1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
{
"metadata": {
"name": "",
"signature": "sha256:d435622fb1baa95a06f9d3e71f4cf43942d9156a2117df3b2f8d5d3555535a6d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6, Choppers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.1: page 6-7"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"#average load voltage,RMS load voltage ,Form factor and Ripple factor\n",
"#given data \n",
"f=1.0 #in kHz\n",
"t=1/f #in ms\n",
"d=0.3 #\n",
"v=200 #\n",
"vch=2 #in volts\n",
"vldc=(v-vch)*d #average load voltage in volts\n",
"print \"part (a)\"\n",
"print \"average load voltage = %0.2f V\" %vldc\n",
"print \"part (b)\"\n",
"vlrms=(v-vch)*sqrt(d) #RMS load voltage in volts\n",
"print \"RMS load voltage = %0.1f V\" %vlrms\n",
"print \"part (c)\"\n",
"FF=vlrms/vldc #\n",
"print \"form factor = %0.4f or %0.2f %%\"%(FF,FF*100)\n",
"print \"part (d)\"\n",
"rf=sqrt(FF**2-1) #\n",
"print \"ripple factor = %0.3f or %0.2f %%\"%(rf,rf*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"average load voltage = 59.40 V\n",
"part (b)\n",
"RMS load voltage = 108.4 V\n",
"part (c)\n",
"form factor = 1.8257 or 182.57 %\n",
"part (d)\n",
"ripple factor = 1.528 or 152.75 %\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.2: page 6-7"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#chooper efficiency,input resistance and average load current\n",
"#given data \n",
"r=10 #in ohms\n",
"f=1 #in kHz\n",
"t=1/f #in ms\n",
"d=0.3 #\n",
"v=200 #\n",
"vch=2 #in volts\n",
"Po=((v-vch)**2)*(d/r) #in watts\n",
"Pi=((d*v*(v-vch))/r) #in watts\n",
"cn=Po/Pi #chopper efficiency\n",
"print \"part (a)\"\n",
"print \"chopper efficiency = %0.3f or %0.2f %%\"%(cn,cn*100)\n",
"print \"part (b)\"\n",
"R1=r/d #\n",
"print \"input resistance = %0.2f ohm \" %R1\n",
"print \"part (c)\"\n",
"vldc=59.4 #V\n",
"r=10 #ohm\n",
"Ildc=vldc/r #amp\n",
"print \"average load current = %0.2f A\" %Ildc"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"chopper efficiency = 0.990 or 99.00 %\n",
"part (b)\n",
"input resistance = 33.33 ohm \n",
"part (c)\n",
"average load current = 5.94 A\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.3: 6-8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Duty Cycle,Average Load voltage and RMS Load Voltage\n",
"#given data \n",
"V=200 # in volts\n",
"T_on=500*10**-6 \n",
"f=1*10**3 # in Hz\n",
"D=T_on*f \n",
"print \"part (a)\"\n",
"print \"duty cycle =\",D,\"or\",D*100,\"%\"\n",
"print \"part (b)\"\n",
"VL_dc=D*V \n",
"print \"Average Load Voltage = %0.2f V\" %(VL_dc)\n",
"print \"part (c)\"\n",
"VL_rms=sqrt(D)*V \n",
"print \"RMS Load Voltage, VL_rms = %0.f V\" %VL_rms\n",
"#part c answer is calculated wrong in book"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"duty cycle = 0.5 or 50.0 %\n",
"part (b)\n",
"Average Load Voltage = 100.00 V\n",
"part (c)\n",
"RMS Load Voltage, VL_rms = 141 V\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.4: page 6-8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#average load voltage and rms load voltage\n",
"#given data \n",
"from numpy import arange, nditer, array\n",
"Sr = arange(1,11)\n",
"d = arange(0,1.1,0.1)\n",
"vldc = d\n",
"def rms(d):\n",
" it = nditer([d, None])\n",
" for x, y in it:\n",
" y[...] = sqrt(x)\n",
" return it.operands[1]\n",
"vlrms = rms(d)\n",
"Z = vldc\n",
"U = vlrms\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(d,vlrms) \n",
"plt.plot(d,vldc) \n",
"plt.xlabel(\"DUTY CYCLE D\")\n",
"plt.ylabel(\"Vldc & Vlrms Volts\")\n",
"plt.title(\"Variation of Vldc and Vlrms with duty cycle D\")\n",
"plt.text(0.5,0.4,'VLdc')\n",
"plt.text(0.3,0.7,'VLrms')\n",
"plt.show()\n",
"print \"Sr.No\\t\\t\\tDuty Cycle D\\t\\t\\tAvg. Load Voltage\\t\\t\\tRMS load voltage\"\n",
"for i,d,z,u in nditer([range(1,12),d,Z,U]):\n",
" print ' ',i,'\\t\\t\\t ',d,'\\t\\t\\t\\t\\t',z,'\\t\\t\\t\\t %0.3f'%u\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VfP++PHXuxQlTcKPlJTMTSiZj7lb1BdRp0SGK9Pl\npgy5l+LeTFdmdYuEZkOXIuHSIQ0k51SoCGl2kTIkdc55//74rFPr7PbeZ5999trj+/l49GgPa6/1\n3uvsvd77/fmsz2eJqmKMMcaUqZbqAIwxxqQXSwzGGGPKscRgjDGmHEsMxhhjyrHEYIwxphxLDMYY\nY8qxxJAiIvKLiDSL87W9ReTNxEYU03ZPEJEvvdi7xvH6Z0XkH1GeLxWR5lWLsmpEZIWInB7na/uK\nyKxEx5QoFX1uRCRPRFZVYf1DRGRsvK9PpYo+m7nGEkMMRGSGiNwV5vFuIrJORCq9H1V1D1VdEcO2\nm3kHzO3bUNXxqnp2ZbeZAHcDj3mxT/U/EcM+qg6o9y+dhY1RRG4TkffCPN5IRLaKyOFJia4KQj83\nASTimP+2aZhE4v5sevvxV+8H0w8i8l8RuSjB8SWVJYbYPAtcHObxPsA4VS2NdUUiskucMUicr0uk\npsDnEZ57luj7qMS7nw7vIx5jgePDVHk9gYWqGmm/AFX6uwctU/8eQajKvmitqnsAB+O+C0+IyJ0J\niSoFLDHE5lVgTxE5qewBEWkAdAGeF5EOIjJXRH4SkbUi8riI1PAtWyoi14rIl8Ay32PNvdtdRKRQ\nRDaJyEoRGezb9vve/xtF5GcR6RjaZCEix4vIfBHZKCIfichxvucKRORuEfnAe/2bIrJnpDcqIn/2\nmot+FJFXRWRf7/GvgObANG89NUJeGnUfRdjWzd7+Wi0il4c8V0tEhnlNOxtFZJaI7BZmHfVF5DUR\n+Z+IbBCRaSLSONb3LyJ9RORb75fe7ZH2i6quAd7FJTq/S6K8v3J/dxE5xXuvN3vxrhWR/xORziLy\nhbfPb/O9voOIfOx9LtaLyLAI23lPRM73bp/gbbezd/90ESn0bm//3IhI2edqofdL90Lf+m4Ske+8\n+PpG2icicqC37Z9F5C2gke+5nZqlvL/l6SLSCRgE9PC2XSgi3UXk45DlbxKRVyJsu6GIjBGRNd7f\nfYr3+Kcico5vuRre37aNd/9EEZkj7ru6UkQuibD+c0SkyFtutoi0irQf/FR1g6qOA64BBnnfgcyj\nqvYvhn/AKOAp3/1+wCfe7aOADrhEewDuV/WNvmVLgTeB+sCuvseae7dPAY7wbrcC1gPdvPsHeMtW\n862vLzDLu90Q+Ano7W2/J7ABaOA9XwB8CRwE7AbMBO6N8B5PA74H2gI1gceA93zPfwOcFs8+8u6P\nAe72bnfy3ufhQG1gQsg+eRJ3IN7Xe18dgZphttkQOM97b3WAF4D/+J6P+P69bf8CnOi932HAtkjv\nEegFfOG7fwjwB7Bn6N8l3N8dyPPW/3egOnAl8AMwHtjdi2czcID3+rlAb+92beDYCHHdhWviA7gd\nWA7c592/G3g4SnzNfffL4hvixfcn4DegXoTtzgUeBGoAJwE/A8/71rUqZPntnx9gcNmy3v2awI/A\nob7HCoHzImz7dWAiUA/YBTjJe/xmYJJvuW64ig7cd+lnoIf3/hoCbXyfzX94t9sB3wHtcVXEJV7s\nO33+wu1H77Ea