summaryrefslogtreecommitdiff
path: root/Introduction_to_Heat_Transfer_by_S._K._Som/Chapter11.ipynb
blob: a46cced01c8bcd67e56e2599850fc881a21f89ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "# Chapter 11:Radiation heat transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.3:pg-445"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 3\n",
      "The view factors F13 and F31 between the surfaces 1 and 3 are \n",
      "F13= 0.04\n",
      "F31= 0.032\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 3\"\n",
    "print\"The view factors F13 and F31 between the surfaces 1 and 3 are \"\n",
    "#Determine the view factors F13 and F31 between the surfaces 1 and 3.\n",
    "#F1-2,3=F12+F13\n",
    "#So F13=F1-2,3-F12\n",
    "#Let F1-2,3=F123\n",
    "#From Radiation Shape factor b/w two perpendicular rectangles with a commom edge table we get F12=.027,F1-2,3=0.31\n",
    "F123=0.31;#View factor\n",
    "F12=.27;#View factor\n",
    "F13=F123-F12#View factor\n",
    "print\"F13=\",F13\n",
    "#A1,A2 and A3 are the emitting surface areas\n",
    "#From reciprocity relation F31=(A1/A3)/F13\n",
    "A1=2;\n",
    "A3=2.5;\n",
    "F31=(A1/A3)*F13\n",
    "print\"F31=\",F31\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.4:pg-447"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 4\n",
      "F124= 0.04\n",
      "F24= 0.06\n",
      "The view factor F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\n",
      "F14= 0.02\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 4\"\n",
    "#Determine the view factors F14 for the composite surface .\n",
    "#From the table of radiation shape factor b/w two perpendicular surfaces F1,2-3,4=0.14 and F1,2-3=0.1\n",
    "#By subdivision of the recieving surfaces we get F1,2-4=F1,2-3,4-F1,2-3\n",
    "#Let F1,2-4=F124 , F1,2-3,4=F1234 , F1,2-3=F123\n",
    "F1234=0.14;#View factor\n",
    "F123=0.1;#View factor\n",
    "F124=F1234-F123;#View factor\n",
    "print\"F124=\",F124\n",
    "#Again from the table of radiation shape factor b/w two perpendicular surfaces F2-3,4=0.24 , F23=0.18\n",
    "#Let F2-3,4=F234\n",
    "F234=0.24;#View factor\n",
    "F23=0.18;#View factor\n",
    "#By subdivision of the recieving surfaces we get F24=F2-3,4-F23\n",
    "F24=F234-F23;#view factor\n",
    "print\"F24=\",F24\n",
    "#A1 and A2 are the emitting surface areas.\n",
    "A1=12;\n",
    "A2=12;\n",
    "#Now by subdivision of emitting surfaces F1,2-4=(1/(A1+A2))*(A1*F14+A2*F24)\n",
    "#This implies F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\n",
    "print\"The view factor F14=((F1,2-4*(A1+A2)))-A2*F24)/A2\"\n",
    "F14=((F124*(A1+A2))-(A2*F24))/A2\n",
    "print\"F14=\",F14\n",
    "\n",
    "\n",
    "\n",
    " \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.5:pg-453"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 5\n",
      "The view factors of cylindrical surface with respect to the base are\n",
      "F13= 0.84\n",
      "F31= 0.0\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 5\"\n",
    "#Consider a cylinder having length,L=2r determine the view factor of cylindrical surface with respect to the base.\n",
    "#From the graph of radiation shape factor b/w parallel coaxial disks of equal diameter F12=0.16\n",
    "F12=0.16;#View factor\n",
    "#By the summation rule of an enclosure F11+F12+F13=1\n",
