1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 09:Heat transfer in condensation and boiling"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.1:pg-392"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\n",
"The properties of condensate(liquid water) are evaluated at the mean film temprature \n",
"The mean film temprature in°C is\n",
"tf= 95\n",
"hfg= 2270000.0\n",
"The average heat transfer coefficient over length L in W/(m**2*K)\n",
"hbar= 0.745\n",
"The rate of heat transfer per unit width in W/m \n",
"Q= 3.772\n",
"The total rate of condensation in kg/(s*m)\n",
"mdotc= 1.66167400881e-06\n",
"We have to check whether the flow is laminar or not \n",
"Reynolds no. is\n",
"Therefore the flow is laminar and hence the use of the equation is justified\n",
"ReL= 0.0221556534508\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 1\"\n",
"#A vertical cooling fin, Approximately a flat plate length,(L)=0.4m high is exposed to saturated steam(temprature,Tg=100°C) at atmospheric pressure.\n",
"L=0.4;\n",
"Tg=100;\n",
"#The fin is maintained at temprature,Tw=90°C by cooling water.\n",
"Tw=90;\n",
"print\"The properties of condensate(liquid water) are evaluated at the mean film temprature \"\n",
"#tf is mean film temprature\n",
"print\"The mean film temprature in°C is\"\n",
"tf=(Tg+Tw)/2\n",
"print\"tf=\",tf\n",
"#The properties of condensate are density(rho=962kg/m**3),conductivity(k=0.677W/(m*K)),viscosity(mu=3*10**-4 kg/(m*s))\n",
"rho=962;\n",
"k=0.677;\n",
"mu=3*10**-4;\n",
"#The value rhov=0.598kg/m**3 and hfg=2.27*10**6J/kg at 100°C are found from steam table\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"rhov=0.598;#rhov is vapour density\n",
"hfg=2.27*10**6;#hfg is enthalpy of vaporisation\n",
"print\"hfg=\",hfg\n",
"#The average heat transfer coefficient over length L is hbarL=0.943*((rho*(rho-rhov)*g*h*L**3)/(mu*k*(Tg-Tw)))**(1/4)\n",
"print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n",
"hbarL=0.943*((rho*(rho-rhov)*g*hfg*k**3)/(mu*L*(Tg-Tw)))**(1/4)\n",
"print\"hbar=\",hbar\n",
"#The rate of heat transfer per unit width is Q=hbarL*L*(Tg-Tw)\n",
"print\"The rate of heat transfer per unit width in W/m \"\n",
"Q=hbarL*L*(Tg-Tw)\n",
"print\"Q=\",Q\n",
"#The rate of condensation is given by mdotc=(Q/hfg)\n",
"print\"The total rate of condensation in kg/(s*m)\"\n",
"mdotc=(Q/hfg)\n",
"print\"mdotc=\",mdotc\n",
"print\"We have to check whether the flow is laminar or not \"\n",
"#Reynolds no is given by ReL=(4*mdotc)/(mu)\n",
"print\"Reynolds no. is\"\n",
"ReL=(4*mdotc)/(mu)\n",
"print\"Therefore the flow is laminar and hence the use of the equation is justified\"\n",
"print\"ReL=\",ReL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.2:pg-393"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\n",
"The mean film temprature in°C is\n",
"tf= 95\n",
"hfg= 2270000.0\n",
"The average heat transfer coefficient in W/(m**2*K)\n",
"hbar= 0.745\n",
"The total rate of condensation in kg/s\n",
"Check for reynolds no.\n",
"mdotc= 1.54657700017e-06\n",
"Reynolds number is\n",
"Re= 0.00343683777816\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 2\"\n",
