1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 10:Principles of heat exchangers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.1:pg-415"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\n",
"The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\n",
"Q= 11286.0\n",
"(a) For a parallel flow arrangement\n",
"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
"LMTD= 35.4699026617\n",
"Area(A)=Q/(U*LMTD) in m**2\n",
"A= 0.397731567932\n",
"(b)For counterflow arrangement\n",
"LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \n",
"LMTD= 36.3143018164\n",
"Area(A)=Q/(U*LMTD) in m**2\n",
"A= 0.38848330532\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 1\"\n",
"#A brine solution is heated from temprature ,T1=8°C to temprature,T2=14°C in a double pipe heat exchanger.\n",
"T1=8.0;\n",
"T2=14.0;\n",
"#Water entering at temprature T3=55°C and leaving at temprature,T4=40°C at the mass flow rate of (mdot)=0.18kg/s\n",
"mdot=0.18;\n",
"T3=55.0;\n",
"T4=40.0;\n",
"#Specific heat (cp) of water =4.18kJ/(kg*K)\n",
"cp=4.18*10**3;\n",
"#overall heat transfer coefficient(U)=800 W/(m**2*K)\n",
"U=800.0;\n",
"#The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4)\n",
"print\"The rate of heat transfer from water is given by Q=mdot*cp*(T3-T4) in W\"\n",
"Q=mdot*cp*(T3-T4)\n",
"print\"Q=\",Q\n",
"print\"(a) For a parallel flow arrangement\"\n",
"#For a parallel flow arrangement deltaT1=T3-T1 and deltaT2=T4-T2. \n",
"deltaT1=T3-T1;#deltaT1 is temprature difference \n",
"deltaT2=T4-T2;#deltaT2 is temprature difference \n",
"#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for both parallel and counter flow.\n",
"print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
"#let X=math.log10((deltaT2/deltaT1)) and Y=math.log10(2.718281)\n",
"X=math.log10((deltaT2/deltaT1));\n",
"Y=math.log10(2.718281);\n",
"#ln=(ln(deltaT2/deltaT1))\n",
"ln=X/Y;\n",
"LMTD=(deltaT2-deltaT1)/ln\n",
"print\"LMTD=\",LMTD\n",
"#Area(A)=Q/(U*LMTD) in m**2\n",
"print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
"A=Q/(U*LMTD)\n",
"print\"A=\",A\n",
"print\"(b)For counterflow arrangement\"\n",
"deltaT1=T3-T2;\n",
"deltaT2=T4-T1;\n",
"print\"LMTD=(deltaT2-deltaT1)/(ln(deltaT2/deltaT1))in°C \"\n",
"X=math.log10((deltaT2/deltaT1));\n",
"Y=math.log10(2.718281);\n",
"ln=X/Y;\n",
"LMTD=(deltaT2-deltaT1)/ln\n",
"print\"LMTD=\",LMTD\n",
"print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
"A=Q/(U*LMTD)\n",
"print\"A=\",A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.2:pg-416"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\n",
"The inlet temprature(Tc1) of cold oil in °C \n",
"Tc1= 55.0948103792\n",
"The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\n",
"Q= 190190.0\n",
"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
"LMTD= 28.996452611\n",
"Area(A)=Q/(U*LMTD) in m**2\n",
"A= 10.0908895279\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 2\"\n",
"#Hot oil(specific heat,ch=2.09kJ/(kg*K)) flows through counter flow heat excahnger at the mass flow rate of mdoth=(0.7kg/s)\n",
"ch=2.09*10**3;\n",
"mdoth=0.7;\n",
"#overall heat transfer coefficient(U)=650 W/(m**2*K)\n",
"U=650;\n",
"#It enters at temprature,Th1=200°C and leaves at temprature,Th2=70°C \n",
"Th1=200;\n",
"Th2=70;\n",
"#Cold oil(specific heat,cc=1.67kJ/(kg*K) exits at temprature,Tc2=150°C at the mass flow rate of mdotc=(1.2kg/s)\n",
"mdotc=1.2;\n",
"cc=1.67*10**3;\n",
"Tc2=150;\n",
"#The unknown inlet temprature(Tc1) of cold oil may be found from energy balance mdotc*(Tc2-Tc1)=mdoth*(Th2-Th1)\n",
"print\"The inlet temprature(Tc1) of cold oil in °C \"\n",
"Tc1=Tc2-((mdoth*ch)/(mdotc*cc))*(Th1-Th2)\n",
