summaryrefslogtreecommitdiff
path: root/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter1_bGP3Wsd.ipynb
blob: 080cbafba97f0090a80b19525c0f3ec0a890701b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 1-INTRODUCTION TO MECHANICS OF SOLIDS "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example1.1 Page number 10\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " The resultant velocity : 21.54 km/hour\n",
      "68.2 °\n"
     ]
    }
   ],
   "source": [
    "#downstream direction as x\n",
    "#direction across river as y\n",
    "\n",
    "from math import sqrt,atan,pi\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "Vx= 8                       #velocity of stream, km/hour\n",
    "Vy=float(20)                       #velocity of boat,km/hour\n",
    "\n",
    "V=sqrt(pow(Vx,2)+pow(Vy,2)) #resultant velocity, km/hour\n",
    "theta=Vy/Vx\n",
    "\n",
    "alpha= atan(theta)*180/pi   #angle, degrees     \n",
    "\n",
    "print \" The resultant velocity :\",round(V,2),\"km/hour\"\n",
    "print round(alpha,2),\"°\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.2 Page number 10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "10.0 KN (to the left)\n",
      "17.32 KN (downward)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "\n",
    "#components of force in horizontal and vertical components. \n",
    "from math import cos,sin,pi\n",
    "#variable declaration\n",
    "\n",
    "F= 20                        #force in wire, KN\n",
    "\n",
    "#calculations\n",
    "Fx= F*cos(60*pi/180)          \n",
    "Fy= F*sin(60*pi/180)\n",
    "\n",
    "print round(Fx,2),\"KN\" ,\"(to the left)\"\n",
    "print round(Fy,2), \"KN\" ,\"(downward)\"\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.3 Page number 11"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Component normal to the plane : 9.4 KN\n",
      "Component parallel to the plane : 3.42 KN\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    " #The plane makes an angle of 20° to the horizontal. Hence the normal to the plane makes an angles of 70° to the horizontal i.e., 20° to the vertical\n",
    "from math import cos,sin,pi\n",
    "#variable declaration\n",
    "W= 10                        # black weighing, KN\n",
    "\n",
    "#calculations\n",
    "\n",
    "Nor= W*cos(20*pi/180)             #Component normal to the plane\n",
    "para= W*sin(20*pi/180)            #Component parallel to the plane\n",
    "\n",
    "print \"Component normal to the plane :\",round(Nor,2),\"KN\"\n",
    "print \"Component parallel to the plane :\",round(para,2) , \"KN\"\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.4 Page number 11"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "F1= 100.0 N\n",
      "F2= 200.0 N\n",
      "theta= 63.9 °\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "#Let the magnitude of the smaller force be F. Hence the magnitude of the larger force is 2F\n",
    "\n",
    "from math import pi,sqrt, acos\n",
    "#variable declaration\n",
    "R1=260            #resultant of two forces,N\n",
    "R2=float(180)          #resultant of two forces if larger force is reversed,N\n",
    "\n",
    "\n",
    "\n",
    "#calculations\n",
    "\n",
    "F=sqrt((pow(R1,2)+pow(R2,2))/10)\n",
    "F1=F\n",
    "F2=2*F\n",
    "theta=acos((pow(R1,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*180/pi\n",
    "\n",
    "print \"F1=\",F1,\"N\"\n",
    "print  \"F2=\",F2,\"N\"\n",
    "print \"theta=\",round(theta,1),\"°\"\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.5 Page number 12"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "F1= 326.35 N\n",
      "F2= 223.24 N\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "#Let ?ABC be the triangle of forces drawn to some scale\n",
    "#Two forces F1 and F2 are acting at point A\n",
    "#angle in degrees '°'\n",
    "\n",
    "from math import  sin,pi\n",
    "  \n",
    "#variabble declaration\n",
    "cnv=pi/180\n",
    "\n",
    "BAC = 20*cnv                           #Resultant R makes angle with F1    \n",
    " \n",
    "ABC = 130*cnv                    \n",
    "\n",
    "ACB = 30*cnv   \n",
    "\n",
    "R =  500                            #resultant force,N\n",
    "\n",
    "#calculations\n",
    "#sinerule\n",
    "\n",
    "F1=R*sin(ACB)/sin(ABC)\n",
    "F2=R*sin(BAC)/sin(ABC)\n",
    "\n",
    "print \"F1=\",round(F1,2),\"N\"\n",
    "print \"F2=\",round(F2,2),\"N\"\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.6 Page number 12"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "theta= 78.13 °\n",
      "alpha= 29.29 °\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "#Let ABC  be the triangle of forces,'theta' be the angle between F1 and F2, and 'alpha' be the angle between resultant and F1 \n",
    "\n",
    "from math import sin,acos,asin,pi\n",
    "\n",
    "#variable declaration\n",
    "cnv= 180/pi\n",
    "F1=float(400)                         #all forces are in newtons,'N'\n",
    "F2=float(260)\n",
    "R=float(520)\n",
    "\n",
    "#calculations\n",
    "\n",
    "theta=acos((pow(R,2)-pow(F1,2)-pow(F2,2))/(2*F1*F2))*cnv\n",
    "\n",
    "alpha=asin(F2*sin(theta*pi/180)/R)*cnv\n",
    "\n",
    "print\"theta=\",round(theta,2),\"°\"\n",
    "print \"alpha=\",round(alpha,2),\"°\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 1.7 Page number 13"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "horizontal component= 2814.2 N\n",
      "Vertical component =  1039.2 N\n",
      "Component along crank = 507.1 N\n",
      "Component normal to crank= 2956.8 N\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "#The force of 3000 N acts along line AB. Let AB make angle alpha with horizontal.\n",
    "\n",
    "from math import cos,sin,pi,asin,acos\n",
    "\n",
    "#variable declaration\n",
    "F=3000                        #force in newtons,'N'\n",
    "BC=80                         #length of crank BC, 'mm'\n",
    "AB=200                        #length of connecting rod AB ,'mm'\n",
    "theta=60*pi/180               #angle b/w BC & AC\n",
    "\n",
    "#calculations\n",
    "\n",
    "alpha=asin(BC*sin(theta)/200)*180/pi\n",
    "\n",
    "HC=F*cos(alpha*pi/180)                    #Horizontal component \n",
    "VC= F*sin(alpha*pi/180)                   #Vertical component \n",
    "\n",
    "#Components along and normal to crank\n",
    "#The force makes angle alpha + 60  with crank.\n",
    "alpha2=alpha+60\n",
    "CAC=F*cos(alpha2*pi/180)             # Component along crank \n",
    "CNC= F*sin(alpha2*pi/180)             #Component normal to crank \n",
    "\n",
    "\n",
    "print \"horizontal component=\",round(HC,1),\"N\"\n",
    "print \"Vertical component = \",round(VC,1),\"N\"\n",
    "print \"Component along crank =\",round(CAC,1),\"N\"\n",
    "print \"Component normal to crank=\",round(CNC,1),\"N\""
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}