"#Steam is condensed at temprature(Tg=100°C) on the outer surafce of a horizontal tube of length(L=3m) and diameter(d)=50mm or .05m\n",
"Tg=100;\n",
"L=3;\n",
"D=0.05;\n",
"#The Tube surface is maintained at temprature,Tw=90°C \n",
"Tw=90;\n",
"#tf is mean film temprature\n",
"print\"The mean film temprature in°C is\"\n",
"tf=(Tg+Tw)/2\n",
"print\"tf=\",tf\n",
"#The properties of condensate are density(rho=962kg/m**3),conductivity(k=0.677W/(m*K)),viscosity(mu=3*10**-4 kg/(m*s))\n",
"rho=962;\n",
"k=0.677;\n",
"mu=3*10**-4;\n",
"#The value rhov=0.598kg/m**3 and hfg=2.27*10**6J/kg at 100°C are found from steam table\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"rhov=0.598;#vapour density\n",
"hfg=2.27*10**6;#enthalpy of vaporisation\n",
"print\"hfg=\",hfg\n",
"#The average heat transfer coefficient hbar=0.745*((rho*(rho-rhov)*g*hfg*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n",
"print\"The average heat transfer coefficient in W/(m**2*K)\"\n",
"hbar=0.745*((rho*(rho-rhov)*g*hfg*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n",
"print\"hbar=\",hbar\n",
"#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n",
"print\"The total rate of condensation in kg/s\"\n",
"mdotc=(hbar*(math.pi*D*L)*(Tg-Tw))/hfg\n",
"print\"Check for reynolds no.\"\n",
"print\"mdotc=\",mdotc\n",
"#For a horizontal tube having length,L,perimeter is P=2L\n",
"P=2*L;\n",
"#Re is reynolds number\n",
"print\"Reynolds number is\"\n",
"Re=(4*mdotc)/(mu*P)\n",
"print\"Re=\",Re"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.3:pg-394"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\n",
"The mean film temprature in°C is\n",
"tf= 80\n",
"The average heat transfer coefficient over length L in W/(m**2*K)\n",
"hbar= 0.943\n",
"The rate of heat transfer in kW \n",
"Q= 0.016974\n",
"(b)The film thickness at the trailing edges in m is\n",
"delta= 1.0\n",
"The total rate of condensation in kg/s\n",
"mdotc= 7.47753303965e-06\n",
"Hence the average flow velocity at the trailing edge in m/s is\n",
"v= 2.56431174199e-08\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 3\"\n",
"#A vertical plate having length,(L)=1.5m is maintained at temprature(Tw) of 60°C in the presence of saturated steam(temprature,Tg=100°C) at atmospheric pressure.\n",
"L=1.5;\n",
"Tg=100;\n",
"Tw=60;\n",
"#Consider the width of plate to be (B)=0.3m\n",
"B=0.3;\n",
"#tf is the mean film temprature\n",
"print\"The mean film temprature in°C is\"\n",
"tf=(Tg+Tw)/2\n",
"print\"tf=\",tf\n",
"#The relevant properties are desity(rho=972kg/m**3),conductivity(k=0.670W/(m*K)),viscosity(mu=3.54*10**-4 kg/(m*s))\n",
"#specific heat(cp=4.2J/(kg*K)),vapur density(rhov(100°C)=0.598k/m**3),Enthalpy of vaporisation(hfg(100°C)=2.27*10**6J/kg)\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"rho=972;\n",
"k=0.670;\n",
"mu=3.54*10**-4;\n",
"cp=4.2;\n",
"rhov=0.598;\n",
"hfg=2.27*10**6;\n",
"#The average heat transfer coefficient over length L is hbar=0.943*((rho*(rho-rhov)*g*h*L**3)/(mu*k*(Tg-Tw)))**(1/4)\n",
"print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n",
