1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Chapter 01:Fundamental concepts"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.1:pg- 4"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 1\n",
"The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L in W/m**2 \n",
"q= 50.0\n"
]
}
],
"source": [
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 1\"\n",
"#The temprature of two faces of the slabs are T1=40°C & T2=20°C \n",
"#The thickness of the slab(L) is 80mm or .08m\n",
"#The thermal conductivity(k)of the material is .20 W/(m*K)\n",
"T1=40;\n",
"T2=20;\n",
"L=.08;\n",
"k=.20;\n",
"#The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L\n",
"print\"The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L in W/m**2 \"\n",
"q=k*(T1-T2)/L\n",
"print\"q=\",q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.2:pg- 4"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\n",
"The thickness of masonry wall is Lm in m\n",
"Lm= 0.5\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\"\n",
"#The thermal conductivity(km)of masonry wall is .8 W/(mK)\n",
"#The thermal conductivity(kc)of composite wall is .2 W/(mK)\n",
"#The thickness of composite wall(Lc) is 100 mm or .1 m\n",
"km=.8;\n",
"kc=.2;\n",
"Lc=.1;\n",
"#The thickness of masonry wall(Lm) is to be found. \n",
"#The steady state heat flow(qm)through masonry wall is km(T1-T2)/L\n",
"# The steady state heat flow(qc)through composite wall is kc(T1-T2)/L\n",
"#As the steady rate of heat flow through masonry wall is 80% that through composite wall and both the wall have same surface area and same temp. difference so qm/qc=0.8=(km/kc)*(Lc/Lm)\n",
"#The thickness of masonry wall is Lm.\n",
"print\"The thickness of masonry wall is Lm in m\"\n",
"Lm=(km/kc)*(Lc/(0.8))\n",
"print\"Lm=\",Lm\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.4:pg-8"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 4\n",
"The rate of heat transfer per unit area q=hbr*(Tinf-Ts) in W/m**2\n",
"q= 16000\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 4\"\n",
"#The average forced convective heat transfer coefficient(hbr) is 200 W/( m**2 °C)\n",
"#The fluid temprature(Tinf) upstream of the cold surface is 100°C\n",
"#The surface temprature(Ts) is 20°C\n",
"hbr=200;\n",
"Tinf=100;\n",
"Ts=20;\n",
"#The rate of heat transfer per unit area is q\n",
"print\"The rate of heat transfer per unit area q=hbr*(Tinf-Ts) in W/m**2\"\n",
"q=hbr*(Tinf-Ts)\n",
"print\"q=\",q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.5:pg-9"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\n",
"The heat exchanger surface area(A)in m**2 required for 20 MJ/h of heating is \n",
"A= 0\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\"\n",
"#The average heat transfer coefficient(hbr) is 800 W/(m**2°C)\n",
"#The surface temprature of heat exchanger is 75°C and air temprature is 25°C so deltaT=(75-25)\n",
"#The amount of heat exchanged(Q) is 20 MJ/h\n",
"#The heat exchanger surface area(A) is given by A=Q/(hbr*∆T)\n",
"hbr=800;\n",
"deltaT=(75-25);\n",
"Q=20;\n",
"print\"The heat exchanger surface area(A)in m**2 required for 20 MJ/h of heating is \"\n",
"A = (Q*10**6)/(3600*hbr*deltaT)\n",
"print\"A=\",A"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.6:pg-9"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n",
"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\n",
"Q= 16000.0\n",
"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\n",
"Q= 16000.0\n",
"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\n",
"hbr= 11.2\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\"\n",
"#The temprature of the plate(Ts) is 225°C\n",
"#The ambient temprature (Tinf) is 25°C\n",
"#The change in plate temprature with time is dT/dt=-.02K/s\n",
