summaryrefslogtreecommitdiff
path: root/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb
blob: 1c137a08672236bc61390f2da702b24bf0852320 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 10 - Bilinear forms"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Page 363 Example 10.4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a = [x1 x2]\n",
      "b = [y1 y2]\n",
      "f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2\n",
      "so, f(a,b) = \n",
      "[x1  x2]  *  |1   1|  *   |y1|\n",
      "              |1   1|     |y2|\n",
      "So the matrix of f in standard order basis B = {e1,e2} is:\n",
      "[f]B = \n",
      "[[1 1]\n",
      " [1 1]]\n",
      "P = \n",
      "[[ 1  1]\n",
      " [-1  1]]\n",
      "Thus, [f]B = P*[f]B*P\n",
      "[f]B = \n",
      "[[ 1 -1]\n",
      " [-1  1]]\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "print 'a = [x1 x2]'\n",
    "print 'b = [y1 y2]'\n",
    "print 'f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2'\n",
    "print 'so, f(a,b) = '\n",
    "print '[x1  x2]  *  |1   1|  *   |y1|'\n",
    "print '              |1   1|     |y2|'\n",
    "print 'So the matrix of f in standard order basis B = {e1,e2} is:'\n",
    "fb = np.array([[1, 1],[1, 1]])\n",
    "print '[f]B = \\n',fb\n",
    "P = np.array([[1 ,1],[-1, 1]])\n",
    "print 'P = \\n',P\n",
    "print 'Thus, [f]B'' = P''*[f]B*P'\n",
    "fb1 = np.transpose(P) * fb * P\n",
    "print '[f]B'' = \\n',fb1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Page 365 Example 10.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "n =  56.0\n",
      "a =  410.0\n",
      "b =  70.0\n",
      "f(a,b) =  28700.0\n",
      "f is non-degenerate billinear form on R**n.\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "n = round(np.random.randint(2,90))\n",
    "a = round(np.random.randint(1,n) * 10)#\n",
    "b = round(np.random.randint(1,n) * 10)#\n",
    "print 'n = ',n\n",
    "print 'a = ',a\n",
    "print 'b = ',b\n",
    "f = a * np.transpose(b)\n",
    "print 'f(a,b) = ',f\n",
    "print 'f is non-degenerate billinear form on R**n.'\n",
    "#end"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}