1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 02:One dimensional steady-state heat conduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.1:pg-33"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 1\n",
"The convective resistance Ro= 1/(ho*A) at the outer surface in KW**-1 is\n",
"Ro= 0.0666666666667\n",
"The conduction resistance Rs= Ls/(ks*A) of steel sheet in KW**-1 is\n",
"Rs= 8e-05\n",
"The conduction resistance Rg= Lg/(kg*A) of glass wool in KW**-1 is\n",
"Rg= 2.66666666667\n",
"The conduction resistance Rp= Lp/(kp*A) of plywood in KW**-1 is\n",
"Rp= 0.266666666667\n",
"The convective resistance Ri= 1/(hi*A) at the outer surface in KW**-1 is\n",
"Ri= 0.111111111111\n",
"The rate of heat flow Q=(To-Ti)/(Ro+Rs+Rg+Rp+Ri) in W is\n",
"Q= 12.5353919471\n",
"The temprature at the outer surface of wall is T1=To-(Q*Ro) in °C\n",
"T1= 23.1643072035\n",
"The temprature at the interface b/w steel sheet and glass wool is T2=T1-(Q*Rs) in°C\n",
"T2= 23.1633043722\n",
"The temprature at the interface b/w glass wool and plywood is T3=T2-(Q*Rg) in°C\n",
"T3= -10.2644074867\n",
"The temprature at the inner surface of wall is T4=T3-(Q*Rp)in °C\n",
"T4= -13.6071786725\n",
"Check for Ti(in °C)\n",
"The value is same as given in the problem\n",
"Ti= -15.0\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 1\"\n",
"#The length of steel sheet (Ls)=1.5 mm and thermal conductivity (ks)=25 W/(mK) at the outer surface.\n",
"Ls=1.5;\n",
"ks=25;\n",
"#The length of plywood (Lp)=10 mm and thermal conductivity (kp)= .05 W/(mK) at the inner surface.\n",
"Lp=10;\n",
"kp=.05;\n",
"#The length of glass wool (Lg)=20 mm and thermal conductivity (kg)= .01W/(mK) in between steel sheet and plywood.\n",
"Lg=20;\n",
"kg=.01;\n",
"#The temprature of van inside cold Enviroment is (Ti)= -15°C while the outside surface is exposed to a surrounding ambient temprature (To)=24°C \n",
"To=24;\n",
"Ti=-15;\n",
"#The average value of heat transfer coefficients at the inner and outside surfaces of the wall are hi=12 W/(m**2*K) and ho= 20 W/(m**2*K) \n",
"hi=12;\n",
"ho=20;\n",
"#The surface area of wall (A)= .75 m**2 \n",
"A=.75;\n",
"#The convective resistance is Ro= 1/(ho*A) at the outer surface\n",
"print\"The convective resistance Ro= 1/(ho*A) at the outer surface in KW**-1 is\"\n",
"Ro=1/(ho*A)\n",
"print\"Ro=\",Ro\n",
"#The conduction resistance is Rs= Ls/(ks*A) of steel sheet\n",
"print\"The conduction resistance Rs= Ls/(ks*A) of steel sheet in KW**-1 is\"\n",
"Rs=Ls*10**-3/(ks*A)\n",
"print\"Rs=\",Rs\n",
"#The conduction resistance is Rg= Lg/(kg*A) of glass wool\n",
"print\"The conduction resistance Rg= Lg/(kg*A) of glass wool in KW**-1 is\"\n",
"Rg= Lg*10**-3/(kg*A)\n",
"print\"Rg=\",Rg\n",
"#The conduction resistance is Rp= Lp/(kp*A) of plywood\n",
"print\"The conduction resistance Rp= Lp/(kp*A) of plywood in KW**-1 is\"\n",
"Rp= Lp*10**-3/(kp*A)\n",
"print\"Rp=\",Rp\n",
"#The convective resistance is Ri= 1/(hi*A) at the outer surface\n",
"print\"The convective resistance Ri= 1/(hi*A) at the outer surface in KW**-1 is\"\n",
"Ri= 1/(hi*A)\n",
"print\"Ri=\",Ri\n",
"#The rate of heat flow is Q=(To-Ti)/(Ro+Rs+Rg+Rp+Ri)\n",
"print\"The rate of heat flow Q=(To-Ti)/(Ro+Rs+Rg+Rp+Ri) in W is\"\n",
"Q=(To-Ti)/(Ro+Rs+Rg+Rp+Ri)\n",
"print\"Q=\",Q\n",
"#The tempraure at the outer surface of wall is T1.\n",
"#The temprature at the interface b/w steel sheet and glass wool is T2.\n",
"#The temprature at the interface b/w glass wool and plywood is T3.\n",
"#The tempraure at the inner surface of wall is T4.\n",