"#The plate area (A)=.1m**2 , mass(m)= 4Kg and specific heat(cp)=2.8KJ/(Kg*K)\n",
"#The average free convective heat coefficient(hbr) is to be found\n",
"Ts=225;\n",
"Tinf=25;\n",
"#|dT/dt|=0.2,because it is modulus function and it converts negative values to positive value.\n",
"#Let |dT/dt|=X\n",
"X=0.02;\n",
"A=.1;\n",
"m=4;\n",
"cp=2.8;\n",
"print\"The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)\"\n",
"Q=hbr*A*(Ts-Tinf)\n",
"print\"Q=\",Q\n",
"print\"The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.\"\n",
"print\"Q=\",Q\n",
"print\"Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m**2°C)\"\n",
"hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n",
"print\"hbr=\",hbr\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.7:pg-10"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 7\n",
"The heat flux per square meter is given by E/A=emi*sigma*T**4 in W/m**2\n",
"F= 556.4411381\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 7\"\n",
"#The temprature(T) of brick wall after sunset is 50°C\n",
"#The emissity value(emi)=0.9\n",
"#The radiant heat flux per square meter =E/A Where E is radiant heat energy and A is area of brick wall.\n",
"#The stefan-Boltzman constant(sigma)=5.6697*10**-8 W/(m**2*K**4).\n",
"T=50;\n",
"emi=.9;\n",
"sigma=5.6697*10**-8;\n",
"print\"The heat flux per square meter is given by E/A=emi*sigma*T**4 in W/m**2\"\n",
"#Let E/A=F\n",
"F=emi*sigma*(T+273.15)**4\n",
"print\"F=\",F"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.8:pg-11"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 8\n",
"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\n",
"F= 618.267931222\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 8\"\n",
"#The temprature(T) of asphalt pavement = 50°C\n",
"#The stefan-Boltzman constant(sigma)=5.6697*10**-8 W/(m**2*K**4).\n",
"T=50;\n",
"sigma=5.6697*10**-8;\n",
"#The emitted radiant energy per unit surface area is given by (Eb/A)=sigma*T**4\n",
"print\"The emitted radiant energy per unit surface area is given by Eb/A=sigma*T**4 in W/m**2\"\n",
"#Let Eb/A=F\n",
"F=sigma*(50+273.15)**4\n",
"print\"F=\",F\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.9:pg-12"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 9\n",
"The rate of heat transfer per unit surface area of wall is given by Q/A=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A))in W/m**2\n",
"F= 213.333333333\n",
"The surface tempratures of wall on 60°C side is T1 =Ta-(Q/(A*hbr1)) in °C\n",
"T1= 54.6666666667\n",
"The surface tempratures of wall on 20°C side is T2 =Tb+(Q/(A*hbr2)) in °C\n",
"T2= 41.3333333333\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 9\"\n",
"#The Thickness(L) of wall= 150 mm or 0.15 m.\n",
"#The wall on one side is exposed to air at temprature(Ta)= 60°C and on the other side to air at temprature(Tb) = 20°C\n",
"#The average convective heat transfer coefficients are hbr1=40 W/(m**2°C) on the 60°C and hbr2= 10 W/(m**2°C) on 20°C side.\n",
"#The thermal conductivity(k)=.8 W/(m°C)\n",
"L=0.15;\n",
"Ta=60;\n",
"Tb=20;\n",
"hbr1=40;\n",
"hbr2=10;\n",
"k=0.8;\n",
"#Area(A=1 m**2 )since unit surface area is required.\n",
"A=1;\n",
"#The rate of heat transfer per unit surface area of wall is given by (Q/A)=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A))\n",
"print\"The rate of heat transfer per unit surface area of wall is given by Q/A=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A))in W/m**2\"\n",
"#Let Q/A=F\n",
"F=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A))\n",
"print\"F=\",F\n",
"#The surface tempratures of wall on 60°C side is T1 and on 20°C side is T2\n",
"print\"The surface tempratures of wall on 60°C side is T1 =Ta-(Q/(A*hbr1)) in °C\"\n",
"T1 =Ta-(F/hbr1)\n",
"print\"T1=\",T1\n",
"print\"The surface tempratures of wall on 20°C side is T2 =Tb+(Q/(A*hbr2)) in °C\"\n",