"print\"Tc1=\",Tc1\n",
"#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n",
"print\"The rate of heat transfer Q=mdoth*ch*(Th1-Th2) in W\"\n",
"Q=mdoth*ch*(Th1-Th2)\n",
"deltaT1=Th1-Tc2;\n",
"print\"Q=\",Q\n",
"#deltaT1 is temprature difference between hot oil inlet temprature and cold oil exit temprature\n",
"deltaT2=Th2-Tc1;\n",
"#deltaT2 is temprature difference between hot oil exit temprature and cold oil inlet temprature\n",
"#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
"print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
"#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n",
"X=math.log10((deltaT2/deltaT1));\n",
"Y=math.log10(2.718281);\n",
"#ln=(ln(deltaT2/deltaT1))\n",
"ln=X/Y;\n",
"LMTD=(deltaT2-deltaT1)/ln\n",
"print\"LMTD=\",LMTD\n",
"#Area(A)=Q/(U*LMTD) in m**2\n",
"print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
"A=Q/(U*LMTD)\n",
"print\"A=\",A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.3:pg-417"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\n",
"The outlet temprature(Tho) of oil in °C \n",
"Tho= 70.6666666667\n",
"For a counterflow heat exchanger\n",
"deltaT1= 10\n",
"deltaT2= 20.6666666667\n",
"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
"LMTD= 14.6936488511\n",
"dimensionless parameters P and R are\n",
"P= 0\n",
"R= 0.733333333333\n",
"correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\n",
"Q= 167200.0\n",
"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\n",
"U= 758.604399737\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 3\"\n",
"#A cross flow heat exchanger with both fluids unmixed is used to heat water((specific heat,cc=4.18kJ/(kg*K)) from temprature Tci=50°C to Tco=90°C \n",
"#flowing at the mass flow rate of (mdotc)=1kg/s\n",
"Tci=50;\n",
"Tco=90;\n",
"cc=4.18*10**3;\n",
"mdotc=1;\n",
"#The hot engine oil has (specific heat,ch=1.9kJ/(kg*K)) flowing at the mass flow rate of mdoth=3kg/s enters at temprature Thi=100°C\n",
"mdoth=3;\n",
"Thi=100;\n",
"ch=1.9*10**3;\n",
"#The unknown outlet temprature(Tho) of oil may be found from energy balance mdotc*(Tco-Tci)=mdoth*(Tho-Thi)\n",
"print\"The outlet temprature(Tho) of oil in °C \"\n",
"Tho=Thi-((mdotc*cc)/(mdoth*ch))*(Tco-Tci)\n",
"print\"Tho=\",Tho\n",
"print\"For a counterflow heat exchanger\"\n",
"deltaT1=Thi-Tco;#deltaT1 is temprature difference \n",
"deltaT2=Tho-Tci;#deltaT2 is temprature difference \n",
"print\"deltaT1=\",deltaT1\n",
"print\"deltaT2=\",deltaT2\n",
"#LMTD(math.log mean temprature difference) is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
"print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
"#let X=log10((deltaT2/deltaT1)) and Y=log10(2.718281)\n",
"X=math.log10((deltaT2/deltaT1));\n",
"Y=math.log10(2.718281);\n",
"ln=X/Y;\n",
"LMTD=(deltaT2-deltaT1)/ln\n",
"print\"LMTD=\",LMTD\n",
"#Area(A)=20m**2\n",
"A=20;\n",
"#We have to employ correction factor(F) for the cross flow arrangement.\n",
"#We evaluate dimensionless parameters P=(Tco-Tci)/(Thi-Tco) and R=(Thi-Tho)/(Tco-Tci).\n",
"print\"dimensionless parameters P and R are\"\n",
"P=(Tco-Tci)/(Thi-Tci)\n",
"R=(Thi-Tho)/(Tco-Tci)\n",
"print\"P=\",P\n",
"print\"R=\",R\n",
"print\"correction factor(F) for the cross flow arrangement as obtained from graph of F vs Single Pass flow with fluids unmixed\"\n",
"F=0.75\n",
"#The rate of heat transfer can be calculate as Q=mdoth*ch*(Th1-Th2)\n",
"Q=mdotc*cc*(Tco-Tci);\n",
"print\"Q=\",Q\n",
"#overall heat transfer coefficient(U)=Q/(A*F*LMTD)\n",
"print\"overall heat transfer coefficient(U)=Q/(A*F*LMTD)in W/(m**2*K)\"\n",
"U=Q/(A*F*LMTD)\n",
