summaryrefslogtreecommitdiff
path: root/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter10_n5s4jXl.ipynb
blob: e89d127da91caa698304868b36cf7b002c006d26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter10-STRESSES IN BEAMS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 10.1 page number 319\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(i) w= 5.76 KN/m\n",
      "(ii) P= 9.72 KN\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "\n",
    "#A simply supported beam of span 3.0 m has a cross-section 120 mm × 180 mm. If the permissible stress in the material of the beam is 10 N/mm^2\n",
    "\n",
    "b=float(120)           \n",
    "d=float(180)           \n",
    "\n",
    "#I=(b*d^3)/12,Ymax=d/2\n",
    "\n",
    "Z=(b*pow(d,2))/6  \n",
    "fper=float(10)\n",
    "\n",
    "L=3\n",
    "Mmax=fper*Z\n",
    "\n",
    "#Let maximum udl beam can carry be w/metre length \n",
    "#In this case, we know that maximum moment occurs at mid span and is equal to Mmax = (wL^2)/8\n",
    "\n",
    "w=(Mmax*8)/(pow(L,2)*1000000)\n",
    "\n",
    "print \"(i) w=\",round(w,2),\"KN/m\"\n",
    "\n",
    "# Concentrated load at distance 1 m from the support be P kN.\n",
    "\n",
    "a=float(1)           #distance of point at which load is applied from left,m\n",
    "b=float(2)           #distance of point at which load is applied from right,m\n",
    "\n",
    "P=(L*Mmax)/(a*b*1000000)\n",
    "\n",
    "print \"(ii) P=\",round(P,2),\"KN\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 10.2 page number 320"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " P= 4.52 KN\n"
     ]
    }
   ],
   "source": [
    "from math import pi\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "#A circular steel pipe of external diameter 60 mm and thickness 8 mm is used as a simply supported beam over an effective span of 2 m. If permissible stress in steel is 150 N/mm^2, \n",
    "\n",
    "D=float(60)            #external diameter,mm\n",
    "d=float(44)             #Thickness,mm\n",
    "\n",
    "I=(pi*(pow(D,4)-pow(d,4)))/64         #Area moment of inertia,mm^4\n",
    "Ymax=float(30)                       #extreme fibre distance,mm\n",
    "\n",
    "Z=I/Ymax  \n",
    "fper=float(150)\n",
    "\n",
    "Mmax=fper*Z\n",
    "\n",
    "#Let maximum load it can carry be P kN.\n",
    "L=float(2)\n",
    "P=(4*Mmax)/(L*1000000)\n",
    "\n",
    "print \" P=\",round(P,2),\"KN\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example10.3 page number 321"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "w= 68.49 KN/m\n"
     ]
    }
   ],
   "source": [
    "\n",
    "#the cross-section of a cantilever beam of 2.5 m span. Material used is steel for which maximum permissible stress is 150 N/mm^2\n",
    " \n",
    "#variable declaration\n",
    "\n",
    "A=float(180)               #width of I-beam,mm\n",
    "H=float(400)               #height of I-beam,mm\n",
    "a=float(170)               #width of inter rectancle if I-beam consider as Rectangle with width 10,mm\n",
    "h=float(380)               #Height of inter rectancle if I-beam consider as Rectangle with width 10,mm\n",
    "\n",
    "I=((A*pow(H,3))/12)-((a*pow(h,3))/12)\n",
    "ymax=float(200)            #extreme fibre,mm\n",
    "\n",
    "Z=I/ymax\n",
    "fper=float(150) \n",
    "\n",
    "Mmax=fper*Z\n",
    "\n",
    "#If udl is w kN/m, maximum moment in cantilever\n",
    "\n",
    "L=2  #m\n",
    "\n",
    "w=Mmax/(L*1000000)\n",
    "print \"w=\",round(w,2),\"KN/m\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example10.4 page number 323"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(i) Moment carryingcapacity of Isection/ Moment carryingcapacityof equivalent squaresection= 8.608\n",
      "(ii) Moment carryingcapacity of I-section/ Moment carryingcapacityof equivalent squaresection= 6.087\n",
      "(i) Moment carryingcapacity of Isection/ Moment carryingcapacityof equivalent squaresection= 10.171\n"
     ]
    }
   ],
   "source": [
    "#Compare the moment carrying capacity of the section given in example 10.3 with equivalent section of the same area but (i) square section (ii) rectangular section with depth twice the width and (iii) a circular section.\n",
    "\n",
    "from math import sqrt,pi\n",
    "#variable declaration\n",
    "\n",