"hbar=0.943*((rho*(rho-rhov)*g*hfg*k**3)/(mu*L*(Tg-Tw)))**(1/4)\n",
"print\"hbar=\",hbar\n",
"#The rate of heat transfer Q=hbarL*A*(Tg-Tw)\n",
"#Area(A)=L*B\n",
"A=L*B;\n",
"print\"The rate of heat transfer in kW \"\n",
"Q=(hbar*A*(Tg-Tw))/1000\n",
"print\"Q=\",Q\n",
"#The film thickness at the trailing edges is found out by delta=((4*mu*k*x*(Tg-Tw))/(g*hfg*rho*(rho-rhov)))**(1/4)\n",
"print\"(b)The film thickness at the trailing edges in m is\"\n",
"#at trailing edges x=1.5m\n",
"x=1.5;\n",
"delta=((4*mu*k*x*(Tg-Tw))/(g*hfg*rho*(rho-rhov)))**(1/4)\n",
"print\"delta=\",delta\n",
"#The rate of condensation is given by mdotc=(Q/hfg)\n",
"print\"The total rate of condensation in kg/s\"\n",
"mdotc=((Q*1000)/hfg)\n",
"print\"mdotc=\",mdotc\n",
"#v is the average flow velocity\n",
"print\"Hence the average flow velocity at the trailing edge in m/s is\"\n",
"v=(mdotc)/(rho*delta*B)\n",
"print\"v=\",v"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.4:pg-396"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\n",
"The mean film temprature in°C is\n",
"tf= 30\n",
" Modified enthalpy in J/kg is\n",
"hfgdash= 131330.0\n",
"The average heat transfer coefficient over length L in W/(m**2*K)\n",
"hbar= 0.555\n",
"The total rate of condensation in kg/hr\n",
"mdotc= 0.00716923260703\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 4\"\n",
"#Saturated freon-012 at Temprature(Tg)=35°C is condensed horizontal tube of diameter(D)=15mm or.015m at a lower vapour velocity.\n",
"#length,L=1m,Since per meter of tube is considered.\n",
"L=1;\n",
"Tg=35;\n",
"D=0.015;\n",
"#The tube wall is maintained at temprature(Tw)=25°C\n",
"Tw=25;\n",
"#For freon-12 at 35°C,enthalpy of vaporisation(hfg=131.33kJ/kg) and vapour density(rhov=42.68kg/m**3)\n",
"hfg=131.33*10**3;\n",
"rhov=42.68;\n",
"#tf is mean film temprature\n",
"print\"The mean film temprature in°C is\"\n",
"tf=(Tg+Tw)/2\n",
"print\"tf=\",tf\n",
"#The relevant properties at 30°C are density(rho=1.29*10**3kg/m**3),conductivity(k=0.071W/(mK)),viscosity(mu=2.50*10**-4kg/(m*s)),specific heat(cp=983J/(kg*°C))\n",
"rho=1.29*10**3;\n",
"k=0.071;\n",
"mu=2.50*10**-4;\n",
"cp=983;\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"#we found the modified enthalpy by using following equation hfgdash=hfg+(3/8)*cp*(Tg-Tw)\n",
"print\" Modified enthalpy in J/kg is\"\n",
"hfgdash=hfg+((3/8)*cp*(Tg-Tw))\n",
"print\"hfgdash=\",hfgdash\n",
"#The average heat transfer coefficient over length L is hbar=0.555*((rho*(rho-rhov)*g*hfgdash*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n",
"print\"The average heat transfer coefficient over length L in W/(m**2*K)\"\n",
"hbar=0.555*((rho*(rho-rhov)*g*hfgdash*k**3)/(mu*D*(Tg-Tw)))**(1/4)\n",
"print\"hbar=\",hbar\n",
"#The rate of condensation is given by mdotc=(hbar*(pi*D*L)*(Tg-Tw))/hfg\n",
"print\"The total rate of condensation in kg/hr\"\n",
"mdotc=((hbar*(math.pi*D*L)*(Tg-Tw))/hfg)*3600\n",
"print\"mdotc=\",mdotc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.5:pg-397"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\n",
"Heat transfer coefficient in W/m**2 is\n",
"h= 105042.262441\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 5\"\n",