"print\"U=\",U"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.5:pg-419"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\n",
"(a)Applying LMTD method\n",
"The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\n",
"Q= 300960.0\n",
"The unknown outlet temprature(Thout) of geothermal fluid in °C \n",
"Thout= 125.085846868\n",
"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \n",
"LMTD= 81.903612671\n",
"Area(A)=Q/(U*LMTD) in m**2\n",
"A= 6.12427197827\n",
"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n",
"L= 129.961087757\n",
"(b)Applying NTU method\n",
"The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\n",
"Ch= 8.62\n",
"Cc= 5.016\n",
"C=Cmin/Cmax\n",
"C= 0.581902552204\n",
"Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\n",
"eff= 0.461538461538\n",
"NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\n",
"NTU= 0.732568418453\n",
"Area(A)=(NTU*Cmin)/U in m**2\n",
"A= 6.12427197827\n",
"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\n",
"Hence same result is obtained for both methods\n",
"L= 129.961087757\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 5\"\n",
"#Water is heated from temprature ,Tin=30°C to Tout=90°C in a counter flow double pipe heat exchanger.\n",
"Tin=30;\n",
"Tout=90;\n",
"#Water flows at a mass flow rate of mdotw=1.2kg/s\n",
"mdotw=1.2;\n",
"#The heating is accomplished by a geothermal fluid which enters the heat exchanger at temprature ,Thin=160°C at the mass flow rate of mdoth=2kg/s\n",
"mdoth=2;\n",
"Thin=160;\n",
"#The inner tube is thin walled having diameter(D)=15mm or 0.015m\n",
"D=0.015;\n",
"#overall heat transfer coefficient(U)=600 W/(m**2*K)\n",
"U=600;\n",
"#The specific heat of water and geothermal fluid is (cpw=4.18kJ/(kg*K))and(cph=4.31kJ/(kg*K)) respectively\n",
"cpw=4.18*10**3;\n",
"cph=4.31*10**3;\n",
"#The rate of heat transfer in heat exchanger can be calculate as Q=mdotw*cpw*(Tout-Tin)\n",
"print\"(a)Applying LMTD method\"\n",
"print\"The rate of heat transfer Q=mdotw*cpw*(Tout-Tin) in W\"\n",
"Q=mdotw*cpw*(Tout-Tin)\n",
"print\"Q=\",Q\n",
"#The unknown outlet temprature(Thout) of geothermal fluid may be found from energy balance mdotw*cpw*(Tout-Tin)=mdoth*cph*(Thin-Thout)\n",
"print\"The unknown outlet temprature(Thout) of geothermal fluid in °C \"\n",
"Thout=Thin-Q/(mdoth*cph)\n",
"print\"Thout=\",Thout\n",
"deltaT1=Thin-Tout;#Temprature difference between inlet temprature of hot fluid and outlet temprature of cold fluid\n",
"deltaT2=Thout-Tin;#Temprature difference between outlet temprature of hot fluid and inlet temprature of cold fluid\n",
"#LMTD is defined as (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) for counter flow.\n",
"print\"LMTD is given by (deltaT2-deltaT1)/(ln(deltaT2/deltaT1)) in °C \"\n",
"#let X=math.log10((deltaT2/deltaT1))and Y=math.log10(2.718281)\n",
"X=math.log10((deltaT2/deltaT1));\n",
"Y=math.log10(2.718281);\n",
"ln=X/Y;\n",
"LMTD=(deltaT2-deltaT1)/ln\n",
"print\"LMTD=\",LMTD\n",
"#Area(A)=Q/(U*LMTD) in m**2\n",
"print\"Area(A)=Q/(U*LMTD) in m**2\"\n",
"A=Q/(U*LMTD)\n",
"print\"A=\",A\n",
"print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n",
"L=A/(math.pi*D)\n",
"print\"L=\",L\n",
"print\"(b)Applying NTU method\"\n",
"#The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cw in KW/°C\n",
"print\"The heat capacity rates are defined as Ch=mdoth*cph and Cc=mdotw*cpw in KW/°C\"\n",
"Ch=(mdoth*cph)/1000\n",
"Cc=(mdotw*cpw)/1000\n",
"print\"Ch=\",Ch\n",
"print\"Cc=\",Cc\n",
"#So Cmin=Cc and Cmax=Ch\n",
"Cmin=Cc;\n",
"Cmax=Ch;\n",
"#C is defined as Cmin/Cmax\n",
"print\"C=Cmin/Cmax\"\n",
"C=Cmin/Cmax\n",
"print\"C=\",C\n",
"#Heat transfer effectiveness is (eff)\n",