    "#But F11=0(since the base surface is flat)\n",
    "F11=0;#View factor\n",
    "print\"The view factors of cylindrical surface with respect to the base are\"\n",
    "F13=1-F12-F11#view factor\n",
    "print\"F13=\",F13\n",
    "#By making use of reciprocity theorem we have F31=(A1/A2)*F13\n",
    "#A1 and A2 are emitting surface areas\n",
    "#A1/A2=(pi*r**2)/(2*pi*r*2*r)=1/4\n",
    "#Let A1/A2=A\n",
    "A=1/4;\n",
    "F31=(A)*F13\n",
    "print\"F31=\",F31\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.6:pg-456"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 6\n",
      "The rate of heat transfer is given by Q=A1*F12*sigma*(T1**4-T2**4) in W\n",
      "Q= -2918.916\n",
      "Here minus sign indicates that the net heat transfer is from surface2 to surface1\n",
      "The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 0K in W\n",
      "Q1= 2894.4216\n",
      "The view factor of surface 1 with respect to surrounding is\n",
      "F1s= 0.89\n",
      "The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 300K in W \n",
      "Q1= 1055.04525\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 6\"\n",
    "#Two rectangles length,L=1.5m by breadth,B=3.0m are parallel and directly opposed.\n",
    "L=1.5;\n",
    "B=3;\n",
    "#They are 3m apart\n",
    "#Temprature(T1) of surface 1 is 127°C or 400K and temprature(T2) of surface 2 is 327°C or 600K \n",
    "T1=400;\n",
    "T2=600;\n",
    "#Area (A) is the product of L and B\n",
    "A1=L*B;\n",
    "#Stefan -Boltzman constant(sigma)=5.67*10**-8 W/(m**2*K**4)\n",
    "sigma=5.67*10**-8;\n",
    "#From the graph of radiation shape factor b/w parallel rectangles F12=0.11\n",
    "F12=0.11;#View factor\n",
    "#The rate of heat transfer is given by Q=A1*F12*sigma*(T1**4-T2**4)\n",
    "print\"The rate of heat transfer is given by Q=A1*F12*sigma*(T1**4-T2**4) in W\"\n",
    "Q=A1*F12*sigma*(T1**4-T2**4)\n",
    "print\"Q=\",Q\n",
    "print\"Here minus sign indicates that the net heat transfer is from surface2 to surface1\"\n",
    "#Surface1 recieves energy only from surface 2,since the surrounding is at 0K.\n",
    "#Therefore Q1=A1*Eb1-A2*F21*Eb2\n",
    "#This implies Q1 can also be written as A1*sigma*(T1**4-F12*T2**4)\n",
    "#From reciprocity theorem F21=F12 (since A1=A2)\n",
    "F21=F12;#view factor\n",
    "print\"The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 0K in W\" \n",
    "Q1=A1*sigma*(T1**4-F12*T2**4)\n",
    "print\"Q1=\",Q1\n",
    "#In the case when surrounding is at temprature, Ts=300K ,the energy recieved from the surrounding by the surface 1 has to be considered.\n",
    "Ts=300;\n",
    "#Applying summation rule of view factors F11+F12+F1s=1\n",
    "F11=0;#view factor\n",
    "print\"The view factor of surface 1 with respect to surrounding is\"\n",
    "F1s=1-F11-F12\n",
    "print\"F1s=\",F1s\n",
    "#subscript s denotes the surroundings\n",
    "#Q1=A1*Eb1-A2*F21*Eb2-As*Fs1*Ebs\n",
    "#With the help of reciprocity theorem A2*F21=A1*F12 , As*Fs1=A1*F1s\n",
    "#Therefore we can write Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n",
    "print\"The net rate of energy loss from the surface at 127°C if the surrounding other than the two surfaces act as black body at 300K in W \"\n",
    "Q1=A1*sigma*(T1**4-F12*T2**4-F1s*Ts**4)\n",