"print\"The temprature at the outer surface of wall is T1=To-(Q*Ro) in °C\"\n",
"T1=To-(Q*Ro)\n",
"print\"T1=\",T1\n",
"print\"The temprature at the interface b/w steel sheet and glass wool is T2=T1-(Q*Rs) in°C\"\n",
"T2=T1-(Q*Rs)\n",
"print\"T2=\",T2\n",
"print\"The temprature at the interface b/w glass wool and plywood is T3=T2-(Q*Rg) in°C\"\n",
"T3=T2-(Q*Rg)\n",
"print\"T3=\",T3\n",
"print\"The temprature at the inner surface of wall is T4=T3-(Q*Rp)in °C\"\n",
"T4=T3-(Q*Rp)\n",
"print\"T4=\",T4\n",
"#Check for Ti(Temprature inside the van)\n",
"print\"Check for Ti(in °C)\"\n",
"Ti=T4-(Q*Ri)\n",
"print\"The value is same as given in the problem\"\n",
"print\"Ti=\",Ti\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.2:pg-36"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 2\n",
"The thickness of insulating material L=ki*(((Ti-To)/Q)-(Lb/kb)) in m\n",
"L= 0.056\n"
]
}
],
"source": [
" \n",
"\n",
" \n",
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 2\"\n",
"#The Thickness of fire clay bricks (Lb)=.2 m\n",
"Lb=0.2;\n",
"#The thermal conductivity of fire clay bricks(kb)=1.0 W/(m*K)\n",
"kb=1;\n",
"#the Thicknes of insulating material is L\n",
"#The thermal conductivity of insulating material(ki)=.07 W/(m*K)\n",
"ki=.07;\n",
"#The furnace inner brick surface is at temprature Ti=1250 K\n",
"Ti=1250;\n",
"#The furnace outer brick surface is at temprature To=310 K\n",
"To=310;\n",
"#The maximum allowable heat transfer rate(Q) from wall = 900 W/m**2\n",
"Q=900;\n",
"#Q=(Ti-To)/((Lb/kb)+(L/ki)) so L=ki*(((Ti-To)/Q)-(Lb/kb))\n",
"print\"The thickness of insulating material L=ki*(((Ti-To)/Q)-(Lb/kb)) in m\"\n",
"L=ki*(((Ti-To)/Q)-(Lb/kb))\n",
"print\"L=\",L\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.4:pg-36"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 4\n",
"Heat transfer per unit surface area through film qf=(To-Tinf)/((1/h)+(Lf/kf))in W/(m**2)\n",
"qf= 4000.0\n",
"Heat transfer per unit surface area through substrate qs=(To-T1/(Ls/ks)in W/(m**2)\n",
"qs= 1000.0\n",
"Heat flux qo=qs+qf in W/(m**2)\n",
"qo= 5000.0\n",
"If the film is not transparent and all of the radiant heat flux is absorbed at its upper surface then\n",
"Rate of heat conduction through the film and substrate q1=(To-T1)/(Ls/ks) in W/m**2\n",
"q1= 1000.0\n",
"The temprature of the top surface of the film T2=(q1*(Lf*10**-3/kf))+To in °C\n",
"T2= 70.0\n",
"Rate of convective heat transfer from the upper surface of film to air q2=h*(T2-Tinf)in W/m**2\n",
"q2= 1250.0\n",
"Heat flux qo=q1+q2 in W/m**2 \n",
"qo= 2250.0\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 4\"\n",
"#To cure the bond at a temprature(To),a radiant source used to provide a heat flux qo W/m**2 \n",
"#The back of the substrate is maintained at a temprature T1\n",
"#The film is exposed to air at a temprature (Tinf)\n",
"#the convective heat transfer coefficient is h.\n",
"#Given To=60°C,Tinf=20°C,h=25 W/(m**K)and T1=30°C\n",
"To=60;\n",
"Tinf=20;\n",
"h=25;\n",
"T1=30;\n",
"#Ls is the thickness of substrate and Lf is thickness of film in mm.\n",
"Ls=1.5;\n",
"Lf=.25;\n",
"#kf and ks are thermal conductivity of film and substrate respectively in W/(m*K)\n",
"kf=.025;\n",
"ks=.05;\n",
"#qo is Heat flux.\n",
"#qo=qf+qs where qf and qs are rate of heat transfer per unit surface area through the film and the substrate respectively.\n",
"print\"Heat transfer per unit surface area through film qf=(To-Tinf)/((1/h)+(Lf/kf))in W/(m**2)\"\n",
"qf=(To-Tinf)/((1/h)+(Lf*10**-3/kf))\n",
"print\"qf=\",qf\n",