"print\"Heat transfer effectiveness is defined as eff=Q/(Cmin*(Thin-Tin))\"\n",
"eff=(Q/1000)/(Cmin*(Thin-Tin))\n",
"print\"eff=\",eff\n",
"print\"NTU is determined by NTU=(1/(C-1))*ln((eff-1)/(eff*C-1))\"\n",
"#let X=math.log10((eff-1)/(eff*C-1)) and Y=math.log10(2.718281)\n",
"X=math.log10((eff-1)/(eff*C-1));\n",
"Y=math.log10(2.718281);\n",
"#ln=ln((eff-1)/(eff*C-1))\n",
"ln=X/Y;\n",
"#NTU is Number of transfer units\n",
"NTU=(1/(C-1))*ln\n",
"print\"NTU=\",NTU\n",
"#NTU =U*A/Cmin\n",
"print\"Area(A)=(NTU*Cmin)/U in m**2\"\n",
"A=(NTU*Cmin*1000)/U\n",
"print\"A=\",A\n",
"print\"To provide this surface area ,The length(L) of the tube required is given by L=A/(pi*D) in m\"\n",
"L=A/(math.pi*D)\n",
"print\"Hence same result is obtained for both methods\"\n",
"print\"L=\",L"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.6:pg-422"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\n",
"NTU is defined as (U*A)/Cmin \n",
"NTU= 1.86170212766\n",
"Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n",
"eff= 0.683715054322\n",
"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\n",
"Q= 163.886498521\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 6\"\n",
"#Water having specific heat,cw=4.18kJ/(kg*K) enters a counterflow double pipe heat exchanger at temprature,Tci=35°C flowing at the mass flow rate of mdotw=0.8 kg/s.\n",
"cw=4.18;\n",
"mdotw=0.8;\n",
"Tci=35;\n",
"#It is heated by oil having specific heat,co=1.88kJ/(kg*K) flowing at the mass flow rate of mdoto=1.5 kg/s from an inlet temprature(Thi) of 120°C.\n",
"co=1.88;\n",
"mdoto=1.5;\n",
"Thi=120;\n",
"#For an area(A) of 15m**2 and an overall heat transfer coefficient(U) of 350W/(m**2*K).\n",
"A=15;\n",
"U=350;\n",
"#Cwater and Co are heat capacities for water and oil respectively\n",
"#Cwater=mdotw*cw and Co=mdoto*co\n",
"Cwater=mdotw*cw;\n",
"Co=mdoto*co;\n",
"#C=Cmin/Cmax\n",
"Cmin=min(Cwater,Co);\n",
"Cmax=max(Cwater,Co);\n",
"C=Cmin/Cmax;\n",
"#NTU is number of transfer units\n",
"#NTU=(U*A)/Cmin\n",
"print\"NTU is defined as (U*A)/Cmin \"\n",
"NTU=(U*A)/(Cmin*1000)\n",
"print\"NTU=\",NTU\n",
"#Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\n",
"print\"Heat transfer effectiveness(eff) is defined as (1-e**(-NTU*(1-C))/(1-C*e**(-NTU*(1-C))\"\n",
"eff=(1-math.e**(-NTU*(1-C)))/(1-C*math.e**(-NTU*(1-C)))\n",
"print\"eff=\",eff\n",
"#Hence The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci)in kW.\n",
"print\"The total heat transfer rate (Q)=eff*Cmin*(Thi-Tci) in kW\" \n",
"Q=eff*Cmin*(Thi-Tci)\n",
"print\"Q=\",Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.7:pg-424 "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\n",
"NTU is defined as (U*A)/Cmin \n",
"NTU= 5.44554455446\n",
"The effectiveness of heat exchanger is\n",
"eff= 9.98333889769\n",
"The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\n",
"Q= 10587330.901\n",
"The exit temprature of air in °C \n",
"Tho= -923.250584257\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 7\"\n",
"#Water enters a cross flow heat exchanger (both fluids unmixed) at temprature(Tci)=20°C amd flows at a mass flow rate of mdotw=7kg/s\n",
"Tci=20;\n",
"mdotw=7;\n",
"#The air flows at a mass flow rate of mdota=10kg/s from Temprature(Thi)=125°C \n",
"mdota=10;\n",
"Thi=125;\n",
"#The overall heat transfer coefficient(U)=220W/(m**2*K)and Area(A)=250m**2.\n",
"U=220;\n",
"A=250;\n",
"#The specific heat of air (cpa=1.01kJ/(kg*K)) and water is (cpw=4.18kJ/(kg*K))\n",
"cpa=1.01;\n",
"cpw=4.18;\n",
"#Cair and Cwater are heat capacities of air and water respectively\n",
"Cair=mdota*cpa;\n",
"Cwater=mdotw*cpw;\n",
"#C=Cmin/Cmax\n",
"Cmin=min(Cwater,Cair);\n",
"Cmax=max(Cwater,Cair);\n",
