1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8 Analog Multiplier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1 Pg 267"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the output voltage of inverting amplifier (V2) is = 3.00 V\n"
]
}
],
"source": [
"from math import sqrt, pi\n",
"from __future__ import division\n",
"# to determine the output voltage of inverting amplifier (V2)\n",
"Vin = 18 # # V\n",
"V1 = -6 # # V\n",
"\n",
"# in the op-amp due to the infinite i/p resiostance the input current is = 0\n",
"# i1+i2 = 0\n",
"# it gives relation\n",
"Vo = -Vin #\n",
"\n",
"# the output of multiplier is defined as\n",
"#Vo = K*V1*V2\n",
"\n",
"K = 1 # # we assume\n",
"\n",
"V2 = (Vo/(K*V1))#\n",
"print 'the output voltage of inverting amplifier (V2) is = %0.2f'%(V2),'V'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2 Pg 267"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the output voltage of multiplier is = 225.00 V\n"
]
}
],
"source": [
"# to determine the output voltage of multiplier\n",
"Vin = 15 # # V\n",
"\n",
"# the output of multiplier is defined as\n",
"#Vo = K*V1*V2\n",
"# because of i/p terminal the circuit performs mathematical operation squaring\n",
"# i.e V1 = V2 = Vin\n",
"K = 1 # # we assume\n",
"Vo = K*(Vin)**2#\n",
"print 'the output voltage of multiplier is = %0.2f'%(Vo),'V' "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3 Pg 268"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the output voltage of inverting amplifier is = 4.00 V \n",
"the output voltage of multiplier is = 16.00 V \n"
]
}
],
"source": [
"from math import sqrt, pi\n",
"# to determine the output voltage of multiplier and inverting amplifier\n",
"Vin = 16 #\n",
"# the output of the inverting amplifier\n",
"K =1 # # we assume\n",
"Vos = sqrt(abs(Vin)/K) #\n",
"print 'the output voltage of inverting amplifier is = %0.2f'%(Vos),' V '\n",
"\n",
"# the output of the multiplier\n",
"Vo = K*Vos**2 #\n",
"print 'the output voltage of multiplier is = %0.2f'%(Vo),' V '"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5 Pg 269"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"output voltage of RMS detector is = 10.00 V \n"
]
}
],
"source": [
"# output voltage of of RMS detector\n",
"Vin = 10 # \n",
"T = 1 # # we assume that the charging and discharging period of capacitor\n",
"\n",
"# the output voltage of RMS detector\n",
"# Vo =sqrt(1/T*)integrate(Vin**2*(t),t,0,1 [,atol [,rtol]]) #\n",
"Vo = 10 #\n",
"print 'output voltage of RMS detector is = %0.2f'%(Vo),'V '"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|