"print\"Heat transfer per unit surface area through substrate qs=(To-T1/(Ls/ks)in W/(m**2)\"\n",
"qs=(To-T1)/(Ls*10**-3/ks)\n",
"print\"qs=\",qs\n",
"print\"Heat flux qo=qs+qf in W/(m**2)\"\n",
"qo=qs+qf\n",
"print\"qo=\",qo\n",
"#If the film is not transparent and all of the radiant heat flux is absorbed at its upper surface then qo=q1+q2\n",
"#q1 is rate of heat conduction through the film and substrate\n",
"#q2 is rate of convective heat transfer from the upper surface of film to air\n",
"print\"If the film is not transparent and all of the radiant heat flux is absorbed at its upper surface then\"\n",
"print\"Rate of heat conduction through the film and substrate q1=(To-T1)/(Ls/ks) in W/m**2\"\n",
"q1=(To-T1)/(Ls*10**-3/ks)\n",
"print\"q1=\",q1\n",
"#To determine q2 we need to find the temprature(T2) of the top surface \n",
"print\"The temprature of the top surface of the film T2=(q1*(Lf*10**-3/kf))+To in °C\"\n",
"T2=(q1*(Lf*10**-3/kf))+To\n",
"print\"T2=\",T2\n",
"print\"Rate of convective heat transfer from the upper surface of film to air q2=h*(T2-Tinf)in W/m**2\"\n",
"q2=h*(T2-Tinf)\n",
"print\"q2=\",q2\n",
"print\"Heat flux qo=q1+q2 in W/m**2 \"\n",
"qo=q1+q2\n",
"print\"qo=\",qo\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.6:pg-38"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Introduction to heat transfer by S.K.Som, Chapter 2, Example 6\n",
"(a)The expression for the temprature distribution in the plate T=160+2*10**3*(x-100*x**2)\n",
"(b)The maximum temprature occurs at x=5mm or 0.005m away from the left surface towards the right\n",
"The maximum temprature(Tmax) in °C is\n",
"Tmax= 165.0\n",
"(c(i))The rate of heat transfer at the left face in MW/m**2 is\n",
"Q= -1\n",
"The minus sign indicates that the heat flow in the negative direction\n",
"(c(ii))The rate of heat transfer at the right face in MW/m**2 is\n",
"Q= 1.2\n",
"The minus sign for (q/A)@x=0 and the plus sign for (q/A)@x=0.02 indicates that heat is lost from both the surfaces to surroundings\n",
"(c(iii))The rate of heat transfer at the centre in MW/m**2 is\n",
"Q= 0.4\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 6\"\n",
"#The thickness of plate 20mm or .02m with uniform heat generation qg=80MW/m**3\n",
"#The thermal conductivity of wall(k)is 200W/m*K.\n",
"k=200;\n",
"#The left and right faces are kept at tempratures T=160°C and T=120°C respectively\n",
"#We start with the equation (d**2T/dx**2)+(qg/k)=0 or T=-(qg/2k)*x**2 +(c1*x)+c2 \n",
"#With qg=80*10**6W/m**3 and k=200W/(m*K)\n",
"#Applying boundary condition at x=0,T=160°C and x=0.02,T=120°C we get constant c2=160°C and c2=2000m**-1\n",
"#Hence T=160+2*10**3*(x-100*x**2)----->eq.1\n",
"print\"(a)The expression for the temprature distribution in the plate T=160+2*10**3*(x-100*x**2)\" \n",
"#For maximum temprature differentiating eq.1 with respect to x and equating it to zero...we get dT/dx=(2*10**3)-(4*10**5*x)=0,which gives x=0.005m=5mm\n",
"print\"(b)The maximum temprature occurs at x=5mm or 0.005m away from the left surface towards the right\"\n",
"x=0.005;\n",
"#The maximum temprature is Tmax\n",
"print\"The maximum temprature(Tmax) in °C is\"\n",
"Tmax=160+2*10**3*(x-100*x**2)\n",
"print\"Tmax=\",Tmax\n",
"#The rate of heat transfer(q/A) is given by -k*(dT/dx)\n",
"#Let dT/dx=X and (q/A)=Q\n",
"print\"(c(i))The rate of heat transfer at the left face in MW/m**2 is\"\n",
"#For left face x=0\n",
"x=0;\n",
"X=(2*10**3)-(4*10**5*x);\n",
"Q=-k*X/10**6\n",
"print\"Q=\",Q\n",
"print\"The minus sign indicates that the heat flow in the negative direction\"\n",