"#A nickel wire of length(L)=0.1m,Diameter(D)=1mm or .001m \n",
"#Submerged horizontally in water at pressure=1 atm(101kPa) requires current,I=150A at voltage ,E=2.2V to maintain wire at temprature(T1)=110°C\n",
"L=0.1;\n",
"T1=110;\n",
"D=0.001;\n",
"I=150;\n",
"E=2.2;\n",
"#Area(A)=(math.pi*D*L)\n",
"A=math.pi*D*L;\n",
"#The saturation temprature of water at one atmospheric pressure(101kPa) is T2=100°C.\n",
"T2=100;\n",
"#We can write from energy balance E*I=h*A*(T1-T2),we can find heat transfer coefficient from it.\n",
"#h is heat transfer coefficient\n",
"print\"Heat transfer coefficient in W/m**2 is\"\n",
"h=(E*I)/(A*(T1-T2))\n",
"print\"h=\",h"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.6:pg-398"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\n",
"Critical Heat flux in W/m**2 is\n",
"qc= 202044.0\n",
"The burn out voltage in Volts is \n",
"E= 1.90421983831\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 6\"\n",
"#In a laboratory experiment,A current(I)=100A burns out a nickel wire having Diameter(D)=1mm or 0.001mm,length(L)=0.3m\n",
"I=100;\n",
"D=.001;\n",
"L=0.3;\n",
"#It is submerged horizontally in water at one atmospheric pressure.\n",
"#For saturated water at one atmospheric pressure,density(rhol=960kg/m**3),vapour density(rhov=0.60kg/m**3),enthalpy of vaporisation(hfg=2.26*10**6J/kg),surface tension(sigma=0.055N/m).\n",
"rhol=960;\n",
"rhov=0.60;\n",
"hfg=2.26*10**6;\n",
"sigma=0.055;\n",
"#Area(A)=(pi*D*L)\n",
"A=math.pi*D*L;\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"#The wire is burnt out when heat reaches its peak\n",
"#We use following expression to determine critical heat flux qc=0.149*hfg*rhov*((sigma*g*(rhol-rhov))/rhov**2)**(1/4)*((rhol+rhov)/rhol)**(1/2) \n",
"print\"Critical Heat flux in W/m**2 is\"\n",
"qc=0.149*hfg*rhov*((sigma*g*(rhol-rhov))/rhov**2)**(1/4)*((rhol+rhov)/rhol)**(1/2) \n",
"print\"qc=\",qc\n",
"#From the energy balance E*I=qc*A\n",
"#E is the burn out voltage\n",
"print\"The burn out voltage in Volts is \"\n",
"E=(qc*A)/I\n",
"print\"E=\",E"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.7:pg-399"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\n",
"Heat flux q in W/m**2 is\n",
"The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q<qc,The regime of boiling is nucleate.\n",
"q= 3636.07255495\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 7\"\n",
"#A heated nickel plate at temprature (T1)=110°C is submereged in water at one atmospheric pressure.\n",
"T1=110;\n",
"#For nucleate boiling coefficient(csf=0.006) and n=1\n",
"csf=0.006;\n",
"n=1;\n",
"#For saturated water at one atmospheric pressure,density of liquid(rhol=960kg/m**3),vapour density(rhov=0.60kg/m**3)\n",
"#enthalpy of vaporisation(hfg=2.26*10**6J/kg),surface tension(sigma=0.055N/m),saturation temprature(T2)=100°C\n",
"T2=100;\n",
"rhol=960;\n",
"rhov=0.60;\n",
"hfg=2.26*10**6;\n",
"sigma=0.055;\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"#We take specific heat of liquid(cpl=4.216kJ/(kg*K)),prandtl number of liquid(Prl=1.74),viscosity of liquid(mul=2.82*10**-4kg/(m*s))\n",
