\"\n",
    "Ma=Pu*2*1+P1*3+P2*5+M\n",
    "print \"MA=\", round(Ma,2),\"KN-m\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.6 page number 289"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RB= 100.0 KN\n",
      "RA= 30.0 KN\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "\n",
    "#As supports A and B are simple supports and loading is only in vertical direction, the reactions RA and RB are in vertical directions only.\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "\n",
    "P1=float(30)                                     #vertical down  Load  at 1m from A,KN\n",
    "P2=float(40)                                     #vertical down  Load  at 6.5m from A,KN                   \n",
    "Pu=float(20)                                     #uniform distributed load from 2m to 5m from A,KN/m(in 3m of span).\n",
    "\n",
    "Rb=(Pu*3*3.5+P1*1+P2*6.5)/5\n",
    "print \"RB=\", round(Rb,2),\"KN\"\n",
    "Ra=Pu*3+P1+P2-Rb\n",
    "print \"RA=\", round(Ra,2),\"KN\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.7 page number 289\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "no horizontal force  HA=0\n",
      "VB= 50.0 KN\n",
      "VA= 70.0 KN\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "#Let the reactions at A be  Va and Ma.\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    "\n",
    "P1=float(60)                                     #vertical down  Load  at 4m from A to right,KN\n",
    "P2=float(20)                                     #vertical down  Load  at 11m from A to right,KN \n",
    "M=float(30)                                      #CW moment at 7m distance from A to right, KN-m\n",
    "Pu=float(20)                                     #uniform distributed load from A to 2m from A to left ,KN/m(in 2m of span)\n",
    "##horizontal,vertical component at  A is  Ha,Va respectively.\n",
    "print\"no horizontal force \",\"HA=0\"\n",
    "Vb=(-Pu*2*1+P1*4+P2*11+M)/9\n",
    "print \"VB=\", round(Vb,2),\"KN\"\n",
    "Va=Pu*2+P1+P2-Vb\n",
    "print \"VA=\", round(Va,2),\"KN\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.8 page number 290\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RB= 71.011 KN\n",
      "(Negative sign show that the assumed direction of VA is wrong. In other words, VA is acting vertically downwards). \n",
      "RA= 23.3666 KN\n",
      "alpha= 24.79 °\n"
     ]
    }
   ],
   "source": [
    "from math import pi,atan,sqrt,cos,sin\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    " \n",
    "P1=float(30)                                     #Inclined down Load at angle 45° to left at 5m from A,KN\n",
    "Pu=float(20)                                     #uniformly distributed load from 6m to 8m from A ,KN,(2m of span)\n",
    "theta1=45\n",
    "M=40                                             #ACW moment at 3m from A, KN-m\n",
    "#horizontal,vertical component at A  is Ha,Va respectively.\n",
    "\n",
    "Rb=(M+P1*5*sin(theta1*pi/180)+Pu*2*7)/6         #reaction at B point,KN\n",
    "\n",
    "print \"RB=\",round(Rb,4),\"KN\"\n",
    "\n",
    "Ha=P1*cos(theta1*pi/180)\n",
    "\n",
    "#now vertical component\n",
    "Va=P1*sin(theta1*pi/180)-Rb+Pu*2\n",
    "\n",
    "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n",
    "\n",
    "print \"(Negative sign show that the assumed direction of VA is wrong. In other words, VA is acting vertically downwards). \"\n",
    "\n",
    "Va1=-1*Va\n",
    "print \"RA=\",round(Ra,4),\"KN\"\n",
    "\n",
    "alpha=(atan(Va1/Ha))*180/pi\n",
    "\n",
    "print \"alpha=\",round(alpha,2),\"°\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 9.9 page number 290\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "X= 5.0 m\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "\n",
    "#summation of all  horizontal forces is zero & vertical forces is zero.\n",
    " \n",
    "#Let the left support C be at a distance x metres from A. \n",
    "\n",
    "P1=float(30)                        #vertical down load at A,KN\n",
    "Pu=float(6)                         #uniform distributed load over whole span,KN/m,(20m of span)\n",
    "P2=float(50)                        #vertical down load at B, KN\n",
    "\n",
    "#Rc=Rd(given) reaction at C & D is equal.\n",
    "\n",
    "Rc=(P1+P2+Pu*20)/2\n",
    "Rd=Rc\n",
    "\n",
    "#taking moment at A \n",
    "x=(((Pu*20*10+P2*20)/100)-12)/2\n",
    "\n",
    "print \"X=\", round(x,2),\"m\"\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}