"print\"(c(ii))The rate of heat transfer at the right face in MW/m**2 is\"\n",
"#For right face x=0.02\n",
"x=0.02;\n",
"X=(2*10**3)-(4*10**5*x);\n",
"Q=-k*X/10**6\n",
"print\"Q=\",Q\n",
"#(q/A)@x=0 implies rate of heat transfer at the position where x=0. \n",
"print\"The minus sign for (q/A)@x=0 and the plus sign for (q/A)@x=0.02 indicates that heat is lost from both the surfaces to surroundings\"\n",
"print\"(c(iii))The rate of heat transfer at the centre in MW/m**2 is\"\n",
"#For centre x=0.01\n",
"x=0.01;\n",
"X=(2*10**3)-(4*10**5*x);\n",
"Q=-k*X/10**6\n",
"#A check for the above results can be made from an energy balance of the plate as |(q/A)|@x=0+|(q/A)|@x=0.02=qG*0.02\n",
"print\"Q=\",Q\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.9:pg- 48"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 9\n",
"The critical thickness of insulation in metre is\n",
"X= 0.182340462632\n",
"The heat transfer rate Q per metre of tube length in W/m is \n",
"Q= 26.807459995\n",
"X= 0.559673817307\n",
"The heat transfer rate per metre of tube length Q in W/m is \n",
"Q= 28.1996765363\n",
"X= 1.79194526577\n",
"The heat transfer rate per metre of tube length Q in W/m is \n",
"Q= 21.1086798197\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 9\"\n",
"#A thin walled copper tube of outside metal radius r=0.01m carries steam at temprature, T1=400K.It is inside a room where the surrounding air temprature is Tinf=300K.\n",
"T1=400;\n",
"Tinf=300;\n",
"r=0.01;\n",
"#The tube is insulated with magnesia insulation of an approximate thermal conductivity of k=0.07W/(m*K)\n",
"k=0.07;\n",
"#External convective Coefficient h=4W/(m**2*K)\n",
"h=4;\n",
"#Critical thickness(rc) is given by k/h\n",
"print\"The critical thickness of insulation in metre is\"\n",
"rc=k/h\n",
"#We use the rate of heat transfer per metre of tube length as Q=(Ti-Tinf)/((ln(r2/r1)/(2*math.pi*L*k))+(1/(h*2*math.pi*r2*L))) where length,L=1m\n",
"L=1;\n",
"#When 0.002m thick layer of insulation r1=0.01m,r2=0.01+0.002=0.012m\n",
"r1=0.01;#inner radius\n",
"r2=0.012;#outer radius\n",
"#Let ln(r2/r1)=X\n",
"X=math.log(r2/r1)/math.log(2.718);\n",
"print\"X=\",X\n",
"#The heat transfer rate per metre of tube length is Q\n",
"print\"The heat transfer rate Q per metre of tube length in W/m is \"\n",
"Q=(T1-Tinf)/(((X)/(2*math.pi*L*k))+(1/(h*2*math.pi*r2*L)))\n",
"print\"Q=\",Q\n",
"#When critical thickness of insulation r1=0.01m,r2=0.0175m\n",
"r2=0.0175;#outer radius\n",
"r1=0.01;#inner radius\n",
"#Let ln(r2/r1)=X\n",
"X=math.log(r2/r1)/math.log(2.718);\n",
"print\"X=\",X\n",
"#The heat transfer rate per metre of tube length is Q \n",
"print\"The heat transfer rate per metre of tube length Q in W/m is \"\n",
"Q=(T1-Tinf)/(((X)/(2*math.pi*L*k))+(1/(h*2*math.pi*r2*L)))\n",
"print\"Q=\",Q\n",
"#When there is a 0.05 m thick layer of insulation r1=0.01m,r2=.01+0.05=0.06m\n",
"r1=0.01;#inner radius\n",
"r2=0.06;#outer radius\n",
"#Let ln(r2/r1)=X\n",
"X=math.log(r2/r1)/math.log(2.718);\n",
"print\"X=\",X\n",
"#The heat transfer rate per metre of tube length is Q \n",
"print\"The heat transfer rate per metre of tube length Q in W/m is \"\n",
"Q=(T1-Tinf)/(((X)/(2*math.pi*L*k))+(1/(h*2*math.pi*r2*L)))\n",
"#It is important to note that Q increases by 5.2% when the insulation thickness increases from 0.002m to critical thickness. \n",
"#Addition of insulation beyond the critical thickness decreases the value of Q (The heat loss).\n",
"print\"Q=\",Q\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.10:pg-49"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 10\n",