"cpl=4.216*10**3;\n",
"Prl=1.74;\n",
"mul=2.82*10**-4;\n",
"#The heat flux q is given by expression q=(mul*hfg)*(((rhol-rhov)*g)/sigma)**(1/2)*((cpl*(T1-T2))*(csf*hfg*prl**n))**3 \n",
"print\"Heat flux q in W/m**2 is\"\n",
"q=(mul*hfg)*(((rhol-rhov)*g)/sigma)**(1/2)*((cpl*(T1-T2))/(csf*hfg*Prl**n))**3 \n",
"print\"The peak heat flux for water at one atmospheric pressure is qc=1.24*10**6(found in example 9.6).Since q<qc,The regime of boiling is nucleate.\"\n",
"print\"q=\",q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex9.8:pg-401"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 9, Example 8\n",
"The heat flux in W/m**2 is\n",
"q= 750000.0\n",
"The surface temprature in °C is\n",
"Tw= 120.0\n",
"The value of the coefficient csf is \n",
"csf= 0.0214423761571\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 9, Example 8\"\n",
"#A Copper bar whose one end is exposed to boiling water while the other end is encapsulated by an electric heater.\n",
"#Thermocouples are inserted in the bar to measure the tempratures at two locations A and b at distances xA=10mm and xB=30mm from the surface.\n",
"xA=.010;\n",
"xB=.030;\n",
"#Under steady condition nucleate boiling is maintained in saturated water at atmospheric pressure and the tempratures are TA=140°C and TB=180°C,n=1\n",
"TA=140;\n",
"TB=180;\n",
"n=1;\n",
"#The values of relevant properties of water and other parameters are \n",
"#density of liquid(rhol=960kg/m**3),vapour density(rhov=0.60kg/m**3),specific heat of liquid(cpl=4.216 kJ/(kg*K))\n",
"#enthalpy of vaporisation(hfg=2.26*106J/kg),prandtl number of liquiid(Prl=1.74),viscosity of liquid(mul=2.82*10**-4kg/(m*s)),surface tension(sigma1=0.055N/m).\n",
"rhol=960;\n",
"rhov=0.60;\n",
"cpl=4.216*10**3;\n",
"hfg=2.26*10**6;\n",
"Prl=1.74;\n",
"mul=2.82*10**-4;\n",
"sigma1=0.055;\n",
"#We have to know the value of heat flux(q) and the surface temprature(Tw).\n",
"#Since we know the tempratures at location A and B,The heat flux q is determined by fourier law of heat conduction in the bar at steady-state as\n",
"#q=k*((TB-TA)/(xB-xA))\n",
"#We take for copper conductivity,k=375W/(m*K)\n",
"k=375;\n",
"print\"The heat flux in W/m**2 is\"\n",
"q=k*((TB-TA)/(xB-xA))\n",
"print\"q=\",q\n",
"#g is acceleration due to gravity =9.81m/s**2\n",
"g=9.81;\n",
"#The surface temprature is given by Tw=TA-((TB-TA)/(xB-xA))*xA\n",
"print\"The surface temprature in °C is\"\n",
"Tw=TA-((TB-TA)/(xB-xA))*xA\n",
"print\"Tw=\",Tw\n",
"#Temprature,T=100°C,since copper bar is exposed to boiling water. \n",
"T=100;\n",
"#Now we use following equation to determine csf,q=(mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)*((cpl*(Tw-T))/(csf*hfg*Prl**n))**3 \n",
"#Manipulating above equation to find csf we get csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2))**(1/3))*hfg*Prl**n))\n",
"print\"The value of the coefficient csf is \"\n",
"csf=((cpl*(Tw-T))/(((q/((mul*hfg)*(((rhol-rhov)*g)/sigma1)**(1/2)))**(1/3))*hfg*Prl**n))#[NOTE:The answer in the book is incorrect.(Calcultion mistake)]\n",
"print\"csf=\",csf"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|