"T2 =Tb+(F/hbr2)\n",
"print\"T2=\",T2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.10:pg-13"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\n",
"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\n",
"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\n",
"The values of temprature that are considered are <298 K\n",
"Satisfactory solutions for Temprature in K is\n",
"T2= 292.5\n",
"Approximate Rate of Heat Transfer in W/m**2 is\n",
"F1= 332.029390022\n",
"F2= 332.132667923\n"
]
}
],
"source": [
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 10\"\n",
"#The spacecraft panel has thickness(L)=.01 m\n",
"#The spacecraft has inner temprature (Ti)=298 K\n",
"#The spacecraft has outer temprature(T2)\n",
"#The panel is exposed to deep space where temprature(To)= 0K\n",
"#The material has Thermal conductivity(k)= 5.0 W/(m*K)\n",
"#The emissivity(emi)=0.8\n",
"#The inner surface of the panel is exposed to airflow resulting in an average heat transfer coefficient(hbri)=70 W/(m**2*K)\n",
"L=0.01;\n",
"Ti=298.0;\n",
"To=0.0;\n",
"k=5.0;\n",
"emi=0.8;\n",
"hbri=70.0;\n",
"#The stefan Boltzman constant(sigma)= 5.67*10**-8 W/(m**2/K**4)\n",
"sigma=5.67*10**(-8);\n",
"#Heat transfer from the outer surface takes place only by radiation is given by Q/A=emi*sigma*(T2**4-T0**4)in W/m**2=F1\n",
"#heat transfer from the outer surface can also be written as Q/A=(Ti-To)/((1/hbri)+(L/k)+(1/hr))=F2\n",
"#Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To)\n",
"#so hr=4.536*10**-8*T2**3\n",
"print\"Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2**4-T0**4)in W/m**2 for different values of tempratures in K\"\n",
"print\"heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m**2 at different tempratures in K\"\n",
"print\"The values of temprature that are considered are <298 K\"\n",
"for i in range(285,292):\n",
" T2=i\n",
" hr=4.536*10**(-8)*i**3\n",
" F1=emi*sigma*(T2**4-To**4)\n",
" F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr))\n",
"if F1==F2:\n",
" T2=i\n",
"else: \n",
" T2=292.5\n",
" hr=4.536*10**(-8)*T2**3\n",
" F1=emi*sigma*(T2**4-To**4)\n",
" F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr))\n",
"print\"Satisfactory solutions for Temprature in K is\"\n",
"print\"T2=\",T2\n",
"print\"Approximate Rate of Heat Transfer in W/m**2 is\"\n",
"print\"F1=\",F1\n",
"print\"F2=\",F2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ex1.11:pg-15"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Introduction to heat transfer by S.K.Som, Chapter 1, Example 11\n",
"L= 1\n",
"A= 0.251327412287\n",
"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\n",
"F= 121.586773684\n"
]
}
],
"source": [
"\n",
"import math \n",
"\n",
"print\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 11\"\n",
"#The horizontal steel pipe has outer diameter(D)=80 mm or.08 m\n",
"#The pipe is maintained at a temprature(T1)=60°C where the air and wall temprature(T2)=20 °C \n",
"#The average free convective heat transfer coefficient(hbr)=6.5 W/(m**2/K) b/w the outer surface of the pipe and air\n",
"D=.08;\n",
"T1=60;\n",
"T2=20;\n",
"hbr=6.5;\n",
"#Length(L=1) since per unit length is considered\n",
"L=1;\n",
"#The surface area of pipe is given by A=(math.pi*D*L)\n",
"print\"L=\",L\n",
"A=(math.pi*D*L);\n",
"#The surface emissivity(emi) of steel = 0.8\n",
"#The stefan -Boltzman constant(sigma)= 5.7*10**-8 W/(m**2*K**4)\n",
"print\"A=\",A\n",
"sigma=5.67*10**-8;\n",
"emi=.8;\n",
"#The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4)\n",
"print\"The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1**4-T2**4) in W/m\"\n",
"#Let Q/L=F\n",
"F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)**4-(T2+273.15)**4)\n",
"print\"F=\",F\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|