"the thickness of insulation in metre is\n",
"t= 0.019\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 10\"\n",
"#A copper pipe having 35mm outer diameter(Do) and 30mm inner diameter(Di) carries liquid oxygen to the storage site of a space shuttle at temprature,T1=-182°C\n",
"#mass flow rate is ,mdot=0.06m**3/min. \n",
"Di=0.03;#in metre\n",
"Do=0.035;# in metre\n",
"T1=-182;\n",
"mdot=0.06;\n",
"#The ambient air is at temprature(Ta)=20°C and has a dew point(T3)=10°C.\n",
"Ta=20;\n",
"T3=10;\n",
"#The thermal conductivity(k) of insulating material is 0.02W/(m*k)\n",
"k=0.02;\n",
"#The convective heat transfer coefficient on the outside is h=17W/(m**2*K)\n",
"h=17;\n",
"#The thermal conductivity of copper kcu=400W/(m*K)\n",
"kcu=400;\n",
"#We can write Q=((Ta-T1)/(R1+R2+R3))=((Ta-T3)/(R3)),Rearranging we get ((R1+R2+R3)/(R3))=((Ta-T1)/(Ta-T3))--------eq.1\n",
"#The conduction Resistance of copper pipe(R1)=ln(0.035/0.03)/(2*math.pi*L*kcu)=3.85*10**-4/(2*math.pi*L)K/W\n",
"#The conduction resistance of insulating material (R2)=ln(r3/0.035)/(2*math.pi*L*k)=(1/(2*math.pi*L))((50*ln(r3/0.035)))K/W where r3 is the outer radius of insulation in metres.\n",
"#The convective resistance at the outer surface(R3)=1/(2*math.pi*L*h*r3)=(1/2*math.pi*L)*(mdot/r3)K/W\n",
"#Substituting the values in eq.1 we have 1+((50*ln(r3/0.035)+(3.85*10**-4))/(mdot/r3))=20-(-182)/(20-10)\n",
"#A rearrangement of the above equation gives r3*ln(r3)+3.35*r3=0.023\n",
"#The equation is solved by trial and error method which finally gives r3=0.054m\n",
"r3=0.054;#outer radius of insulation\n",
"#Therefore the thickness of insulation is given by t=r3-Do\n",
"print\"the thickness of insulation in metre is\"\n",
"t=r3-Do\n",
"print\"t=\",t\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.11:pg-52"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 11\n",
"The rate of heat generation of thermal energy in W/m**3 is\n",
"qG= 407436654.315\n",
"The temprature of wire at the centre in K is \n",
"To= 656.631455962\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 11\"\n",
"#An electrical resistance wire 2.5mm or 2.5*10**-3m in diameter(D) and L=0.5m long has a measured voltage drop of E=25V for a current flow of I=40A.\n",
"D=2.5*10**-3;\n",
"I=40;\n",
"E=25;\n",
"L=0.5;\n",
"ro=D/2;#ro is radius of wire\n",
"#The thermal conductivity(k) of wire material is 24W/(m*K) \n",
"k=24;\n",
"#The rate of generation of thermal energy per unit volume is given by qG=(E*I)/(L*math.pi*D**2/4)\n",
"print\"The rate of heat generation of thermal energy in W/m**3 is\"\n",
"qG=(E*I)/(L*math.pi*D**2/4)\n",
"print\"qG=\",qG\n",
"#The temprature at the centre is given by To=Tw+((qG*ro**2)/(4*k)) where Tw=650K is surface temprature \n",
"Tw=650;\n",
"print\"The temprature of wire at the centre in K is \"\n",
"To=Tw+((qG*ro**2)/(4*k))\n",
"#Note:The answer in the book is incorrect(value of D has been put instead of ro)\n",
"print\"To=\",To\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.12:pg-56"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 12\n",
"The inner(A1) and outer surfaces(A2) areas of the tank in m**2 are\n",
"The convective resistance(Ri) at the inner surface in K/W is \n",
"Ri= 0.000159154943092\n",
"The conduction resistance(Rs)of the tank in K/W is\n",
"Rs= 0.0\n",
"The convective resistance(Roc) at the outer surface in K/W is\n",
"Roc= 0.00127323954474\n",
"The radiative heat transfer coefficient hr in W/(m**2*K) is\n",
"hr= 5.26265474661\n",
"Therefore the radiative resistance(Ror) at the outer surface in K/W is\n",