3r48O5XHrXj/pTyATPkHnIA7ANf07s/Gd/APWfavwBTf/VIgL2SZnT5MvuceAR7y\nbjcjemLoA8wLef0c4FLv9kzgdt9z1wBvRNju6LIDind/d2Ar0NS7X1FiiLqPKJ8YngHu8T3Xsmyf\n4BLBZqBVHH+ntsAG3/2I7x+4E5jge6427kAfKTHUBjYBx3n3h1I+CW3/u4T7u+MOlpsB8e7v4S3T\n3rfMx0BX7/Z7uIN0owre82nsOPi9AVwBzPWt4/+ixBeaGDaHfNa+AzqE2WZT3IGvlu+x8cSeGIYA\nY0OeHwH807t9BO4HTo0w294XKCFMwgL2wyX7Ot79l4CB3u1BwMsR9qH/szmi7Lbv+aXAyRFeG/a7\nDKwD8iv7GU6Hf9aUFCNVnY37dXeeiLTA/ZqYACAiB3vNGetEZBPugBHaXBPxbA8ROVZEZnrNCxtx\nv7QjNveE2A9YGfLYt97jZdb7bv+O+2Udzr7eawFQ1d9wv+IaR1i+nGj7KMK2/PvE/x4a4X7df1XR\nNkWktoiM9JopNuEOhPVExN9eHOn97wes9sW/Gfd+w/KefxH3CxJclRa2Gckn9O/+o3pHDS8WcAff\ncPFdgWuzXiKuibBLhG3MAw4Wkb1xifF5oInXZNaeHc2RsfhRy/eZbSb852U/4CdV/d332LdUrZ3+\nOVxVBu4Hz2RV3RZmuSa45L8p9AlVXYv7QdJdROrjKtPx3tP7A1/HEMcBwACvGeknEfnJe+2+sb4R\nr6l1L1xyyziWGCrnedxB4WJghqp+7z0+Atd8dJCq1gP+xs77NtoZDxOAV4D9VbU+8G/f6ys6U2IN\n7oPsd4D3eGWtxVUoAIjI7rgEVZl1RdpHodbhfnWW8d/+AdiCa/6pyADcwbODt+9PwR2cYjlArcUd\nZACXZKg4IT8HXCQiZ+EOmNMqWL6iv1/kF6ouV9VeqroXcD/wkojUCrPcZmABrlJd7B1M5+D2zXJV\nDeLgtA5o4O2zMgew4/3+hquwABB3Vtpe/rBDV6iq84CtInIykI/r8A9nFdBQROpFeP453OfvQmCO\nqq7zva5FtDflWQkMVdUGvn91VHVyDK8t0w0oBj6qxGvShiWGynkeOBPXNvyc7/E6uPJ1s4gcimuu\nqIw6uF9fW0WkA+5XU9kX53tcqRrpA/0G7tdivojsIiI9gEOB13zLxPorbiJwmYi0EZFdgXtwzVSh\nFUk0kfZRWRxlsbwA9BWRw7yDy+CyhbxfrM8AD4nIviJSXUSOE5GaYbZXB/cre5OINPSvJ2S74bwM\nnON12NbEtcdH/U6o6ixgIzASmKiqxdGWrwoRuVhEyg6mm3CfiUhnwL0HXOf9D65v5Xrf/XC+I7YD\n5U5U9Vtcs9ddXgfvicA5vkW+AHbzOtZr4PpVdvU9vx5oFlLZgUsGTwBbVXVOhG2vw33uh4s7+aCG\nl0zK/AfX73cD5Su68cAZInKh913Zs6xTmvKfzaeAq73OfxGR3cWdIBKp0i57fVmneG/vPdynqj9F\neU3assRQCd6XYTbul5D/PP6BuIP5z7gO2EmU/0UU7lej/7FrgbtF5GfgDmD7LxPv1+BQYLZ39sWx\n+M65VtUfcV/IAbhf2gOBc0J+JYbGEvZXrKq+423/Zdyv6QNxndkxi7KPym1bVWfg+lLexR1E3gmJ\nayCwGJiPa965l/Cf10eAWrj3Pgd3wAh9f2Hfv6p+hjuYTsC93w1EafLzeR5X4YQ2I4Xu24r+7pGW\nKXM28KmI/AI8DPRU1T8iLPseLkmWNRu9j+sj8jcjhcY3BHjOay7pHub5ivQCjsXttzvx/RDwmnmu\nBZ7GNdf9Svl9+6L3/48hZyONxfUvjKtg231wfRxLcQnuBt+2twBTcNXvFN/jq4DOuO/Kj7jO7dZl\nT7Pjc7EA+DPu4L4Bd/JC2LOXfBZ6f6cvgcuBv6rqkApek7bKOsGCWbnIM7jTFf+nqmFP9xKRx3Bn\nP2wG+qpqYWABGWPSmtdU9h3QTlUr7GOKsp47gJaqWtEB3YQRdMUwBtf5E5a4c60PUtWWwFW4tnpj\nTO66BvioikmhIe5X+6iERZVjAk0MXntstDa2rnjlp6p+CNQXkX2CjMkYk55EZAXwF1xTT7zr+DOu\n8/gNVf0gQaHlnFQP029M+XbH1bjTwr4Lv7gxJluparMErOMpXOexqYJ06HwOPSshuE4PY4wxFUp1\nxbAG33nkuGphp3PmRcSShTHGxEFVKz3oMNUVw1S808BEpCOwUVXDNiOleoh4uvwbPHhwymNIl3+2\nL2xf5PK++PZb5V//Uo45Rtl7b+XCGz6hxYOt6Ty+C2t+XoNq/L+nA60YRGQibiRqI2+mxcG4yaVQ\n1ZGqOt0bALMcN1LysiDjMcaYTLZ+Pbz4IkyeDEuWwPnnw91DtzKn+lBGfjKCB894kD6t+7DzuMHK\nCTQxqGp+DMtcH2QMxhiTyX74AaZMgUmToLAQzj0XBg2CM8+Ez34spO+rfWlStwlFVxex3x77VbzC\nGKS6j8FUUl5eXqpDSBu2L3awfbFDNuyLTZvglVdcMpgzBzp1gr/8xf1fqxZsLdnK0PeHMuLjETx4\nVmKqBL9ARz4niohoJsRpjDHx+vVXmDbNNRO9+y6cdhr07AnnnAN1fLM0Fa7bUSWMOndU1CpBRNA4\nOp8tMRhjTIr8/ju88YZLBjNmwPHHu2TQrRvUr19+2XiqhHgTgzUlGWNMEm3dCm+/7ZqJXnsNjjoK\nevSAJ5+ERo3Cv8ZfJSSyLyESqxiMMSZgxcVQUOCSwSuvwKGHumTQvTvsG+XyP1XtS7CKwRhj0khp\nKXzwgWsmeuklaNrUNRPdeae7XZFkVwl+lhiMMSZBVGHBApgwAV54ARo2dMlg9mw4KJbrERL8GUex\nsMRgjDFVtGIFjB8P48a5PoTeveGtt+Dwwyu3nlRWCX6WGIwxJg4bN7pRyGPHwuefw4UXwujRcNxx\nUNkf+OlQJfhZYjDGmBht3epOLx071p1ZdOaZcNNN0Lkz1Ax3RfIYpEuV4GdnJRljTBSqMHeuayZ6\n4QXXPNSnjzujqEGD+NebjCrBzkoyxpgEWr7cJYNx42CXXVwymD8fDjyw6utOxyrBzxKDMcZ4fvjB\nVQVjx8LXX7sziiZNgqOPrny/QTjp1pcQiSUGY0xO27LFzVE0bpwbhNa5M9xxh+s/qFEjcdtJ9yrB\nz/oYjDE5p7QUZs1ylcGUKdCunWsqOv98qFs3sdtKZZVgfQzGGFOBJUtcMhg/3iWAPn1g0SLYf/9g\ntpdJVYKfJQZjTFZbv971E4wd62736gVTp0KbNsFtM1P6EiKxxGCMyTq//QavvuqSwdy5bhrr+++H\nU0+F6tWD3XamVgl+lhiMMVmhtBRmzoTnn3cVQceOrqnopZdg992D336mVwl+lhiMMRlt5UoYM8b9\nq18f+vZ11cH/+3/JiyEbqgQ/SwzGmIzzxx/uugajR7vZTHv2dGcXHXVUcuPIpirBzxKDMSZjLFzo\nksGECdC2LVx+uetLqFUr+bFkW5XgZ4nBGJPWNm50ieCZZ+B//3NNRYmamiIe2Vol+FliMMakndJS\nNwp59Gh4/XU4+2wYOhTOOCP4s4qiyeYqwc9GPhtj0saqVfDss64juU4duOIKd9GbRo1SG1emVgk2\n8tkYk5H++MOdXjp6tGsi6tHDTWSXqInrqipXqgQ/SwzGmJRYvNglg/HjoVUr15E8ZQrUrp3qyJxM\nrRISwRKDMSZpNm2CiRNdR/K6da4jed48aNEi1ZGVl4tVgp/1MRhjAlVaCu+/76qDadPcdNaXXw5n\nnZXajuRwsq1KsD4GY0xaWbPGdSQ/84xrHrriCnjoIdhrr1RHFl6uVwl+lhiMMQmzdaurCkaPdk1E\nF13kmo7at0+PjuRwsq1KSARLDMaYKlu6FEaNcldBO/xwVx289FL6dCRHYlVCeJYYjDFx2bbNnWY6\nfDh8+qnrN5gzBw46KNWRVcyqhOgsMRhjKmXtWnjqKVchNG8O117rLom5666pjiw2ViVUzBKDMaZC\nqm6KiuHD4b//dbOZvvEGtG6d6shiZ1VC7CwxGGMi2rTJXfhm+HB3aum117qO5bp1Ux1Z5ViVUDnV\ngly5iHQSkaUi8qWI3Brm+UYiMkNEikTkUxHpG2Q8xpjYFBXBVVdBs2YwezaMHOlGKl97bWYlha0l\nWxk8czBnjzubAccNYFr+NEsKMQisYhCR6sATwBnAGmC+iExV1SW+xa4HClV1kIg0ApaJyDhVLQ4q\nLmNMeFu2uDOJhg93k9n16wdLliT3SmiJZFVC/IJsSuoALFfVFQAiMgnoBvgTwzqgrJWyLvCjJQVj\nkuubb1xF8Mwz0K4d3HordOkCu2RoQ7P1JVRdkH/6xsAq3/3VwLEhyzwFvCsia4E9gIsCjMcY4ykp\ngTffdNXBvHlw6aWuyahly1RHVjVWJSRGkIkhlsmNbgeKVDVPRFoAb4tIG1X9JXTBIUOGbL+dl5dH\nXl5eouI0Jmf88IOrDP79b9hzT9dn8MIL6T8QrSJWJTgFBQUUFBRUeT2BTaInIh2BIaraybs/CChV\n1ft9y0wHhqrqbO/+O8CtqvpxyLpsEj1j4qTqqoLhw+G11+C88+Caa9w0FdnAXyWMOneUVQk+6TiJ\n3sdASxFpBqwFegD5IcssxXVOzxaRfYBDgK8DjMmYnPHbb+5aycOHw6+/umTw6KPQsGGqI0sMqxKC\nE1hiUNViEbkeeBOoDoxW1SUi0s97fiRwDzBGRBbiTp29RVU3BBWTMblg6VIYMcLNW3TSSXD//e5a\nydUCPTk9uawvIVh2PQZjssC2bfDqq646+PxzuPJKNw6hadNUR5ZYViVUTjo2JRljAvb99646GDnS\nXQWtbN6imjVTHVniWZWQPJYYjMlAy5a5i9688AJ07w4zZrjrJmcjqxKSzxKDMRlC1V0ic9gwd5bR\nNde4BLH33qmOLDhWJaSGJQZj0lxxsZuq4sEH4Zdf4KabYPJkqFUr1ZEFx6qE1LLEYEya+vlnePpp\nd4pps2Zw551wzjnZdXZROFYlpJ4lBmPSzKpV8NhjboTyWWfByy/DMcekOqrgWZWQPiwxGJMmPvnE\n9R/MmOHmLvrkEzjggFRHlRxWJaQXSwzGpFBpKUyf7hLC8uVw441uLEK9eqmOLDmsSkhPlhiMSYEt\nW2DsWHfKaa1aMHAgXHgh1KiR6siSx6qE9GWJwZgk+v57VxGMGOH6DYYPh7w8yKUfyVYlpL8sP7/B\nBOG0007jrbfeKvfYI488QufOnWmVraOsqmjZMrj6ajjkEFizBmbOdDOdnnpqbiWFwnWFtH+qPQvW\nLaDo6iIuaXOJJYU0ZInBVFp+fj6TJk0q99jkyZMZNGhQha8tKSkJKqy0owrvvQddu8LJJ8M++7gJ\n7kaNgsMOS3V0yWXXXs4slhhMpV1wwQW8/vrrFBe7q7CuWLGCtWvX0qRJk7DL5+Xl0b9/f9q3b8+j\njz5KXl4eN910E+3bt+ewww5j/vz5nHfeeRx88MHccccdAPz222906dKFtm3b0qpVK1544YWkvb+q\nKi6GSZOgQwc3kV2XLrBiBdx1V3aPUo7EqoTMY30MptIaNmxIhw4dmD59Ol27dmXSpEn06NEj4pdd\nRNi2bRvz588HYNq0aey6667Mnz+fxx57jG7dulFYWEiDBg1o0aIF/fv3Z+bMmTRu3JjXX38dgJ9/\n/jlp7y9e4QakdemS/QPSIrG+hMyVox9ZU1X+5qTJkyeTn59PtKnRe/ToUe5+165dATjyyCM58sgj\n2WeffahZsybNmzdn9erVtG7dmrfffpvbbruNDz74gLp16wb3Zqpo1Sq4+WY48ECYP98NSHvvPTj3\n3NxNClYlZLYc/diaquratSvvvPMOhYWFbN68mXbt2kVdfvfddy93f9dddwWgWrVq22+X3S8uLqZl\ny5YUFhbSqlUr/v73v/OPf/wj8W+iij79FHr3hrZtoaTEDUibODE3RilHYn0J2cGakkxc6tSpw6mn\nnspll11Gr169Kly+MhdaUlXWrVtHgwYN6N27N/Xq1WP06NFVCTehFi+Gu++GWbPchHa5NCAtGhuX\nkD0qlRhEpDqwu6qmf4OvCVx+fj7nn39+uY7hZcuWleuEfvjhhwGi9j+EPiciLF68mJtvvplq1apR\ns2ZNRowYEcA7qJxFi1xC+OAD13T07LMQUgjlJOtLyD4VXtpTRCYC/YASYD5QD3hUVR8IPrztMdil\nPU3KLFzoEsKcOS4hXH011K6d6qjSg79KGHXuKKsS0ky8l/aMpY/hcK9C+D/gDaAZ0KeyGzIm0xQV\nuctk/ulPcOKJ8NVXrunIkoL1JWS7WJqSdhGRGrjE8KSqbhMR+/luslZhoasQPvwQbrkFxo2zZOBn\nfQnZL5aKYSSwAqgDvC8izYBNwYVkTGp88gl06+YuhpOX5yqEv/7VkkIZqxJyRyx9DM1V9WvffQFa\nquoXQQfn26b1MZjALFjgRiUvWAC33QZXXpndl82Mh/UlZKYg+xhe8t/xjtATK7shY9LNxx+7QWjd\nurkrpX31FfzlL5YU/KxKyE0R+xhE5DDgcKC+iJwPCKBAXWC35IRnTOLNn+8qhIULXYXw4ouwm32i\nd2J9CbkrWufzIcC5uNNTz/U9/gvw5yCDMiYIH33kEsKiRTBokJu6wjfo2nhsXIKJpY/hOFWdm6R4\nIsVgfQwmbvPmuYTw2WcuIVx+uSWESKwvIbvE28cQMTGIyONRXqeqekNlNxYvSwwmHnPnuoSwZIlL\nCJddZgkhEqsSslO8iSFaU9ICXJ8CuP4FPztKm7Q1Z45LCEuXwt/+Bn37Qs2aqY4qfVlfgglVYVPS\n9gVF9sBVCr8GG1LYbVvFYCo0e7ZLCF984RLCpZdaQojGqoTsF0TFULbiVsDzwJ7e/e+BS1X100pH\naUwAPvjAJYTly11CuOQSSwgVsSrBRBPLlBijgJtUdSaAiOR5jx0fYFzGVGjWLBgyBL75ZkdCqFEj\n1VGlN6sSTCxiSQy1y5ICgKoWiIhNNmxSZtEiGDjQDUj729+gTx9LCLGwKsHEKpaRz9+IyB0i0kxE\nDhSRvwNfV/gqYxLsu+/gqqvgzDPdaOWlS92pp5YUorPRy6ayIiYGEfl/3s3Lgb2BKcDLwF7eY8Yk\nxZYtcO+9cMQRULeuSwjXXWcJIRZ27WUTj2hNSQtFZDFuXqQ7VHVjZVcuIp2AR4DqwNOqen+YZfKA\nh4EawA+qmlfZ7ZjspAqTJ7tpK44+2g1UO+igVEeVGawvwVRFtAFuuwBnAD2BPwHzcEniVVX9vcIV\nu8uALvPWsQZ39bd8VV3iW6Y+MBs4W1VXi0gjVf0hzLrsdNUcM28e9O8PW7fCQw/BKaekOqLMYaOX\nTZmEz66qqsWqOkNV+wJNgTFAN1yfw4QY1t0BWK6qK1R1GzDJe71fL+BlVV3tbXOnpGByy8qV0KsX\ndO/uLqE5f74lhVhZX4JJlFg6n1HVP4DPgSW4SfQOi+FljYFVvvurvcf8WgINRWSmiHwsInbJ0Bz1\nyy/uDKN27eDgg2HZMjdArVpMn1BjfQkmkaKerioiTXFNST1xV3CbCJyrqktjWHcsbT81gKOA04Ha\nwFwRmaeqX8bwWpMFSkpgzBi48053ttHChbD//qmOKnNYX4IJQrTrMcwB9gdeAP6sqgsque41QBPf\n/Sa4qsFvFa7D+XfgdxF5H2gD7JQYhgwZsv12Xl4eeXl5lQzHpJt334WbboI99oCpU+GYY1IdUWax\ncQkmVEFBAQUFBVVeT7TO51OAWapaGteKXef1Mlw1sBb4iJ07nw8FngDOBnYFPgR6qOrnIeuyzucs\n8sUXboDaZ5/BAw/A+eeD/ciNnVUJJlYJnytJVd+rSkCqWiwi1wNv4k5XHa2qS0Skn/f8SFVdKiIz\ngEVAKfBUaFIw2WPDBrj7bhg/Hm691V05zabBrhyrEkwyxDy7aipZxZDZtm6F4cPhnnvc2UZ33QV7\n7ZXqqDKLVQkmHoHNrmpMvFRh2jTXbNSiBcyc6UYvm8qxKsEkWyzTbv8VN4bhZ+Bp3FlEt6nqmwHH\nZjJYUREMGADr18Njj0GnTqmOKPNYlWBSJZazxC9X1U3AWUBDoA9wX6BRmYy1bh1ceaVLBN27u9NP\nLSlUno1LMKkUS2Io+zR2AcbaBXpMOL//DkOHQqtW0LChG6B2zTWwizVWVoqNXjbpIJav7QIReQto\nDgwSkbq4M4iMQRUmToRBg6BDB/joI2jePNVRZSbrSzDposKzkrzJ8NoCX6nqRhHZE2isqouSEaAX\ng52VlIbmzHED1EpK3ER3J52U6ogyk/UlmKAEdlaSqpaISDFwsoiUzYCvuLEHJgetWOGmwp49252C\n2ru3zWkUL6sSTDqK5aykMUAr4DPKNyFNCSook55KSmDYMDda+YYb4JlnoHbtVEeVmaxKMOkslj6G\nY4EjrC0nty1dCpdd5hLBxx9Ds2apjihzFa0vou8rfdm/7v5WJZi0FEsDwHzg8KADMemprEo46STo\n0wfeftuSQrzKzjg6a+xZ3HTcTXbGkUlbsVQMY3DTYa8H/vAeU1VtHVxYJh188YWrEmrUgA8/tLON\nqsKqBJNJYkkMo4GLgU+x01RzQkmJG608dCgMGQLXXmudy/GyvgSTiWJJDP9T1amBR2LSwvLlrkoQ\ncVVCixapjihzWZVgMlUsvwOLRGSCiOSLyAXev/MDj8wkVWkpPPoodOzoprIoKLCkEC/rSzCZLpaK\nYTdc38JZIY/b6apZ4quv4PLLXRPS3LnQsmWqI8pcViWYbFDRNZ+rAxtUdUCS4jFJVFrqrpMwZAjc\nfjvceCNUr57qqDKT9SWYbBI1MXijnk8Qm5Mi63zzjasStmxxI5gPOSTVEWUuqxJMtompjwF4VUT6\nWB9D5isthREjoH176NIFPvjAkkK8rC/BZKtY+xg2AKeFPG59DBlmxQq44gr49VeYNQsOOyzVEWUu\nqxJMNrNrPucAVRg1Cv7+d3eZzQED7DoJ8fL3JfzrzH/ZBXRMWkv47Koi8niU16mq3lDZjZnkW7nS\nXVHtp5/cKah2zeX4+auEwn6FNK7bONUhGROIaL8bF+Cm1y7LNmU/2cV326QpVRg92l1Ap39/uOUW\nqxLiZVWCyTXRDhWbgamquiVZwZjEWL3aVQnffw/vvusut2niY1WCyUXRzkrqBawSkbEi0tkb02DS\nmCqMGQNHHQUnngjz5llSiJf/jKP+HfszLX+aJQWTM6J2PotIPeA8oCfu8p6vABNV9b3khLc9Dut8\nrsCaNXDVVbB2LTz3HLS2uW/j5q8SRp4z0hKCyVjxdj5HHcegqptU9VlV7QQcCRQCj4vI6jjjNAmm\n6hJBu3YuOgWQAAAVfUlEQVRw7LHw0UeWFOJlVYIxTkzdkSLSADgf6AE0BF4MMigTm7VroV8/d+bR\nW29B27apjihzWV+CMTtErBhEZA8RuUREpgNLgGOAfwBNVLV/sgI0O1OFceNclXDUUTB/viWFeFmV\nYMzOolUM3wBvAsOBt1R1a3JCMtGsXw9XXw1ffw1vvOESg4mPVQnGhBetj6GpqvZW1dcsKaSH//wH\n2rSBI490VYIlhfhYlWBMdBErBlXdnMxATGSqMGyYu5DOtGnQoUOqI8pcViUYUzEbC5vmiovddRJm\nzXIX0dl//1RHlJls9LIxsYsrMYjIbjYiOni//QY9e7prJsyaBfXqpTqizGRVgjGVE8v1GAAQkfki\ncpOI7Ae8G2BMBtfJnJcHjRrB9OmWFOKRjL6E0047jbfeeqvcY4888gidO3emVQXDzlesWFHhMsak\nQsyJAegM1AW+BSYHE44BWLIEjj8ezj0XnnkGatRIdUSZp2h9ER2e6sCCdQso7FfIpW0vDaTpKD8/\nn0mTJpV7bPLkyQwaNCjh2zImWaKNY3hWRJr5HqoH5AMPAfYzJyDvv+8qhcGD4c47wZrBKyfZZxxd\ncMEFvP766xQXFwOuCli7di1NmjQJu/yCBQto06YNbdu2Zfjw4dsfLykpYeDAgbRq1Yo2bdrwxBNP\nBBazMRWJVjEcpaorAETkaKAAGKSqtwJtYlm5iHQSkaUi8qWI3BplufYiUpzrlwydOBG6d4fx4+HS\nS1MdTeZJVpXg17BhQzp06MD06dMBmDRpEj169Ii43csuu4wnn3ySoqKico+PGjWKlStXsnDhQhYu\nXEjv3r0DjduYaKIlhlIROUVELgZmAgNUdYqI1ABqV7RibzbWJ4BOwOFAvojsdDFJb7n7gRnsuPZD\nTlGF++6D226Dd96BM85IdUSZJdXjEvzNSZMnTyY/P59wkz5u3LiRTZs2ceKJJwLQp0+f7c+98847\n9OvXj2rV3FeyQYMGSYjcmPCinZV0NfBPYCvwPNBPRGoB/we8FsO6OwDLfVXHJKAbbnoNv78ALwHt\nKxV5liguhuuugw8/hDlzoLGdMFMp6XDGUdeuXenfvz+FhYVs3ryZdu3asWLFigpfF5o8bAZhky4i\nVgyqOk9Vz1DVzqp6PfAo7uD9GnBbDOtuDKzy3V/tPbadiDTGJYsRZZutROwZ79dfoVs3+PZbdzqq\nJYXYpbpK8KtTpw6nnnoql112Gb169Yq4XP369alfvz6zZ88GYPz48dufO/PMMxk5ciQlJSUA/PTT\nT8EGbUwUMZ+VpKqvqup1qvp0jBdHiGWZR4DbvPUJOdSUtG4dnHIK7LefG828xx6pjihzpKIvoSL5\n+fksXryY/Pz87Y8tW7aMJk2abP/38ssvM2bMGK677jratWsHsD3uK6+8kqZNm9K6dWvatm3LxIkT\nU/I+jIEKLtRTpRWLdASGeNdyQEQGAaWqer9vma/ZkQwa4S4n+mdVnRqyLh08ePD2+3l5eeTl5QUS\ndzJ89hl06QJ//jPcfrudeRQrG71sTHQFBQUUFBRsv3/XXXfFdaGeIBPDLsAy4HRgLfARkK+qoX0M\nZcuPAaap6pQwz2XNFdxmznSjmYcNg4svTnU0mcOuqmZM5cV7BbfA5kpS1WIRuR43dXd1YLSqLhGR\nft7zI4PadroaNw4GDIBJk+DUU1MdTWawKsGY5KuwYhCR/wLdVXWjd78h7rrPZychvrIYMrpiUIWh\nQ+Hpp+H11+GII1IdUWawKsGYqgmyYmhUlhQAVHWDiOxT2Q3lqm3b4JproLDQzY66776pjij9WZVg\nTGrFkhhKROQAVf0WwJsmozTIoLLFzz/DRRdB9erw3ntQp06qI0p/6TAuwZhcF0ti+BswS0Te9+6f\nDFwVXEjZYc0ad+ZRx47wxBOwi135IiqrEoxJHzGdlSQiewEdcWMT5qnqD0EHFrL9jOpjWLzYJYXr\nroNbbrHTUStifQnGBCPePoaIicGbOM//ZNnKFUBVP6nsxuKVSYnhv/+FXr3cZTh9Y51MGFYlGBOs\nIDqfh+GSQC3gaGCR93hr4GPguMpuLNs9+yzceiu89BKcfHKqo0lv1pdgTPqKmBhUNQ9ARKbgRiMv\n9u4fCdyVlOgyhCrcfTc895zrZD700FRHlL6sSjAm/cXSJXpoWVIAUNVPw02fnau2boV+/eDTT93p\nqPvYibwRWZVgTGaIJTEsEpGngXG4foZewMJAo8oQmza5C+vUqgUFBbD77qmOKD1ZlWBMZoll5HMt\n4BrgJO+h94ERqrol4Nj8MaRd5/OqVdC5s+tLeOwxN1bB7MzOODImdRJ+VlI6SbfEUFQE554LN97o\n5j6yH787syrBmNRL+FlJIrI40nOAqmrrym4sG7z5JvTp4watXXRRqqNJT9aXYExmi9bHcA45dOGc\nWIweDX/7G/znP3DCCamOJv1YlWBMdoiWGG4FJqjqB8kKJl2pwp13woQJ8P77cPDBqY4o/ViVYEz2\niJYYvgD+JSL7AZNxU20XJies9PLuuzBxojsdde+9Ux1NerEqwZjsE8tZSc2AnkAPoDYwAZckvgg6\nOF8MKe18PuMMd7W1vn1TFkJasjOOjElvSTkrSUTaAWOAVqqatBM0U5kYPvoILrwQli+HGjVSEkLa\nsSrBmMwQ2IV6vGs3d8ZVDacDM4HBlY4wQ917LwwcaEmhjPUlGJP9os2uehYuGXQBPgImAlNV9dfk\nhbc9lpRUDJ99BqefDl9/DbVrJ33zacWqBGMyTxAVw224ZDBQVTfEHVkGu/9+uOEGSwr+KqHo6iL2\n22O/VIdkjAmQjXyO4Jtv4Jhj4KuvoH79pG46bfirhAfPepA+rftYlWBMBgmsjyFXPfggXHVV7iYF\nqxKMyV1WMYSxfj0cfjgsWZJ702hblWBM9rCKIYEeecRdnjPXkoJVCcYYsIphJxs3QosWsGABNGuW\nlE2mnFUJxmQnqxgS5Mkn4ZxzcicpFK4rpO+rfWlSt4lVCcYYwCqGcjZvhgMPhJkzXR9DNrMqwZjs\nZxVDAjz9NBx/fPYnBasSjDHRWMXg2boVDjoIXnoJOnQIdFMpY1WCMbnFKoYqmjDBXWchW5OCVQnG\nmFhZxQCUlMARR8Dw4XDaaYFtJiWsSjAmd1nFUAWvvAL16sGpp6Y6ksSyKsEYE4+cTwyqcM897tKd\n2fJD2qoEY0xV5HxiePtt2LIFzj031ZEkRlmV0LReU6sSjDFxyfnEcM89cNttUK1aqiOpGn+VMOys\nYVzc+mKrEowxccnpxDB3Lnz7LfTsmepIqsaqBGNMIgX+O1lEOonIUhH5UkRuDfN8bxFZKCKLRGS2\niLQOOqYy994LN9+cuZft3FqylcEzB3P2uLMZeNxApvacaknBGFNlgVYMIlIdeAI4A1gDzBeRqaq6\nxLfY18DJqrpJRDoBo4COQcYFsHgxzJ8PkycHvaVgWJVgjAlK0E1JHYDlqroCQEQmAd2A7YlBVef6\nlv8Q2D/gmAC47z7461+hVq1kbC1xrC/BGBO0oBNDY2CV7/5q4Ngoy18BTA80ItzlOt98E0aMCHpL\niWVVgjEmGYJODDEPVxaRU4HLgRPCPT9kyJDtt/Py8sjLy4s7qH/9C66+GurWjXsVSWXjEowxsSgo\nKKCgoKDK6wl0SgwR6QgMUdVO3v1BQKmq3h+yXGtgCtBJVZeHWU/CpsRYu9ZNf/HFF7DXXglZZaD8\nVcLIc0ZalWCMiVm6TonxMdBSRJoBa4EeQL5/ARFpiksKF4dLCon28MNwySXpnxSsL8EYkyqBJgZV\nLRaR64E3gerAaFVdIiL9vOdHAncCDYAR3oFvm6oGMsfphg0wejQUFQWx9sSxvgRjTCrl1Oyqd98N\nK1bAM89UPaYgWJVgjEmkdG1KShu//gpPPAGzZqU6kvCsSjDGpIucSQxPPQUnnwyHHJLqSMqzKsEY\nk25yIjH88QcMGwavvprqSMqzKsEYk45yIjGMHetOUT366FRH4liVYIxJZ1mfGEpK4IEHXFNSOrAq\nwRiT7rI+Mbz8MjRq5PoXUsmqBGNMpsjqxFB22c5//jO1l+20KsEYk0myOjHMmAGlpdClS2q2b1WC\nMSYTZXViKLtsZyqOxVYlGGMyVdYmhlmz3IR5F12U3O1alWCMyXRZmxjuvRduuQV2SeI7tCrBGJMN\nsnKupKIi16/w1Vew224BBuaxKsEYk45sriSf++6D/v2TkxSsSjDGZJusqxi+/BKOPx6+/hr22CO4\nmKxKMMakO6sYPA88ANdeG2xSsCrBGJPNsqpiWL0aWrd2VcOeeyY+DqsSjDGZxCoG4KGHoG/fYJKC\nVQnGmFyRNRXDDz/AwQfDokWw//6J27ZVCcaYTJXzFcPjj8MFFyQ2KViVYIzJRVlRMfzyCzRvDnPm\nQMuWVd+eVQnGmGyQ0xXDyJFw2mmJSQpWJRhjcl3GVwxbtrhqYfp0aNs2/m1YlWCMyTY5WzE895xL\nCFVJClYlGGPMDhldMRQXwyGHuORw4omVX69VCcaYbJaTFcOLL8J++8WXFKxKMMaY8DI2Mai6qbXv\nv79yr7MqwRhjosvYxPD661C9OnTqFPtrrEowxpiKZWRiUK3cZTutSjDGmNhlZGJ4/334/nvo3r3i\nZa1KMMaYysnIxHDPPXDrra4pKRKrEowxJj4ZlxgWLIDPPoOpUyMvY1WCMcbEL+MSw333wYABsOuu\nOz9nVYIxxlRdRg1wW7oUTj7ZXbazTp3yy/irhJHnjLQqwRiT83JigNsDD8D115dPClYlGGNMYmVM\nYli5El55BZYv3/GY9SUYY0ziVQty5SLSSUSWisiXInJrhGUe855fKCLtIq1r2DC44gpo2NBVCYNn\nDubscWcz8LiBTO051ZKCMcYkSGCJQUSqA08AnYDDgXwROSxkmc7AQaraErgKGBFpfc8/D/37uyqh\n/VPt+WT9JxRdXUSfNn1yqumooKAg1SGkDdsXO9i+2MH2RdUFWTF0AJar6gpV3QZMArqFLNMVeA5A\nVT8E6ovIPuFW1r3HVkYusyrBPvQ72L7YwfbFDrYvqi7IPobGwCrf/dXAsTEssz/wXejKPjisPQet\nt74EY4wJWpCJIdbzYEPbgcK+blDeAPq0zq1mI2OMSYXAxjGISEdgiKp28u4PAkpV9X7fMv8GClR1\nknd/KXCKqn4Xsq70H2xhjDFpKN3GMXwMtBSRZsBaoAeQH7LMVOB6YJKXSDaGJgWI740ZY4yJT2CJ\nQVWLReR64E2gOjBaVZeISD/v+ZGqOl1EOovIcuA34LKg4jHGGBObjJgSwxhjTPIEOsCtshI5IC7T\nVbQvRKS3tw8WichsEWmdijiTIZbPhbdcexEpFpHzkxlfssT4/cgTkUIR+VRECpIcYtLE8P1oJCIz\nRKTI2xd9UxBmUojIMyLynYgsjrJM5Y6bqpoW/3DNTcuBZkANoAg4LGSZzsB07/axwLxUx53CfXEc\nUM+73SmX94VvuXeB14ALUh13ij4T9YHPgP29+41SHXcK98UQ4N6y/QD8COyS6tgD2h8nAe2AxRGe\nr/RxM50qhoQOiMtwFe4LVZ2rqpu8ux/ixn9ko1g+FwB/AV4Cvk9mcEkUy37oBbysqqsBVPWHJMeY\nLLHsi3VAXe92XeBHVS1OYoxJo6qzgJ+iLFLp42Y6JYZwg90ax7BMNh4QY9kXflcA0wONKHUq3Bci\n0hh3YCibUiUbO85i+Uy0BBqKyEwR+VhE+iQtuuSKZV88BRwhImuBhcCNSYotHVX6uJlOs6smdEBc\nhov5PYnIqcDlwAnBhZNSseyLR4DbVFXFjYDMxtObY9kPNYCjgNOB2sBcEZmnql8GGlnyxbIvbgeK\nVDVPRFoAb4tIG1X9JeDY0lWljpvplBjWAE1895vgMlu0Zfb3Hss2sewLvA7np4BOqhqtlMxkseyL\no3FjYcC1J/9JRLapapQLwGacWPbDKuAHVf0d+F1E3gfaANmWGGLZF8cDQwFU9SsR+QY4BDe+KtdU\n+riZTk1J2wfEiUhN3IC40C/2VOAS2D6yOuyAuCxQ4b4QkabAFOBiVV0eZh3ZosJ9oarNVfVAVT0Q\n189wTZYlBYjt+/EqcKKIVBeR2riOxs+THGcyxLIvlgJnAHjt6YcAXyc1yvRR6eNm2lQMagPitotl\nXwB3Ag2AEd4v5W2q2iFVMQclxn2R9WL8fiwVkRnAIqAUeEpVsy4xxPiZuAcYIyILcT+Ab1HVDSkL\nOkAiMhE4BWgkIquAwbhmxbiPmzbAzRhjTDnp1JRkjDEmDVhiMMYYU44lBmOMMeVYYjDGGFOOJQZj\njDHlWGIwxhhTjiUGk5FEpMQ3vXSRiNzkTYeBiPQVkcdDlp8pIkeLyDzvdd+KyP+824UiMk5ErvYt\nf6w3RXH1kPXUEJH7ROQLEVkgInO8KaBniUgn33IXisgb3u1LRGSxN0X6JyIywHv8WRG5IGT9zUTk\nd19chSJycZj3X+BNO71QRJaIyOMiUi8R+9aYtBngZkwlbVbVdgAishcwATeL5hAizwOjqtrRe82l\nwNGqeoN3f2/c3EIvARuAx3EjqEtC1vEPYB/gCFXd5r3uFOBq4EURmYkbXDQUOFtE/oSbwO1MVV3v\njdS9pCyeCLEuL3tvUSjQS1U/EZEawL24kc95FbzOmApZYjAZT1W/F5GrgPm4xBDLJHrlJttT1f+J\nyIPAA7gpFxaq6pxyL3DTTFwJNPOme0ZV/we86D0/DbgVqAM8p6rfiMhzwABVXe8tvxV4OiSOeIm3\nzm0icguwXERaq+qiKqzTGEsMJjt4B+Hq3i/4mF4S5rF/A5fifnUfHeb5g4CVqvprhHXeBRQCW4Bj\nvMeOABbEGFOZFiJS6Lt/varODrPc9vegqqXe9A+H4qbEMCZulhhMtlHcPEGRnov8Qjdt90hcE1Ol\nZ6tV1c0iMgn4payiiNNXMTQlhSNk5zT0Jsms89lkBRFpDpSo6ve4yzg2CFmkIRDLFc1KiXxwXQ40\nFZE9KvH6z9hRPYSTkAO510neCliSiPWZ3GaJwWQ8r/P537gOY3B9BCd40y0jIscANVXVfxWrSG37\nEdv8VXUzMBp41OvwRUT2EpHuUcK7F/iXL5aaInJFLNuLQdlZWGWdzytV9dMqrM8YwJqSTOaq5bXD\n1wCKgeeBhwFU9TsRuRGYLiLVgF+A/JDXRzojKNLjZf4O/BP4XES24KYxviPMOvBiecNLCv/1TqdV\nXHIpM1JEHvFur8Rdtzm0j2G0qj4RJpbxIvIHsCvwNuGvhW1Mpdm028YYY8qxpiRjjDHlWGIwxhhT\njiUGY4wx5VhiMMYYU44lBmOMMeVYYjDGGFOOJQZjjDHlWGIwxhhTzv8HFCoXfRdtEmYAAAAASUVO\nRK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7fa03d2b6cd0>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Sr.No\t\t\tDuty Cycle D\t\t\tAvg. Load Voltage\t\t\tRMS load voltage\n",