"C=Cmin/Cmax;\n",
"#NTU is number of transfer units\n",
"#NTU=(U*A)/Cmin\n",
"print\"NTU is defined as (U*A)/Cmin \"\n",
"NTU=(U*A)/(Cmin*1000)\n",
"print\"NTU=\",NTU\n",
"#To determine the effectiveness of heat exchanger we have to find out the suitable expression \n",
"#For this type of heat exchanger The effectiveness(eff)is determined by (1-e**((NTU**.22*(e**-(C*NTU**0.78)-1)/C)\n",
"print\"The effectiveness of heat exchanger is\"\n",
"eff=(1-math.e**((NTU**0.22))*(math.e**(-C*NTU**0.78)-1)/C)\n",
"print\"eff=\",eff\n",
"#Hence The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci)in W.\n",
"print\"The total heat transfer rate(Q)=eff*Cmin*(Thi-Tci) in W\"\n",
"Q=eff*Cmin*1000*(Thi-Tci)\n",
"print\"Q=\",Q\n",
"#The exit temprature(Tho) of air is given by Thi-(Q/(mdota*cpa))\n",
"print\"The exit temprature of air in °C \"\n",
"Tho=Thi-(Q/(mdota*1000*cpa))#NOTE:-The answer slightly varies from the answer in book(i.e Tho=26°C) because the value of Q taken in book is approximated to 1*10**6W.\n",
"print\"Tho=\",Tho"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex10.8:pg-437"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\n",
"(a)Considering a parallel flow arrangement \n",
"Tho= 50\n",
"The minimum flow rate required for the oil in kg/s\n",
"mdoth= 2.22340425532\n",
"(b)Theoretical question\n",
"If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\n",
"(c)Let us consider a counter flow arrangement\n",
"The minimum flow rate required for the oil in kg/s\n",
"Ch= 2.78666666667\n",
"Cc= 8.36\n",
"Effectiveness of heat exchanger is \n",
"eff= 1.0\n"
]
}
],
"source": [
"import math\n",
" \n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 10, Example 8\"\n",
"#A double pipe heat exchanger of length(L)=0.30m is to be used to heat water(specific heat,cc=4.18kJ/(kg*K)) and mass flow rate(mdotw=2kg/s)\n",
"L=0.30;\n",
"cc=4.18;\n",
"mdotw=2;\n",
"#The water enters at temprature(Tci)=25°C and leaves at temprature(Tco)=50°C\n",
"#The flow rate of oil is mdoth\n",
"Tci=25;\n",
"Tco=50; \n",
"#The oil used as hot fluid has(specific heat,ch=1.88kJ/(kg*K)) and has inlet temprature(Thi)=100°C \n",
"ch=1.88;\n",
"Thi=100;\n",
"print\"(a)Considering a parallel flow arrangement \"\n",
"#For minimum value of mdoth\n",
"#The theoretical minimum value of outlet temprature of hot fluid(Tho) under this situation is equal to Tco\n",
"Tho=Tco;\n",
"print\"Tho=\",Tho\n",
"#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n",
"print\"The minimum flow rate required for the oil in kg/s\"\n",
"mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tho))\n",
"print\"mdoth=\",mdoth\n",
"print\"(b)Theoretical question\"\n",
"print\"If LMTD--->0,Then for a finite value of heat transfer rate U*A--->infinity.For a given finite length this implies value of U which is not possible.\"\n",
"print\"(c)Let us consider a counter flow arrangement\"\n",
"#In this case value of Tho=Tci.\n",
"Tho=Tci;\n",
"#The mass flow rate of oil is given by energy balance as mdoth=(mdotw*cpw*(Tco-Tci))/(cph*(Thi-Tho))\n",
"print\"The minimum flow rate required for the oil in kg/s\"\n",
"mdoth=(mdotw*cc*(Tco-Tci))/(ch*(Thi-Tci))\n",
"#Now Heat capacities are Ch=mdoth*ch and Cc=mdotw*cc\n",
"Ch=mdoth*ch; \n",
"Cc=mdotw*cc;\n",
"print\"Ch=\",Ch\n",
"print\"Cc=\",Cc\n",
"Cmin=min(Ch,Cc);#minimum heat capacity in Ch and Cc \n",
"#Effectiveness of heat exchanger is eff.\n",
"#Tho=Tci for this kind of arrangement\n",
"Tho=Tci;\n",
"print\"Effectiveness of heat exchanger is \"\n",
"eff=(mdoth*ch*(Thi-Tho))/(mdoth*ch*(Thi-Tci))\n",
"print\"eff=\",eff"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|