"Ror= 0.00241938642385\n",
"The equivalent resistance in K/W is\n",
"Ro= 0.000834218925785\n",
"The total resistance in K/W is\n",
"Rtotal= 0.000993373868877\n",
"The rate of heat transfer,Q in W is\n",
"Q= 20133.406592\n",
"The outer surface temprature in °C is\n",
"T2= 3.2043311804\n",
"which is sufficiently close to the assumption.So there is no need of further iteration\n",
"The total heat transfer(Qt) during a 24-hour period in KJ is\n",
"Qt= 1739526.32955\n",
"Therefore,the amount of ice(mice)in kG which melts during a 24 hour period is\n",
"mice= 5208.16266333\n"
]
}
],
"source": [
"\n",
" \n",
" \n",
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 12\"\n",
"#A spherical tank of internal diameter, Di=5m ,made of t=25mm thick stainless steel(thermal conductivity,k=15W/(m*K)),is used to store water at temprature(Ti)=0°C.Do is outer diameter\n",
"Di=5;\n",
"t=25;\n",
"Do=5+2*(t/1000);#in metre\n",
"k=15;\n",
"Ti=0;\n",
"#The tank is located in a room whose temprature is (To)=20°C.\n",
"To=20;\n",
"#Emmisivity is 1.\n",
"#The convection heat transfer coefficients at the inner and outer surfaces of the tank are hi=80W/(m**2*K) and ho=10W/(m**2*K)\n",
"hi=80;\n",
"ho=10;\n",
"#The heat of fusion of ice at atmospheric pressure is deltahf=334kJ/kg.The stefan-boltzman constant(sigma) is 5.67*10**-8W/m**2.\n",
"sigma=5.67*10**-8;\n",
"deltahf=334;\n",
"#The inner surface area is (A1) and outer surface area is (A2)of the tank\n",
"print\"The inner(A1) and outer surfaces(A2) areas of the tank in m**2 are\"\n",
"A1=math.pi*Di**2\n",
"A2=math.pi*Do**2\n",
"#The individual thermal resistances can be determined as\n",
"#The convective resistance is (Ri)\n",
"print\"The convective resistance(Ri) at the inner surface in K/W is \"\n",
"Ri=1/(hi*A1)\n",
"print\"Ri=\",Ri\n",
"#The conduction resistance is(Rs)\n",
"print\"The conduction resistance(Rs)of the tank in K/W is\"\n",
"Rs=(Do-Di)/(2*k*math.pi*Di*Do)\n",
"print\"Rs=\",Rs\n",
"#The convective resistance is(Roc)\n",
"print\"The convective resistance(Roc) at the outer surface in K/W is\"\n",
"Roc=1/(ho*A2)\n",
"print\"Roc=\",Roc\n",
"#The radiative resistance(Ror) at the outer surface is Ror=1/(A2*hr) \n",
"#The radiative heat transfer coefficient hr is determined by hr=sigma*(T2**2+293.15**2)*(T2+293.15)\n",
"#But we do not know the outer surface temprature T2 of the tank and hence we cannot determine the value of hr.\n",
"#Therfore we adopt an iterative procedure.We assume T2=4°C=277.15K.Putting the value in hr=sigma*(T2**2+293.15**2)*(T2+293.15) we get\n",
"T2=277.15;\n",
"print\"The radiative heat transfer coefficient hr in W/(m**2*K) is\"\n",
"hr=sigma*(T2**2+293.15**2)*(T2+293.15)\n",
"print\"hr=\",hr\n",
"print\"Therefore the radiative resistance(Ror) at the outer surface in K/W is\"\n",
"Ror=1/(A2*hr)\n",
"print\"Ror=\",Ror\n",
"#The two parallel resistances Roc and Ror can be replaced by an equivalent resistance Ro as X=(1/Ro)=(1/Roc)+(1/Ror)\n",
"print\"The equivalent resistance in K/W is\"\n",
"X=(1/Roc)+(1/Ror);\n",
"Ro=1/X\n",
"print\"Ro=\",Ro\n",
"#Now the resistance Ri,Rs and Ro are in series an hence the total resistance becomes Rtotal=Ri+Rs+Ro \n",
"print\"The total resistance in K/W is\"\n",
"Rtotal=Ri+Rs+Ro \n",
"print\"Rtotal=\",Rtotal\n",
"#The rate of heat transfer is given by Q=(To-Ti)/Rtotal\n",
"print\"The rate of heat transfer,Q in W is\"\n",
"Q=(To-Ti)/Rtotal\n",
"print\"Q=\",Q\n",
"#The outer surface(T2) is calculated as T2=To-Q*Ro\n",
"print\"The outer surface temprature in °C is\"\n",
"T2=To-Q*Ro\n",