" 1 \t\t\t 0.0 \t\t\t\t\t0.0 \t\t\t\t 0.000\n",
" 2 \t\t\t 0.1 \t\t\t\t\t0.1 \t\t\t\t 0.316\n",
" 3 \t\t\t 0.2 \t\t\t\t\t0.2 \t\t\t\t 0.447\n",
" 4 \t\t\t 0.3 \t\t\t\t\t0.3 \t\t\t\t 0.548\n",
" 5 \t\t\t 0.4 \t\t\t\t\t0.4 \t\t\t\t 0.632\n",
" 6 \t\t\t 0.5 \t\t\t\t\t0.5 \t\t\t\t 0.707\n",
" 7 \t\t\t 0.6 \t\t\t\t\t0.6 \t\t\t\t 0.775\n",
" 8 \t\t\t 0.7 \t\t\t\t\t0.7 \t\t\t\t 0.837\n",
" 9 \t\t\t 0.8 \t\t\t\t\t0.8 \t\t\t\t 0.894\n",
" 10 \t\t\t 0.9 \t\t\t\t\t0.9 \t\t\t\t 0.949\n",
" 11 \t\t\t 1.0 \t\t\t\t\t1.0 \t\t\t\t 1.000\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.5: page 6-9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import arange, nditer, sqrt\n",
"#average load voltage and rms load voltage\n",
"#given data \n",
"D=arange(0.1,1.1,0.1)\n",
"def fun1(D):\n",
" it=nditer([D, None])\n",
" for x, y in it:\n",
" y[...] = 1/sqrt(x)*100\n",
" return it.operands[1] \n",
"\n",
"FF = fun1(D)\n",
"def fun2(FF):\n",
" it = nditer([FF, None])\n",
" for x,y in it:\n",
" y[...] = sqrt((x/100)**2-1)*100\n",
" return it.operands[1]\n",
"\n",
"RF = fun2(FF)\n",
"\n",
"if D.any():\n",
" print \"Duty Cycle D : \",\n",
" for d in D:\n",
" print d,'\\t',\n",
"print ''\n",
"if FF.all():\n",
" print \" FF % : \",\n",
" for ff in FF:\n",
" print round(ff,2),'\\t',\n",
"\n",
"print ''\n",
"if RF.any():\n",
" print \" RF % : \",\n",
" for rf in RF:\n",
" print round(rf,2),'\\t',\n",
"\n",
"% matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(D,FF)\n",
"plt.plot(D,RF) \n",
"plt.xlabel(\"DUTY CYCLE D\")\n",
"plt.ylabel(\"FF & RF (%)\")\n",
"plt.title(\"Variation of FF and RF with duty cycle D\")\n",
"plt.text(0.7,130,'FF %')\n",
"plt.text(0.7,70,'RF %')\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Duty Cycle D : 0.1 \t0.2 \t0.3 \t0.4 \t0.5 \t0.6 \t0.7 \t0.8 \t0.9 \t1.0 \t\n",
" FF % : 316.23 \t223.61 \t182.57 \t158.11 \t141.42 \t129.1 \t119.52 \t111.8 \t105.41 \t100.0 \t\n",
" RF % : 300.0 \t200.0 \t152.75 \t122.47 \t100.0 \t81.65 \t65.47 \t50.0 \t33.33 \t0.0 \t"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEZCAYAAACNebLAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U+XW8OHfooAMohQBZZ4FUQRUEEfKIIMgw1FR0VdR\n9BPxCMfhKCgIirwiHnmd9aiooIITgihUkKEiKiAyyiBTiyKjzDLTru+PZ7eEkLZpmzRJu+7rykWS\nvfezV0KalWfcoqoYY4wx/opEOgBjjDHRyRKEMcaYgCxBGGOMCcgShDHGmIAsQRhjjAnIEoQxxpiA\nLEHEOBHZLyI1c3nsrSIyLbQRBXXeK0RkrRd7l/w+f06JSE0RSRORqPh7EZHq3nsnWeyTJiK1c1l+\ngoj8kfsII0dEeonI95GOo6CIig98YSEi34jIUwGe7yoiW3LzBaSqZVQ1JYhzn/Ilp6ofqWr7nJ4z\nBJ4GXvZin+y/UURSROSg9yW4X0T2icg5Pq9hv89tcQTizyrerSLygYic4bP9fRE54hf3jbk9n6r+\n7r136pWfJCK9Q/FaciqWk4k/73085H3e9orIQhF5TESKRzq2SLEEkb/eB24L8Pz/AB+qalqwBYlI\n0VzGkOmvznxUHViZxXYFOntfgmVU9QxV3eqz/UyfbU3DG2pQMuIFGgONgEF+25/zibmMqn4W4vOb\nvFPgflU9AzgHeBi4GZga0agiyBJE/voSOEtErkp/QkTigU7AWBFpLiI/ichuEdksIq+ISDGffdNE\npK+IrAV+83mutne/k4gs9n79/C4iQ3zOPcf7d4/3C6mFf3VcRC4XkZ9FZI+ILBCRy3y2JYnI0yIy\n1zt+moicldkLFZF7vGaknSLypYhU8p5fD9QGvvLKKZZZGXkR5Ht5r4is8fZ51WdbERH5j4js8OLt\nFOx5VXUbMB04PxcxPyUiL3v3i4nIAREZ6T0uKSKHRaSsT00qTkSGA1cBr3o1k5d9irwm0OsLcN6S\nXi1nl4isAJr5bT+pucrbd5iIlAISgco+Nb1KXm2qnM/+F4nIdhGJC3DuIiLyuIis845fKCJVReQ1\nEfmP376TReRf3v1qIvKFV+5fIvJKJq+tgYh8630OVwdRcxMAVT2kqt8BXYDLRCToz0CBoqp2y8cb\n8Bbwts/je4FF3v2LgOa4xF0D9yu7v8++acA0oCxwms9ztb37LYHzvfuNgK1AV+9xDW/fIj7l9QK+\n9+6XA3YDt3rnvxnYBcR725OAtUBdoAQwG3g2k9fYGtgBNAGKAy8D3/lsTwZaZ/EeJQNtAjxf03sN\ncUG8z8G8l5OBM4BqwHagvbetD7AKqALEe6811fe9yyxeoCqwDHjSZ/t7wLAgYm4FLPPuXw6sA+b5\nvKeL/d6HIt7j2cBdfmVl+voCnHcE8J33uaoK/Ar87ldWbb/X87TPZ+4Pv/KmAH18Hv8f8FIm5/63\n937V8/nclsMlqT8B8Z4vDxwAKgBxwFLgBaAkcBpweYDPdGngD+AO73PQxPtcnpdJLKe8j97z3wEj\nIvm9Eamb1SDy3xjgBp92zdu951DVRaq6QFXTVHUjLpm09Dv+WVXdo6pH/AtW1e9UdYV3fznwsc/x\n2TUtdQJ+U9cvkaaqHwOrcb+gwFW/31PVdap6GPgU9wcXyK3AaFVdoqpHgYG4X2HVs4khnQCTvF++\nu0XkC7/tf/lseyhQAUG+lyNUdZ+q/oH7cmjsPd8D+D9V/VNVdwP/S9bvX3q8+4DfgfXAM37bH/GJ\neXsm5cwD6nm/vq8CRgNVRKS0F/t32cTgz//1Zfb/dSMw3PtcbQJeyqS8QOcLtN9YvKZUr9ZwM/BB\nJuX0Bp5Q1bXgPrequktVfwb2Am28/W4GZqvqDlzirwT8W90v/SOq+mOAsjsDyao6xvscLAG+8F5v\nTmzG/VAodCxB5DNV/QH4C+guInVwv5TGAYjIuSLytbgO673AcMC/GSfTDkERuVREZnvV7j242kmm\nzUB+KuO+3Hxt9J5P59sPcAg4PZOyKnnHAqCqB4CduF/kwVBczSfeu/3Db/tZPttGBSogyPfS9/Uc\n9Hk9lTj5ffZ/XzKL9wwgAfdr/xK/7c/7xFwxYCGqh4CFuGRwNS4h/Ahc4fM4qxj8Zfb6/FUmZ683\nO18CDcWNrrsG2KuqCzPZtxouoQaSkWi8f9OTTDVgo2bfZ1cDuNQnMe8GegJnB/UqTqiKq00XOpYg\nImMsruZwG/CN96sI4A1cU0hdVT0TeIJT/4+y6pAcB0wCqqpqWeBNn+Oz68j8E/cH5auG93xObcY1\ngwDg/QI+K5dl5VYw72VmtuA60tMFW/NBVecArwDP+W0KdnDAd7hfzU2Bn73HHXC/mudkckxeO6mz\ne70HgVI+jyv5nPOUc3s1zM9wn+/bcJ/3zPyBa7YM5EOgq4g0BhrgPtvpx1QP1Kfh53dc02a8z62M\nqt6fzXEZRKQarrmyUA6dtQQRGWNxv6zuxmte8pwO7AcOikgD4L4clns6sFtVj4pIc9yvpfQ/4B24\ntuQ6mRybCJwrIreISFERuQn3R/m1zz7BfsmNB+4UkcYichquiWaequb1l2lO5PS9FE68vk+BfiJS\nRdwgggE5PPeLQHMRudSn7GB9h/vxsEJVj+H6fu4GNqjqzkyO2Ubm/6/psorhU2Cg1wFeFXjAb/sS\n4FavU7wDrjbje+6zxGdYr2cscCeuiTKz5iWAd4BhIlJXnAvTO7i95q6FXlmf+zSrzscltREiUkpE\nSojI5QHKnoL7TN/mdfoXE5Fm3uchMwLgldsSVxuar6qFciSTJYgI8NrEf8D9KvOdB/AI7kt9H67N\n/GNO/oUW6Jei73N9gae9tvDBwCc+5zyIa2b5wRutcql3rHrbd+LabB/GNYE9ghu66Vu19o8l4C9X\nVZ3pnX8CrjZRC9eGHArB/lrO6Xvp+3rexg0GWIr7gpqQg/Oiqn/hEv9jAcrOzk+4QQDptYVVuOY8\n/9qDb3kv4fq1donIi5mFlUUMT+GaBJOBb3BfyL779geuww1i6AlMzChUdTXuB8EG7/zneM//gPtB\n8ovXB5KZUbgENR3X5/A27vWnG4PruM5IMl7T0nW4msfvuBpFD//Xqar7gXa4z96fuKTyLG7gRGZe\n9f5+tuI61z/D1eAKpfQRAqEvWKQE7tfQabj/kC9VdaCIDMX9IkpvVnlcVRO9YwYCd+FGjPRT1elh\nCc4YE3YiMgMYp6rv5qGMq3BzhPybP00+yO1kq2yp6mERaaWqB8VN6porIlfisvso/85FEWkI3AQ0\nxHVmzhCRc4PoiDLGRBkRaYZru++ahzKKAf/C1SpMBIS1iclr1gBXg4jDVVEhcHtoV2C8qh5Tt3TE\nOlzHnDEmhojIGOBb4F/eCLbclHEe7vvibFyfjomAsCYIb5bkElxH1uz0MfrAAyKyVERGi0hZ77nK\nwCafwzcR/LBIY0yUUNU7VLWsqmY1eim7Mlap6umqeqWq/h3K+Ezwwl2DSFPVJrhxxFeLSAJu+GEt\n3KSdLbjZkJkWEc74jDHGZC5sfRC+VHWviEwBLlHVpPTnReQd4Cvv4Z+4CTDpqhJg3LyIWNIwxphc\nUNUcLdYZthqEiJRPbz4SkZK4cf+L04fBeboDy737k4GbRaS4iNQC6gELApWdmzVFwnkbMmRIxGOw\nmApWXBaTxRTqW26EswZRCRgj7voDRYAPVHWmiIwVkSa45qNk3HIQqOpKEfkUN/v1ONBXc/uqjDHG\n5Fk4h7kuxw1z83/+9iyO+V/crFtjjDERZjOpQyAhISHSIZzCYgpeNMZlMQXHYgqvsM2kDhcRsZYn\nY4zJIRFBo6WT2hhjTGyzBGGMMSYgSxDGGGMCsgRhjDEmIEsQxhhjArIEYYwxJiBLEMYYYwKyBGGM\nMSYgSxDGGGMCsgRhjDEmIEsQxhhjArIEYYwxJiBLEMYYYwKyBGGMMSYgSxDGGGMCsgRhjDEmoJhM\nEFOnRjoCY4wp+GLyinI1aigrVkDp0pGOxhhjYkOhuaLcVVfBkCGRjsIYYwq2mKxBbN+uXHABJCbC\nRRdFOiJjjIl+haYGUaECPPcc/L//B8ePRzoaY4wpmMKWIESkhIjMF5ElIrJSRJ71ni8nIt+KyBoR\nmS4iZX2OGSgia0VktYi0y6r8O+6AM86AV18N1yswxpjCLaxNTCJSSlUPikhRYC7wCNAF+EtVR4rI\nY0C8qg4QkYbAOKAZUAWYAZyrqml+ZWp6zGvWwOWXw6JFUL162F6GMcbEvKhrYlLVg97d4kAcsBuX\nIMZ4z48Bunn3uwLjVfWYqqYA64DmWZV/7rnQvz/cfz/EWFeKMcZEvbAmCBEpIiJLgG3AbFVdAZyt\nqtu8XbYBZ3v3KwObfA7fhKtJZOmxx2DDBpgwIYSBG2OMoWg4C/eah5qIyJnANBFp5bddRSSr3/4B\ntw0dOjTjfkJCAv/9bwI33QTXXANnnhmCwI0xJsYlJSWRlJSUpzLybZiriAwGDgF3AwmqulVEKuFq\nFg1EZACAqo7w9v8GGKKq8/3K0e1/b6dC6QonlX/vvRAXB6+/nh+vxhhjYktU9UGISPn0EUoiUhK4\nBlgMTAbu8Ha7A5jk3Z8M3CwixUWkFlAPWBCo7MGzB5/y3IgRMGkS/PhjSF+GMcYUWuHsg6gEzPL6\nIOYDX6nqTGAEcI2IrAFae49R1ZXAp8BKIBHoq5lUbyatnsTiLYtPei4+Hl580c2NOHo0XC/JGGMK\nj5icSf3fhf/lg2UfMKfXHERO1JhUoXNnuOIKePzxCAZpjDFRJqqamMKpd9PeHDh6gE9WfHLS8yLw\n2mswahSsWxeh4IwxpoCIyQQRVySOlzu+zKPfPsqBowdO2lazJgwcCH362NwIY4zJi5hMEABXVr+S\nK6tfyYi5I07Z1r8/7NoFH3wQgcCMMaaAiMk+iPSYN+3bROM3G7PwnoXUiq910n6//AKdOsGvv0L5\n8pGI1Bhjokdu+iBiOkEADJ8znEVbFzGhx6lTqR98EHbvhvffz8cAjTEmChWaTmpfD1/+MIu3LGbm\nhpmnbBs2DGbPhlmzIhCYMcbEuJhPECWKluCFdi/Q/5v+HE87+eIQp5/ulgO/9144dChCARpjTIyK\n+QQB0K1BNyqVqcQbP79xyrbrroMmTWD48AgEZowxMSzm+yDSrdyxkpbvt2Rl35WnrNO0eTM0bgxJ\nSXD++fkUqDHGRJFC2Untq39if46kHuHNzm+esu2NN+DDD+H776FIgag3GWNM8AplJ7WvoQlDA67T\nBK4fQhXeeisCgRljTAwqUDUIgLd+eSvgOk3g5kS0agXLlkGlSuGO1Bhjokehr0FA5us0AVxwgVvt\ntX//CARmjDExpsAliKzWaQIYNAgWL4YpUyIQnDHGxJAClyAg63WaSpaEN9+Evn3h778jEJwxxsSI\nAtcHkS6rdZoAbr/drdE0alQ4ojTGmOhS6Ie5+stqnaYdO1yfxNSpcPHFoY7SGGOii3VS+8lqnaYK\nFWDkSNdpffx4gIONMaaQK9AJIqt1msA1M5UtC6+8EoHgjDEmyhXoBAFZr9Mk4jqshw+HjRsjEJwx\nxkSxAt0HkS6rdZrAJYiffoKvvnJJwxhjChrrg8hEwwoN6XlBTwbPHhxw+7//DSkp8Pnn+RuXMcZE\ns0JRgwDYfWg35712Hom3JtK0UtNTtv/wA/ToAStWuH4JY4wpSKKqBiEi1URktoisEJFfRaSf9/xQ\nEdkkIou9W0efYwaKyFoRWS0i7UIZT3zJeJ5u9TT9vulHoARzxRXu2hEDBoTyrMYYE7vCVoMQkXOA\nc1R1iYicDvwCdAN6APtVdZTf/g2BcUAzoAowAzhXVdP89stVDQIgNS2VZm8349ErHuXmC24+Zfue\nPe56EZ9+6hKGMcYUFFFVg1DVraq6xLv/N7AK98UPECjIrsB4VT2mqinAOqB5KGPKbp2msmXhxRfd\n3IijR0N5ZmOMiT350kktIjWBpsA876kHRGSpiIwWkfQW/8rAJp/DNnEioYRMVus0AdxwA9SqBc8/\nH+ozG2NMbCka7hN4zUufA/1V9W8ReQN42ts8DHgB6J3J4QHbkoYOHZpxPyEhgYSEhBzFNPKakTR+\nszF3Nb3rlHWaROC119zyGz16QL16OSraGGOiQlJSEklJSXkqI6yjmESkGPA1kKiqLwbYXhP4SlUb\nicgAAFUd4W37BhiiqvP9jsl1H4SvrNZpAreI39dfw8yZNjfCGBP7oqoPQtzl3EYDK32Tg4j4Xsut\nO7Dcuz8ZuFlEiotILaAesCBc8WW1ThNAv36wdy+MHRuuCIwxJrqFcxTTlcAcYBknmooeB24BmnjP\nJQP3quo275jHgbuA47gmqWkByg1JDQJg4qqJDJ49mCV9llC0yKmtbYsWQceObm5E+fIhOaUxxkSE\nLfedQ6pKuw/b0eXcLjxw6QMB93noIdi5E8aMCckpjTEmIixB5EJ26zT9/bebGzF6NLRtG7LTGmNM\nvrIEkUv9E/tzJPUIb3Z+M+D2KVOgf39YvtxdstQYY2KNJYhcym6dJjgx5HX48JCe2hhj8oUliDx4\n65e3+GDZB8zpNQcJMK51yxa48EKYPdtdqtQYY2JJVA1zjTW9m/bmwNEDfLLik4DbK1WCYcPcMhxp\naQF3McaYAsUShCe7dZrAJQcR+O9/8zk4Y4yJAGti8tNzQk/qxNdhWOthAbevWAEJCbB0KVSuHLYw\njDEmpKwPIgQ27dtE4zcbs/Cehaes05Ru0CD47Tf47LOwhWGMMSFlfRAhUPWMqjzU4iEe+faRTPd5\n4glYssRdw9oYYwoqSxABZLdOU8mS8Oab8M9/uol0xhhTEFmCCKBE0RK80O4F+n/Tn+NpxwPu06YN\ntGoFgwfnc3DGGJNPLEFkoluDblQqU4k3fn4j033+8x8YPx4WhG3NWWOMiRxLEJkQEV7q8BJPz3ma\nHQd2BNynfHl44w3o1AnefRdirL/fGGOyZKOYspHdOk0Av/4Kt94Kdeu6ORK2NLgxJtrYKKYwGJow\nlEmrJ7F4y+JM97ngAtfMVLs2NGkC0065ioUxxsQeq0EEIbt1mnzNmgW9ekH37jBihK3+aoyJDiGv\nQYhIMRHpJCLPicgnIvKxd7+TiJx6CbYCKrt1mny1bu1mWW/dCpdc4uZLGGNMLMq0BiEig4HrgZ9w\n14bejEsolYDmQAvgc1V9Jn9CzYgr32sQAHN/n0vPCT1Zdf8qShcvne3+qvDRR/Dgg/Doo+7KdHFx\n+RCoMcYEENKlNkSkC/BVZt/GIlIE6Kyqk3McaR5EKkFA9us0BZKSArff7pLDmDFQvXr44jPGmMyE\ntIlJVSf7fxOLSAkROcPbnpbfySHSRl4zktcXvk7y7uSgj6lZ011Don171+Q0fnz44jPGmFAKupNa\nRO4GbgDigIWqOjCcgWURR8RqEADD5wxn0dZFTOgxIcfHLlrkhsNedBG89hqULRuGAI0xJoCQ1iBE\npKvfU9eoagdVvQbolJsAC4Ls1mnKykUXwS+/QHw8NG4MSUmhj88YY0Ilq1FMjURksog08R4vE5HR\nIvIO8Gs+xBaVglmnKSulSsGrr7oZ2D17wmOPwZEjYQjUGGPyKMsmJhGpBDwNCDAIKAOUVNVl2RYs\nUg0YC1QEFHhLVV8WkXLAJ0ANIAXooap7vGMGAncBqUA/VZ0eoNyINjEBqCrtPmxHl3O78MClD+S6\nnB074J57YONGN+KpYcMQBmmMMT5CfsEgESkDpAH1cIliITBSVQ8HEcw5wDmqukRETgd+AboBdwJ/\nqepIEXkMiFfVASLSEBgHNAOqADOAc1U1za/ciCcIgJU7VtLy/Zas7LuSCqUr5LocVRg9GgYOhCef\ndEuIZzMXzxhjcizUfRDDgQnA10ArVe0CLAWmisjt2RWsqltVdYl3/29gFe6LvwswxtttDC5pAHQF\nxqvqMVVNAdbh5ltEpYYVGtLzgp4Mnp239b5F4O674ccf4cMPoWNH2LIlREEaY0weZNUH0VlV2wFt\ngNsBVPVLoD0Qn5OTiEhNoCkwHzhbVbd5m7YBZ3v3KwObfA7bhEsoUSuYdZqCVa8ezJ0LLVpA06Yw\ncWIIAjTGmDzIarmMX0XkbaAkkJT+pKoeA14K9gRe89IEoL+q7vddy0hVVUSyai8KuG3o0KEZ9xMS\nEkhISAg2nJCKLxnPqPaj6Dy+M5/e8ClXVL8iT+UVKwZDh7o5E//zP/D11/Dii1CmTGjiNcYUHklJ\nSSTlcahkdn0QFwJHVXV1rgoXKYZrokpU1Re951YDCaq61esEn62qDURkAICqjvD2+wYYoqrz/cqM\nij4IX4lrE7lj0h0Mbz2cey6+JyRl7t/vlulISoIPPoDLLgtJscaYQirUfRAtVXVZVslBRFplsU2A\n0cDK9OTgmQzc4d2/A5jk8/zNIlJcRGrhOsZj4lptHet1ZO5dcxk1bxR9p/TlaOrRPJdZpgy88w48\n/7xbGXbIEDh2LATBGmNMkLJai+k/wNW40UQLgS24hHIOcAnQFvfr/9FMjr8SmAMs40RT0UDcl/6n\nQHVOHeb6OG6Y63Fck9QpV1aIxhpEun1H9nHbF7ex98hePrvxMyqWrhiScrdsgTvvhD17XEd23boh\nKdYYU4iEa5hrV+AK3LwFgI3AXOBLb3RSvormBAGQpmkMmT2ED5Z9wBc3fcFFlS4KSbmqboLd00/D\ns89C7942HNYYE7yQJ4hoFO0JIt3nKz/nvin38XKHl7ml0S0hK3fFCrjtNqhRA95+GyrkfgqGMaYQ\nsUuORpEbGt7AzNtn8sSsJ3js28dITUsNSbnnnw/z5kH9+u7ypomJISnWGGNOYTWIMPvr4F/c9PlN\nFI8rzrh/jCO+ZI6mkGQpKQnuuAOuuw5GjnTrPBljTCBWg4hC5UuVZ9pt06h/Vn0ufedSVu1YFbKy\nExLc5U1373bXmli0KGRFG2NMlsNc/9fn/jX5E07BVLRIUV7s8CKPX/U4Ld9vyVe/fRWyssuWdQv9\nDRoEHTrAc89Bamhas4wxhVxWw1wXq2pT//uRFmtNTP7mb5rP9Z9eT59L+vDEVU8gIRyK9Pvv7vKm\naWkwdqy7mp0xxoA1McWES6teyoJ7FjBl7RRu/OxG/j4aupHC1avDzJnQubNbz6lnT7cIYAznU2NM\nBGVVg9gEjMJdC+JBn/vgllEalS8RnhpXTNcg0h05foS+U/ry8+afmXTzJGrH1w5p+bt3w/vvw+uv\nw+mnu2XEb7nFOrKNKaxCOg9CRIZyYga04Ldwnqo+lYsY86ygJAhwFx567efXGDZnGOP+MY42tduE\n/BxpaTB9ursG9k8/uVFP991ns7GNKWzybaKciJRW1QM5PjAEClKCSDc7eTa3TLiFAVcOoP+l/UPa\nL+ErOdld6vS996BZM7j/fnf9iSLW0GhMgReOpTYqADWB9aq6y1u6ux/QR1Wr5yXY3CqICQIgZU8K\nXT/uStNzmvJm5zcpUbRE2M516BB88olbumP3blejuOsuKFcubKc0xkRYqFdz7Qv8CrwMrBKRB3BX\nlKsIXJqXQM2papatyY93/cjBYwdp+X5L/tz3Z9jOVbIk9OoFP/8M48bBsmVQp45b38nmUhhj0mXV\nB7ESuNKrOdQA1gCXq+ov+RlggLgKZA0inaoyYu4IXv35VT6/8XMuq5Y/F4LYvt1dG/uNN6BKFdep\nfcMNcNpp+XJ6Y0yYhbqT+qS5DyKyVFUb5zHGPCvoCSLdlDVTuPPLO3m2zbP0vqh3vp33+HF3JbvX\nXoPly12tok8fqFYt30IwxoRBqBPEDmA8J4a23gR87D1WVe2Xh1hzrbAkCIDVf62m68ddaVe7HaPa\nj6JYXLH8Pf9qN0z2ww/dsh733w+tW9sy48bEolAniF6cPLQ1fahreoIYk8s486QwJQiAPYf3cOsX\nt3Lw2EE+veFTKpTO//W99+93SeK119yw2b593YztM87I91CMMblk14MooFLTUnly9pN8tPwjJt08\niSbnNIlIHKowZ44b/TRzppt4d//90LBhRMIxxuSALbVRQMUViWN4m+GMvGYk13xwDZ/8+klE4hCB\nli3hs89c/0T58tCmjWt2mjDB9V8YYwoOq0HEmCVbl9D9k+7ccsEtDGs1jLgicRGN5+hR+OIL1/yU\nnOw6tO+5B84+O6JhGWP85OdM6oh9Sxf2BAGw48AOenzeg1LFSjHuH+M4s8SZkQ4JcNemeO01V8Po\n2NENlb3sMuvUNiYahLWJSUQ+E5F/iEgJYEKOozMhU6F0BabfNp068XVo/k5zVv+1OtIhAdC4Mbz1\nFmzY4JbyuOMOuOgieOcdOHgw0tEZY3IqJ30QI4FWwJ9AdHwjFWLF4orxcseXeeyKx7j6vauZsmZK\npEPKEB8PDz4Iv/0GI0bAl1+6pcj/9S93mdRjxyIdoTEmGFkNc30GeEdVU7zH5YGpQDLwh6o+kl9B\n+sVV6JuY/P30x0/c8NkN3N/sfgZeOTBsi/3lRXKyW3586lRYu9Z1bF97rbsKXtWqkY7OmIIv1PMg\nlqtqI+9+DWAa8LqqviwiC1X1kiACehfoBGz3KWsocDeww9vtcVVN9LYNBO4CUoF+qjo9QJmWIAL4\nc9+f/OPTf1CzbE3e7fIupYuXjnRImdq+HaZNg8RE92+VKq7P4tpr4fLLoVj+zgc0plAIdYJYAVwL\nVAM+AUaq6kvifp4uV9ULggjoKuBvYKxPghgC7Pe/4JCINATGAc2AKsAM4FxVTfPbzxJEJg4fP0yf\nr/uwZOsSJt08iZpla0Y6pGylpsKCBS5ZJCbCunWudtGxo7tVqRLpCI0pGELdST0AmAm8BfwCXCwi\nCcArwLxgClfV74HdgWIN8FxXYLyqHvOatdYBzYM5j3FKFC3Be13f484md3LxWxfz+MzH2X0o0Nsf\nPeLi3Einp592q8uuXg1du7qJeBde6Dq+BwyA776zvgtj8lumCUJVv1LVuqraEOiGSxL/BvYAD+Tx\nvA+IyFIRGS0iZb3nKgObfPbZhKtJmBwQEfq36M/iexez48AOzn31XJ6Z8wz7j+yPdGhBOftst4zH\n+PGwbZtzA6A6AAAcpElEQVRbXbZYMXj4YahY0a0wO3o0bN4c6UiNKfjCPlFORGoCX/k0MVXkRP/D\nMKCSqvYWkVeAear6kbffO8BUVf3CrzwdMmRIxuOEhAQSEhLC+hpi2dqdaxn63VBmbpjJo1c8yn2X\n3EfJYiUjHVaubNsG33zjmqK+/datMJveFHXZZdZ3YYyvpKQkkpKSMh4/9dRT0bcWk3+CyGybiAwA\nUNUR3rZvgCGqOt/vGOuDyIVft//Kk7OfZMGfC3jiqifofVFviscVj3RYuXb8uOu7mDrVJYwNG6Bt\nW5csOnSAypUjHaEx0SUqF+sLUIOopKpbvPsPAs1UtadPJ3VzTnRS1/XPBpYg8mbh5oUMmjWINTvX\nMKTlEG678LaIL9cRClu3uhFRU6e62kWNGifXLooWjXSExkRW1CUIERkPtATKA9uAIUAC0AS3dHgy\ncK+qbvP2fxw3zPU40F9VpwUo0xJECMzZOIdBswax4+AOnk54musbXk8RKRhrNx4/DvPnu5rF1Klu\nDkbbtifmXVSqFOkIjcl/oR7mOl1V23n3B6rqsyGIMc8sQYSOqjJ9/XQGzR7E8bTjDGs1jE71OkXl\nRLu82Lr15L6LGjVcsujYEVq0sNqFKRzCdslR/8uPRpIliNBTVb787UsGzx5MmeJleKb1M7Su1TrS\nYYXF8eMwb96JeRfJyXDppe7WvLlbQ6pixUhHGb3i4uK48MILMx5PmjSJ5ORkunbtSu3atQGoUKEC\n06efPMd1woQJDBkyhHLlyjFp0iTKlSvH+vXreeKJJ/j444/z9TUUVpYgTJ6kpqXyyYpPGJI0hOpn\nVmd46+G0qNoi0mGF1bZtrjlqwQJ3+/lnKFvWJYv020UXQenonZier8qUKcP+/ScPmU5KSmLUqFFM\nnjw50+NatWpFYmIiEyZMYPfu3fzzn/+kZ8+eDBs2jDp16oQ7bEPuEkRWlevaIjIZN6mtloh85bNN\nVbVLboI00SuuSBw9G/XkxoY3MmbpGHp81oPG5zRmWKthEbuKXbidfTZ06eJu4C6pum7diYSRfnGk\nunVPThrnn29NU76y+9FWpEgRDh8+zIEDByhevDjff/89lSpVsuQQ5bKqQSRkcZyq6ndhiSgbVoPI\nP4ePH+atX97i2bnPclX1q3i61dM0KN8g0mHluyNHYNmyE0ljwQLYtAmaNj05adSoUfCvfVG0aFEa\nNXIj1mvXrs2ECRNISkqiW7du1KpVC4AePXowcODAk46bMWMGAwYMoEqVKnzwwQfceOONfPLJJ5Qt\nW/aUc5jwCHUTUw1V3RiSyELIEkT+O3D0AK8seIUXfnqBTvU6MaTlEGrF14p0WBG1dy8sXHgiYcyf\n7/o3fBNGs2Zw1lmRjjS0MmtieuGFF/jqq68yOepkY8eOZc+ePTRv3pwXXniB+Ph4XnrpJUqWjM0J\nnLEinH0QE1T1+hDEmGeWICJn7+G9jPppFK/+/Co3nX8Tg64eROUyNiMt3Z9/nkgWCxa4BFKx4slJ\no2lTiOXvwbwmiIMHD3Ldddcxbdo0OnfuzMSJE/nss884evQod999d7jCNoT3inK1cxGPKWDOLHEm\nT7V6it/++Ruli5Wm0RuNeGT6I+w4sCP7gwuBKlWge3d3kaRZs2D3bpg8Gdq1gzVroF8/V6O4+GK4\n7z547z1YscKtaFtYPP/88/Tv35+iRYty6NAhwH1xpd830aVgzIwy+ap8qfI83+55lt+3nEPHDtHg\ntQYMnjWYPYf3RDq0qBIXBw0bQq9e8Prrrkaxa5e7bvd558GMGdCtm7sCX6tW8NhjMGEC/PEHRGsl\nOdAcGREJau7M5s2b+fnnn+nijQh44IEHaNasGW+99RY9e/YMeawm77JqYkoF0q8kXBLwTfGqqmeE\nObaArIkp+qTsSeGp757i6zVf81CLh+h3ab+ovmBRtNm1yw2v9e0EP3bMJRf/W5UqBb8j3IRH1C21\nEQ6WIKLX6r9WMzRpKN9t/I4BVwzg3kvupUTREpEOK+aowo4dsHLlqbdDh1ztwz9xVK8ORaw9wGTB\nEoSJCku3LmXw7MEs2bqEwVcPpleTXhSLs7W4Q2HnTli16tTEsWdP4MRRs6Zr6jLGEoSJKvM2zWPQ\nrEGk7ElhaMJQbrnglgKxcmw02rs3cOLYvh3q1z81cdSpYxP9ChtLECYqzU6ezROznmD34d30ubgP\nt154K+VLlY90WIXC/v3uMq7+iWPzZjc73D9x1KsHxWP3MiEmC5YgTNRSVZJSkhi9eDRfr/madnXa\n0btpb9rWbmu1igg4eBB+++3UxLFxI9SqdWriqF8fSlh3UkyzBGFiwp7Dexi/fDyjF49m+4Ht9GrS\nizub3FnoZ2dHgyNH3JwN/8Sxfr27Sl+tWlC79qm3cuVsdFW0swRhYs7SrUt5d/G7fLT8Ixqf05je\nTXvTvUH3mL1udkF17BikpLjl0TdsOPm2fr3bJz1Z+CeRGjXgtNMiGr7BEoSJYYePH2byb5MZvXg0\nCzcv5Obzb6b3Rb1pek