    "A=180.0*10.0+380.0*10.0+180.0*10.0\n",
    "\n",
    "#If ‘a’ is the size of the equivalent square section, \n",
    "\n",
    "a=float(sqrt(A))       #mm\n",
    "\n",
    "I=(a*pow(a,3))/12  #Moment of inertia of this section, mm^4\n",
    "\n",
    "ymax=a/2\n",
    "\n",
    "Z=I/ymax\n",
    "\n",
    "f=150.0 \n",
    "\n",
    "Mcc=f*Z          #Moment carrying capacity\n",
    "\n",
    "MccI=136985000.0\n",
    "\n",
    "Ratio=MccI/Mcc\n",
    "print \"(i) Moment carryingcapacity of Isection/ Moment carryingcapacityof equivalent squaresection=\",round(Ratio,3)\n",
    "\n",
    "\n",
    "#Equivalent rectangular section of depth twice the width. Let b be the width,Depth d = 2b. Equating its area to area of I-section,we get\n",
    "b=sqrt(7400/2)\n",
    "\n",
    "ymax=b\n",
    "\n",
    "I=b*(pow((2*b),3))/12\n",
    " \n",
    "M=f*I/ymax\n",
    "\n",
    "\n",
    "MccI=136985000\n",
    "\n",
    "Ratio=MccI/M\n",
    "print \"(ii) Moment carryingcapacity of I-section/ Moment carryingcapacityof equivalent squaresection=\",round(Ratio,3)\n",
    "\n",
    "#Equivalent circular section. Let diameter be d.\n",
    "\n",
    "d=sqrt(7400*4/pi)\n",
    "\n",
    "I=(pi*pow(d,4))/64\n",
    "ymax=d/2\n",
    "Z=I/ymax\n",
    "fper=float(150)\n",
    "M=fper*Z\n",
    "\n",
    "MccI=136985000\n",
    "\n",
    "Ratio=MccI/M\n",
    "print \"(i) Moment carryingcapacity of Isection/ Moment carryingcapacityof equivalent squaresection=\",round(Ratio,3)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example10.5 page number 324"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "P= 127.632 KN\n"
     ]
    }
   ],
   "source": [
    "#variable declaration\n",
    "\n",
    "#A symmetric I-section of size 180 mm × 40 mm, 8 mm thick is strengthened with 240 mm × 10 mm rectangular plate on top flange. If permissible stress in the material is 150 N/mm^2, determine how much concentrated load the beam of this section can carry at centre of 4 m span. \n",
    "\n",
    "b1=float(240)\n",
    "b=float(180)\n",
    "t=float(10)\n",
    "h=float(400)\n",
    "w=float(8)\n",
    "                                                                                               \n",
    "A=float(240*10+180*8+384*8+180*8)       #Area of section,A\n",
    "\n",
    "Y=(240*10*405+180*8*(400-4)+384*8*200+180*8*4)/A\n",
    "\n",
    "I=(b1*pow(t,3)/12)+(b1*t*(pow(((h+5)-Y),2)))+(b*pow(w,3)/12)+(b*w*(pow(((h-4)-Y),2)))+(w*pow((h-16),3)/12)+((h-16)*w*(pow(((h/2)-Y),2)))+(b*pow(w,3)/12)+(b*w*(pow((4-Y),2)))\n",
    "\n",
    "ytop=(h+t/2)-Y\n",
    "ybottom=Y\n",
    "ymax=Y\n",
    "\n",
    "Z=I/ymax\n",
    "fper=150\n",
    "M=fper*Z/1000000         #Momnent carrying capacity of the section\n",
    "\n",
    "#Let P kN be the central concentrated load the simply supported beam can carry. Then max bending movement in the beam\n",
    "\n",
    "P=M*4/(w/2)\n",
    "\n",
    "print \"P=\",round(P,3),\"KN\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example10.6 page number 327"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "w= 2.734 KN/m\n",
      "calculation mistake in book\n"
     ]
    }
   ],
   "source": [
    "#The cross-section of a cast iron beam. The top flange is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm^2 and its value in compression is 90 N/mm^2\n",
    "#variable declaration\n",
    "from math import sqrt\n",
    "b1=float(75)\n",
    "h1=50\n",
    "h2=50\n",
    "b2=float(150)\n",
    "t=float(25)\n",
    "h=float(200)\n",
    "\n",
    "                                                                                               \n",
    "A=float(75*50+25*100+150*50)       #Area of section,A\n",
    "\n",
    "Y=(75*50*175+25*100*100+150*50*25)/A\n",
    "\n",
    "I=(b1*pow(h1,3)/12)+(b1*h1*(pow(((h-(h1/2))-Y),2)))+(t*pow((h-h1-h2),3)/12)+(t*(h-h1-h2)*(pow(((h/2)-Y),2)))+(b2*pow(h2,3)/12)+(b2*h2*(pow(((h2/2)-Y),2)))\n",
    "\n",
    "\n",
    "\n",
    "ytop=(h-Y)\n",
    "ybottom=Y\n",
    "\n",
    "\n",
    "Z1=I/ytop\n",
    "fperc=90\n",
    "#Top fibres are in compression. Hence from consideration of compression strength, moment carrying capacity of the beam is given by\n",
    "\n",
    "M1=fperc*Z1/1000000         #Momnent carrying capacity of the section,KN-m.\n",
    "\n",