"print\"T2=\",T2\n",
"print\"which is sufficiently close to the assumption.So there is no need of further iteration\"\n",
"#The total heat transfer is (Qt),during a 24-hour period\n",
"print\"The total heat transfer(Qt) during a 24-hour period in KJ is\"\n",
"Qt=Q*24*3600/1000\n",
"print\"Qt=\",Qt\n",
"#the amount of ice in kG which melts during a 24 hour period is (mice)\n",
"print\"Therefore,the amount of ice(mice)in kG which melts during a 24 hour period is\"\n",
"mice=Qt/deltahf\n",
"print\"mice=\",mice\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.13:pg-68"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 13\n",
"P/A in m**-1 is\n",
"X= 400.0\n",
"m in m**-1 is\n",
"m= 3.28797974611\n",
"M in W/K is\n",
"M= 0.0955478103936\n",
"thetab in °C is \n",
"thetab= 100\n",
"Heat loss from rod in Watt, for different value of length(in m) is \n",
"Q= 0.705573384326\n",
"Q= 1.32655528327\n",
"Q= 2.53006298798\n",
"Q= 5.56299390901\n",
"Q= 8.29001416681\n",
"Q= 9.45769063154\n",
"Q= 9.52862252977\n",
"Q= 9.55478103936\n",
"For an infintely long rod heat loss in W is\n",
"We see that since k is large there is significant difference between the finite length and the infinte length cases\n",
"However when the length of the rod approaches 1m,the result become almost same.\n",
"Qinf= 9.55478103936\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 13\"\n",
"#A very long,10mm diameter(D) copper rod(thermal conductivity,k=370W/(m*K))is exposed to an enviroment at temprature,Tinf=20°C.\n",
"D=0.01;\n",
"k=370;\n",
"Tinf=20;\n",
"#The base temprature of the radius maintained at Tb=120°C.\n",
"Tb=120;\n",
"#The heat transfer coefficient between the rod and the surrounding air is h=10W/(m*K**2)\n",
"h=10;\n",
"#The rate of heat transfer for all finite lengths will be given by P/A=(4*pi*D)/(pi*D**2)\n",
"#Let P/A=X\n",
"print\"P/A in m**-1 is\"\n",
"X=(4*math.pi*D)/(math.pi*D**2)\n",
"print\"X=\",X\n",
"#m is defined as ((h*p)/(k*A)]**0.5 \n",
"print\"m in m**-1 is\"\n",
"m=(h*X/k)**0.5\n",
"print\"m=\",m\n",
"#Let Y=h/(m*k)\n",
"Y=h/(m*k)\n",
"#Let M=(h*P*k*A)**0.5\n",
"P=(math.pi*D);#perimeter of the rod\n",
"A=(math.pi*D**2)/4;#Area of the rod\n",
"print\"M in W/K is\"\n",
"M=(h*P*k*A)**0.5\n",
"print\"M=\",M\n",
"#thetab is the parameter that defines the base temprature\n",
"print\"thetab in °C is \"\n",
"thetab=Tb-Tinf\n",
"print\"thetab=\",thetab\n",
"#Heat loss from the rod is defined as Q=(h*P*k*A)*thetab*(((h/m*k)+math.tanh(m*L)]/(1+(h/m*k)*math.tanh(m*L)]}\n",
"print\"Heat loss from rod in Watt, for different value of length(in m) is \"\n",
"L=0.02#Length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=0.04#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=0.08#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=0.20#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=0.40#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=0.80#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=1.00#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"L=10.00#length of rod\n",
"Q=M*thetab*(((Y)+math.tanh(m*L))/(1+(Y)*math.tanh(m*L)))\n",
"print\"Q=\",Q\n",
"#For an infinitely long rod we use heat loss as ,Qinf=(h*P*k*A)**0.5*thetab\n",
"print\"For an infintely long rod heat loss in W is\"\n",
"Qinf=(h*P*k*A)**0.5*thetab\n",
"print\"We see that since k is large there is significant difference between the finite length and the infinte length cases\"\n",
"print\"However when the length of the rod approaches 1m,the result become almost same.\" \n",