    "print\"Q1=\",Q1\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.7:pg-470"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 7\n",
      "The net rate of heat transfer per unit area is given Q/A=(sigma*(T1**4-T2**4))/((1/Ɛ1)+(1/Ɛ2)-1) in W\n",
      "H= 1764.51561476\n",
      "The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4) in W\n",
      "H= 3276.95757027\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 7\"\n",
    "#Two parallel infinite surafces are maintained at tempratures T2=200°C or 473.15K and T1=300°C or 573.15K\n",
    "T1=573.15;\n",
    "T2=473.15;\n",
    "#The emissivity(emi) is 0.7 for both the surfaces which are gray.\n",
    "emi1=0.7;\n",
    "emi2=0.7;\n",
    "#stefan=boltzman constant(sigma)=5.67*10**-8W/(m**2*K**4)\n",
    "sigma=5.67*10**-8;\n",
    "#The net rate of heat transfer per unit area is given Q/A=(sigma*(T1**4-T2**4))/((1/Ɛ1)+(1/Ɛ2)-1)\n",
    "#Let Q/A=H\n",
    "print\"The net rate of heat transfer per unit area is given Q/A=(sigma*(T1**4-T2**4))/((1/Ɛ1)+(1/Ɛ2)-1) in W\"\n",
    "H=(sigma*(T1**4-T2**4))/((1/emi1)+(1/emi2)-1)\n",
    "print\"H=\",H\n",
    "#When the two surfaces are black\n",
    "#This implies emiisivity(emi)=1 for both surfaces\n",
    "#So,The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4)\n",
    "print\"The net rate of heat transfer when the two surfaces are black is Q/A=sigma*(T1**4-T2**4) in W\"\n",
    "H=sigma*(T1**4-T2**4)\n",
    "print\"H=\",H\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.8:pg-482"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 8\n",
      "The net rate of heat exchange between the spheres when the surfaces are black is Q=A1*sigma*(T1**4-T2**4) in W \n",
      "Q= 779.311327631\n",
      "The net rate of radiation exchange when one surface is gray and other is diffuse is given by Q1=(A1*sigma*(T1**4-T2**4))/((1/emi1)+(A1/A2)*(1/emi2-1)) in W\n",
      "Q1= 346.360590058\n",
      "The net rate of radiation exchange when outer surface is assumed to be black body i;e(emi2=1) in W\n",
      "Q2= 389.655663816\n",
      "Error(E) is given By ((Q2-Q1)/Q1)*100 in percentage\n",
      "E= 12.5\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 8\"\n",
    "#Two concentric spheres of diameters D1=0.5m and D2=1m are separated by an air space.\n",
    "#The surface tempratures are T1=400K and T2=300K\n",
    "T1=400;\n",
    "T2=300;\n",
    "D1=0.5;\n",
    "D2=1;\n",
    "#A1 and A2 are the areas in m**2 of surface 1 and surface 2 respectively\n",
    "A1=(math.pi*D1**2);\n",
    "A2=(math.pi*D2**2);\n",
    "#Stefan-Boltzman constant(sigma)=5.67*10**-8 W/(m**2*K**4)\n",
    "sigma=5.67*10**-8;\n",
    "#The emissivity is represented by emi \n",
    "#The radiation heat exchange in case of two concentric sphere is given by Q=(A1*sigma*(T1**4-T2**4))/((1/emi1)+(A1/A2)*(1/emi2-1)) \n",
    "#When the spheres are black emi1=emi2=1\n",
    "emi1=1;\n",
    "emi2=1;\n",
    "#Hence Q=A1*sigma*(T1**4-T2**4)\n",
    "print\"The net rate of heat exchange between the spheres when the surfaces are black is Q=A1*sigma*(T1**4-T2**4) in W \"\n",
    "Q=A1*sigma*(T1**4-T2**4)\n",
    "print\"Q=\",Q\n",
    "#The net rate of radiation exchange when one surface is gray and other is diffuse having emi1=0.5 and emi2=0.5  \n",
    "emi1=0.5;\n",
    "emi2=0.5;\n",