    "#Bottom fibres are in tension. Hence from consideration of tension, moment carrying capacity of the section is given by\n",
    "\n",
    "Z2=I/ybottom\n",
    "\n",
    "fpert=30    \n",
    "\n",
    "M2=fpert*Z2/1000000        #Momnent carrying capacity of the section,KN-m.\n",
    "\n",
    "\n",
    "#Actual moment carrying capacity is the lower value of the above two values. Hence moment carrying capacity of the section is \n",
    "Mmax=min(M1,M2)\n",
    "\n",
    "L=float(5)\n",
    "w=sqrt(Mmax*8/pow(L,2))\n",
    "\n",
    "print\"w=\",round(w,3),\"KN/m\"\n",
    "print\"calculation mistake in book\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example10.7 page number 327"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "y= 5.0 m\n",
      "f= 5.24 N/mm^2\n"
     ]
    }
   ],
   "source": [
    "#The diameter of a concrete flag post varies from 240 mm at base to 120 mm at top. The height of the post is 10 m. If the post is subjected to a horizontal force of 600 N at top\n",
    "#Consider a section y metres from top. Diameter at this section is d.\n",
    "#d=120+12*y\n",
    "#I=pi*pow(d,4)/64\n",
    "#Z=I*2/d=pi*pow(d,3)/32\n",
    "#variable declaration \n",
    "#M=600*1000*y #moment,N-mm\n",
    "#f*Z=M,f is extreme fibre stress.\n",
    "y=float(5) \n",
    "print \"y=\",round(y,2),\"m\"\n",
    "\n",
    "#Stress at this section f is given by\n",
    "P=600\n",
    "M=P*y*1000\n",
    "d=120+12*y\n",
    "I=pi*pow(d,4)/64\n",
    "Z=I*2/d\n",
    "\n",
    "f=M/Z\n",
    "\n",
    "print \"f=\",round(f,3),\"N/mm^2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 10.9 page number 329"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "b= 150.0 mm\n",
      "d= 300.0 mm\n"
     ]
    }
   ],
   "source": [
    "#Design a timber beam is to carry a load of 5 kN/m over a simply supported span of 6 m. Permissible stress in timber is 10 N/mm2. Keep depth twice the width.\n",
    "\n",
    "#variable declaration\n",
    "w=float(5)                  #KN/m\n",
    "L=float(6)                  #m \n",
    "\n",
    "M=w*1000000*pow(L,2)/8              #Maximum bending moment,N-mm\n",
    "\n",
    "#Let b be the width and d the depth. Then in this problem d = 2b.\n",
    "#Z=b*pow(d,2)/6=2*(b**3)/3\n",
    "f=10                       #N/mm^2\n",
    "#f*Z=M\n",
    "b=float(((M*3)/(2*f))**(0.3333))\n",
    "print \"b=\",round(b),\"mm\"\n",
    "\n",
    "d=2*b\n",
    "print \"d=\",round(d),\"mm\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 10.10 page number 329\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "d= 164.3 mm\n"
     ]
    }
   ],
   "source": [
    "from math import sqrt\n",
    "#A cantilever of 3 m span, carrying uniformly distributed load of 3 kN/m is to be designed using cast iron rectangular section. Permissible stresses in cast iron are f = 30 N/mm^2 in tension and fc = 90 N/mm^2 in compression\n",
    "\n",
    "L=float(3)                    #Span of cantilever,m\n",
    "w=float(3)                    #uniformly distributed load,KN/m\n",
    "\n",
    "M=w*1000000*pow(L,2)/2        #Maximum moment,N-mm\n",
    "#let b be the width and d the depth\n",
    "#Z=b*pow(d,2)/6\n",
    "\n",
    "#Since it is rectangular section, N-A lies at mid-depth, and stresses at top and bottom are same. Hence, permissible tensile stress value is reached earlier and it governs the design.\n",
    "fper=30                       #N/mm^2\n",
    "b=100                         #mm\n",
    "f=30   \n",
    "\n",
    "#f*Z=M\n",
    "\n",
    "d=sqrt((M*6)/(b*f))\n",
    "\n",
    "print \"d=\",round(d,1),\"mm\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# example 10.11 page number 330"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "d= 23.11 mm\n",
      "select 25mm bar \n"
     ]
    }
   ],
   "source": [
    "from math import pi\n",
    "\n",
    "#variable declaration\n",
    "\n",
    "# Let the diameter of the bar be ‘d’. Now, W = 800 N L = 1 m = 1000 mm\n",
    "L=1000\n",
    "W=800\n",
    "M=W*L/4                     #Maximum moment,N-mm\n",
    "f=150                       #permissible stress,N/mm^2\n",
    "\n",
    "d=float((((M*32)/(pi*f)))**(0.33))\n",
    "\n",
    "print \"d=\",round(d,2),\"mm\"\n",
    "print \"select 25mm bar \"\n"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}