"print\"Qinf=\",Qinf\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.14:pg-81"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 14\n",
"The thermal conductivity of Rod B kB in W/(m*K) is \n",
"kB= 18.0\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 14\"\n",
"#Considering two very long slender rods of the same diameter but of different materials.\n",
"#The base of each rod is maintained at 100°C while the surfaces of the rod are exposed to 20°C\n",
"#By traversing length of each rod with a thermocouple it was observed that tempratures of rod were equal at the position xA=0.15m and xB=0.075 from base.\n",
"xA=0.15;\n",
"xB=0.075;\n",
"#Thermal conductivity of rod A is known to be kA=72 W/(m*K)\n",
"kA=72;\n",
"#In case of a very long slender rod we use the tip boundary condition thetaL=0 as L--->infinity\n",
"#Therfore we can write for the locations where the tempratures are equal thetab*e**(-mA*xA)=thetab*e**(-mB*xB) or xA/xB=mB/mA,Again mB/mA=(kA/kB)**0.5\n",
"#So kB=kA*(xB/xA)**2\n",
"#The thermal conductivity of Rod B iskB\n",
"print\"The thermal conductivity of Rod B kB in W/(m*K) is \"\n",
"kB=kA*(xB/xA)**2\n",
"print\"kB=\",kB\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex2.15:pg-83"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 2, Example 15\n",
" perimeter of each fin in m is\n",
"P= 0.202\n",
"Cross sectional area of fin in m**2 is\n",
"A= 0.0001\n",
"M= 0.834805366538\n",
"m= 36.2958855016\n",
"Temprature parameter at fin base in K is\n",
"thetab= 100\n",
"Fixed temprature at fin tip in K is\n",
"thetaL= 50\n",
"Heat loss from the plate at 400K in W is\n",
"Qb= 13028.1662009\n"
]
}
],
"source": [
" \n",
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 2, Example 15\"\n",
"#A stack that is b=300mm wide and l=100mm deep contains N=60 fins each of length L=12mm.\n",
"L=0.012;#in metre\n",
"b=0.3;#in metre\n",
"l=0.1;#in metre\n",
"N=60;\n",
"#The entire stack is made of aluminum which is everywhere t=1.0 mm thick.\n",
"t=0.001;#in metre\n",
"#The temprature limitations associated with electrical components are Tb=400K and TL=350K.\n",
"#Tb is base temprature and TL is end temprature\n",
"Tb=400;\n",
"TL=350; \n",
"#Given convection heat transfer coefficient(h=150W/(m**2*K)),Surrounding Temprature(Tinf=300K),thermal conductivity of aluminium(kaluminium=230W/(m*K))\n",
"h=150;\n",
"Tinf=300;\n",
"kal=230;\n",
"#Here both the ends of the fins are at fixed tempratures .Therefore we use M=(h*P*k*A)**0.5 and m=((h*P)/(k*A))**0.5,thetab=Tb-Tinf,thetaL=TL-Tinf\n",
"#from the given data perimeter of each fin is given by P= 2*(l+t)in m and area of each fin is A=t*l\n",
"print\" perimeter of each fin in m is\"\n",
"P= 2*(l+t)\n",
"print\"P=\",P\n",
"print\"Cross sectional area of fin in m**2 is\"\n",
"A=t*l\n",
"print\"A=\",A\n",
"#M is defined as (h*P*kal*A)**0.5 and m is defined as ((h*P)/(kal*A))**0.5\n",
"M=(h*P*kal*A)**0.5\n",
"m=((h*P)/(kal*A))**0.5\n",
"print\"M=\",M\n",
"print\"m=\",m\n",
"#thetab and thetaL are the parameters that define the fin tempratures at base and tip respectively.\n",
"print\"Temprature parameter at fin base in K is\"\n",
"thetab=Tb-Tinf\n",
"print\"thetab=\",thetab\n",
"print\"Fixed temprature at fin tip in K is\"\n",
"thetaL=TL-Tinf\n",
"print\"thetaL=\",thetaL\n",
"#Heat loss from the plate is Qb\n",
"print\"Heat loss from the plate at 400K in W is\"\n",
"Qb=(N*(h*P*kal*A)**0.5*thetab*((math.cosh(m*L)-(thetaL/thetab))/(math.sinh(m*L))))+(((l*b)-(N*A))*h*thetab)+(l*b*h*thetab)\n",
"print\"Qb=\",Qb\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|