    "print\"The net rate of radiation exchange when one surface is gray and other is diffuse is given by Q1=(A1*sigma*(T1**4-T2**4))/((1/emi1)+(A1/A2)*(1/emi2-1)) in W\"  \n",
    "Q1=(A1*sigma*(T1**4-T2**4))/((1/emi1)+(A1/A2)*(1/emi2-1))\n",
    "print\"Q1=\",Q1\n",
    "#The net rate of radiation exchange when outer surface is assumed to be black body i;e(emi2=1)\n",
    "emi2=1;#emissivity of outer surface\n",
    "print\"The net rate of radiation exchange when outer surface is assumed to be black body i;e(emi2=1) in W\"\n",
    "Q2=(A1*sigma*(T1**4-T2**4))/((1/emi1)+(A1/A2)*(1/emi2-1))\n",
    "print\"Q2=\",Q2\n",
    "print\"Error(E) is given By ((Q2-Q1)/Q1)*100 in percentage\"\n",
    "E=((Q2-Q1)/Q1)*100\n",
    "print\"E=\",E\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Ex11.10:pg-484"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Introduction to heat transfer by S.K.Som, Chapter 11, Example 10\n",
      "F12= 0.5\n",
      "Equivalent resistance of thermal network (R) is given by R1+((1/R12)+(1/(R13+R23)))**-1+R2\n",
      "R= 2.09523809524\n",
      "The radiation flux leaving the hot wall is Q/A=[sigma*(T1**4-T2**4)]/(A*R) in W/m**2\n",
      "H= 26655.2740483\n"
     ]
    }
   ],
   "source": [
    " \n",
    " \n",
    " \n",
    " \n",
    "import math\n",
    " \n",
    "print\"Introduction to heat transfer by S.K.Som, Chapter 11, Example 10\"\n",
    "#Given a furnace which can be approximated as an equuilateral triangle duct\n",
    "#The hot wall is maintained at temprature (T1)=1000K and has emmisivity(emi1)=0.75\n",
    "#The cold wall is at temprature(T2)=350K and has emmisivity(emi2)=0.7\n",
    "T1=1000;\n",
    "T2=350;\n",
    "emi1=0.75;\n",
    "emi2=0.7;\n",
    "#Stefan-Boltzman constant(sigma)=5.67*10**-8 W/(m**2*K**4)\n",
    "sigma=5.67*10**-8;\n",
    "#The third wall is reradiating zone having Q3=0\n",
    "#The radiation flux leaving the hot wall is Q/A=(sigma*(T1**4-T2**4))/(A*R)\n",
    "#By summation rule F33+F31+F32=1\n",
    "#F33=0(in consideration of surface to be plane)\n",
    "#From symmetry F31=F32\n",
    "F31=0.5;#View factors\n",
    "F32=F31;#View factors\n",
    "F33=0;#View factors\n",
    "#From reciprocity theorem F13=F31 and F23=F32=0.5 (since A1=A2=A3=A)\n",
    "F13=F31;#View factors\n",
    "F23=F32;#View factors\n",
    "#Again F11+F12+F13=1 from summation rule\n",
    "F11=0;#View factors\n",
    "F12=1-F13-F11;#View factors\n",
    "print\"F12=\",F12\n",
    "#R1,R2,R12,R13,R23 are the resistances\n",
    "#R is equivalent resistance of thermal network is given by R1+((1/R12)+(1/(R13+R23)))**-1+R2\n",
    "R1=(1-emi1)/(emi1);\n",
    "R2=(1-emi2)/(emi2);\n",
    "R12=1/(F12);\n",
    "R13=1/(F13);\n",
    "R23=1/(F23);\n",
    "#R is equivalent resistance of thermal network \n",
    "print\"Equivalent resistance of thermal network (R) is given by R1+((1/R12)+(1/(R13+R23)))**-1+R2\"\n",
    "R=R1+((1/R12)+(1/(R13+R23)))**-1+R2\n",
    "print\"R=\",R\n",
    "#The radiation flux leaving the hot wall is Q/A.\n",
    "print\"The radiation flux leaving the hot wall is Q/A=[sigma*(T1**4-T2**4)]/(A*R) in W/m**2\"\n",
    "#Since A gets cancelled in the factor (A*R)\n",
    "#So Q/A=(sigma*(T1**4-T2**4))/(R)\n",
    "#Let Q/A=H\n",
    "H=(sigma*(T1**4-T2**4))/(R)\n",
    "print\"H=\",H\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}