7TAncBo4JG1c0a37AhcALZtMmtmptZAqlY0Wof+cEShCkQNu7ZyJilY3h3\n8buULVGW3k17c+uFt1KuZLlIh2Zy4fhxNzs8UPLYsMHN7fBvskpPIrVqxfbaVdHEEoQpUNI0jVnJ\ns3h38btMXTuVDnU70Ltpb9rUblNgrp9tYN++zJPHxo2ufyOzBFKpkk0QDJYlCFNg7Tq0K6Nje+eh\nndzZ5E7ubHInNcrWiHRoJozS0tyQ3EDJY8MGN0GwcmWoWvXkW7VqJ+5XrGiTBcEShCkkFm9ZzLuL\n32X8r+NpWqkpvZv2pluDbrasRyF06JBbZn3Tpsxvu3a5moZ/EvG9VapU8CcOWoIwhcrh44eZuGoi\n7y55l8VbFnPLBbfQ+6LeBfbyqCZ3jhyBLVtcP0hmSWTHDqhQ4eSah/+tcuXYnkRoCcIUWil7Unh/\nyfu8t+Q9zip5Fr2b9qZno57El4yPdGgmBhw7Blu3npo4fJPK1q2uPyRQ8khPLFWqRO+EwqhLECLy\nLtAJ2K6qjbznygGfADWAFKCHqu7xtg0E7gJSgX6qOj1AmZYgTKZS01KZlTyL0YtH8826b7i23rX0\nbtqbVrVaWce2yZPUVNi2LfNayB9/uP6SMmXgnHNO3M4+O/Dj8uXzt4M9GhPEVcDfwFifBDES+EtV\nR4rIY0C8qg4QkYbAOKAZUAWYAZyrqml+ZVqCMEHZeXAn45aPY/Ti0ew9spc7m9xJrya9qH5m9UiH\nZgqotDTXXLVtm6txpP+bfvN9vHeva9bKLIH43i9bNu9zRaIuQQCISE3gK58EsRpoqarbROQcIElV\nG3i1hzRVfc7b7xtgqKrO8yvPEoTJEVVl0ZZFvLv4XT5e8THNKjfjrqZ30bV+V04ralN8TWQcO+ZW\n2w2UPPwTy5EjLlkEk0xOPz3w+WIlQexW1XjvvgC7VDVeRF4B5qnqR962d4BEVZ3gV54lCJNrh44d\nYuLqiYxePJpl25bR84Ke9Di/B5dVu8yaoEzUOnQo8wTin0yKFAnctPXkkzlPEBEd2KWqKiJZfdsH\n3DZ06NCM+wkJCSQkJIQ2MFNglSxWkp6NetKzUU827N7A2KVjuW/KfWw/sJ0u9bvQvUF3WtdqbTUL\nE1VKlnQXf6pZM+v9VOHvv12iSExMYu7cJJKTYfny3J03Uk1MCaq6VUQqAbO9JqYBAKo6wtvvG2CI\nqs73K89qECbk1u1ax5erv2Ti6on8uv1XOtTtQLcG3bi23rWccVpELr9uTEjFShPTSGCnqj7nJYWy\nfp3UzTnRSV3XPxtYgjDhtvXvrXz121dMXD2Rub/P5crqV9KtQTe61u/K2aefHenwjMmVqEsQIjIe\naAmUB7YBTwJfAp8C1Tl1mOvjuGGux4H+qjotQJmWIEy+2XdkH4lrE5n02yQS1yZyfsXz6d6gO90a\ndKNuubqRDs+YoEVdgggHSxAmUo4cP8LslNlMXDWRL3/7kgqlK9Ctfje6n9fdliU3Uc8ShDH5JE3T\nmLdpHpNWT2Li6okcTT1Kt/rd6NagG1fVuIqiRQr4wj4m5liCMCYCVJUVO1ZkJIuNezbS+dzOdG/Q\nnWvqXEOpYqUiHaIxliCMiQa/7/2dSasnMWn1JH7Z8gttarWhW4NudD63s130yESMJQhjoszOgzv5\nes3XTFw9kVnJs2hepTndGrimqKpnVI10eKYQsQRhTBQ7cPQA09dPZ+LqiUxZO4Xa8bUzRkSdV/48\n6+Q2YWUJwpgYcSz1GHM2znFNUb9NolSxUhkjoppXaW7LfpiQswRhTAxSVX7Z8gsTV01k0m+T2H1o\nN9fWu5b2ddrTtnZbu6aFCQlLEMYUAGt2riFxbSLT1k9j7u9zOb/i+bSv0572ddrTrEqziA6hjYuL\n48ILLyQ1NZW6desyduxYTj/9dFJSUjjvvPNo0KAB4L6M5s+fT7FixTKO/eGHH+jbty/Fixdn/Pjx\n1K1blz179nDTTTcxbdopc2JNiFmCMKaAOXz8MHN/n8u0ddOYtn4am/Ztok3tNhkJo9qZ1fI1njJl\nyrB//34AevXqRaNGjXj44YdJSUnhuuuuY3kWq8Jdf/31vPLKKyQnJzNx4kT+85//8Mgjj9ClSxeu\nvvrq/HoJhVZuEoTN5jEmipUoWoK2tdvStnZbnud5Nu/fzPT105m2fhoDZgygYumKLlnUbU/LGi0p\nWaxkvsV22WWXsXTp0qD3L1asGAcOHODAgQMUL16c9evXs2nTJksOUcxqEMbEqNS0VBZtWcS09a52\nsWTrEi6rehnt67SnQ90ONKzQMOQjo9JrEKmpqfTo0YM2bdrQt29fUlJSaNiwIfXr1wfgyiuv5JVX\nXjnp2KVLl9KnTx9KlSrF2LFjeeSRR3jmmWeoU6dOSGM0gVkTkzGF2N7De5mVPCsjYRxLPZZRu2hb\nu21IJukVLVqURo0a8eeff1KzZk3mzZtHkSJFgmpi8jVnzhy+/PJL+vTpw6BBgyhevDgvvPACFStW\nzHOMJjBLEMYYwI2MWrNzTUay+H7j9zSs0DAjYTSv0jxXnd3pNYhDhw7Rvn17HnzwQbp3756jBKGq\ndOjQgY8//pgHHniAZ599luTkZKZPn84zzzyTm5drgmB9EMYYwH0Z1C9fn/rl69Pv0n4cOX7EdXav\nn8Z9U+7jj71/0LpW64yEUf3M6jkqv2TJkrz88sv07NmTbt265ejYsWPH0qlTJ+Lj4zl48CAigohw\n8ODBHJVjws9qEMYUQlv2b8no7P52w7eUL1U+Y2RUy5otM11g8IwzzmDfvn0Zj7t06cKtt95KixYt\nuO6661i2bFmW5z148CCdO3fm22+/JS4ujrlz59K3b19OO+00xo0bR7169UL6Os0J1sRkjMmxNE1z\nnd3eUNrFWxfTomqLjIRxQcULbBmQAsAShDEmz/Yd2ec6u72EcST1CO3qtKN9nfa0rtWaiqWtIzkW\nWYIwxoSUqrJu17qMpqjvUr6jZtmatKnVhra123J1jaspXbx0pMM0QbAEYYwJq+Npx/n5z5+ZmTyT\nGRtmsHDzQi6ufDFta7nJfJFeCsRkzhKEMSZfHTh6gO9//54ZG2YwY8MMUvak0LJmy4wahi1jHj0s\nQRhjImr7ge3MTp7NjA0z+HbDtxxNPZqxVEibWm2ockaVSIdYaFmCMMZEDVVlw+4NrnaRPIPZybOp\nWLpiRrJIqJnAmSXOjHSYhYYlCGNM1ErTNJZsXZLRHPXTpp+4oOIFGf0XLaq24LSip0U6zAIrphKE\niKQA+4BU4JiqNheRcsAnQA0gBeihqnv8jrMEYUwBcPj4YX7840dmbpjJjOQZrNqxiiuqX5HRf3Hh\n2RfalfVCKNYSRDJwsaru8nluJPCXqo4UkceAeFUd4HecJQhjCqDdh3aTlJKU0SS169CujGTRtnZb\napatGekQY1osJohLVHWnz3OrgZaquk1EzgGSVLWB33GWIIwpBP7Y+0fGcNoZG2ZwevHTM/ovWtdq\nzVmlzop0iDEl1hLEBmAvronpv6r6tojsVtV4b7sAu9If+xxnCcKYQkZVWbFjRUay+P7376lbri7X\n1L6GDnU7cEW1KygWVyz7ggqxWEsQlVR1i4hUAL4FHgAm+yYEEdmlquX8jtMhQ4ZkPE5ISCAhISGf\nojbGRINjqcdY8OcCpq2fRuK6RNbtWkfrWq3pWLcjHet2tOG0QFJSEklJSRmPn3rqqdhJECcFITIE\n+Bu4B0hQ1a0iUgmYbU1MxpjsbD+wnWnrXLKYvn46lctUpmPdjlxb71our3a51S6IoRqEiJQC4lR1\nv4iUBqYDTwFtgZ2q+pyIDADKWie1MSYnUtNSWfDnAhLXJVrtwkcsJYhawETvYVHgI1V91hvm+ilQ\nHRvmaowJgfTaxdR1U5m+fjpVylQplLWLmEkQeWEJwhiTW4W5dmEJwhhjcqAw1S4sQRhjTC4V9NqF\nJQhjjAmRbX9vyxhGWxBqF5YgjDEmDPxrF2t3rqVN7TYxVbuwBGGMMfkgFmsXliCMMSaf+dcuUvak\nMPjqwdx3yX1RlSgsQRhjTISt2L6CB6c9yB/7/mBUu1F0rNcx0iEBliCMMSYqqCpT1k7h4ekPUzu+\nNi+0e4GGFRpGNKbcJAi7GocxxoSYiND53M4sv2857eu0p+X7LemX2I+dB3dmf3AUsQRhjDFhUjyu\nOP9q8S9W3b+K1LRUznvtPF6e/zLHUo9FOrSgWBOTMcbkk1+3/8pD0x6KSP+E9UEYY0yUi1T/hPVB\nGGNMlIul/glLEMYYEwGx0D9hTUzGGBMFwt0/YX0QxhgTw8LZP2F9EMYYE8OirX/CEoQxxkSZaOmf\nsCYmY4yJcqHon7A+CGOMKaDy2j9hfRDGGFNARaJ/whKEMcbEkPzsn4i6JiYR6QC8CMQB76jqc37b\nrYnJGGM8wfZPxHwTk4jEAa8CHYCGwC0icl5ko8peUlJSpEM4hcUUvGiMy2IKjsUEF1S8gGm3TeP5\na57nX9P+RcePOrJyx8qQlB1VCQJoDqxT1RRVPQZ8DHSNcEzZsg9pcKIxJojOuCym4FhMTrj6J6It\nQVQB/vB5vMl7zhhjTDZC3T8RbQnCOheMMSaPypcqz2udXmPWHbP4es3XXPjmhbkqJ6o6qUWkBTBU\nVTt4jwcCab4d1SISPQEbY0wMiemJciJSFPgNaANsBhYAt6jqqogGZowxhVDRSAfgS1WPi8g/gWm4\nYa6jLTkYY0xkRFUNwhhjTPSItk7qDCLSQURWi8haEXkswPYGIvKTiBwWkYejJKZbRWSpiCwTkR9E\nJHc9Q6GNqasX02IR+UVEWkc6Jp/9monIcRH5R6RjEpEEEdnrvU+LRWRQpGPyiWuxiPwqIknhjimY\nuETkEZ/3abn3f1g2wjGVF5FvRGSJ9171Cmc8QcYULyITvb+/+SJyfj7E9K6IbBOR5Vns87IX81IR\naZplgaoadTdc89I6oCZQDFgCnOe3TwXgEuAZ4OEoieky4EzvfgdgXhTEVNrnfiPcPJOIxuSz3yzg\na+D6SMcEJACTw/05ymFMZYEVQFXvcfloiMtv/87AjEjHBAwFnk1/n4CdQNEIx/Q8MNi7Xz/c75N3\nnquApsDyTLZfC0z17l+a3XdUtNYgsp0wp6o7VHUhkF8LpAcT00+qutd7OB+oGgUxHfB5eDrwV6Rj\n8jwAfA7sCHM8OYkpRyM88iGmnsAEVd0EoKrh/r8LNi7/GMdHQUxbgDO8+2cAO1X1eIRjOg+YDaCq\nvwE1RaRCGGNCVb8HdmexSxdgjLfvfKCsiJyd2c7RmiCiccJcTmPqDUwNa0RBxiQi3URkFZAI9It0\nTCJSBffH9Ib3VLg7woJ5nxS43Kt2TxWR0FznMW8x1QPKichsEVkoIv8T5piCjQsAESkFtAcmREFM\nbwPni8hmYCnQPwpiWgr8A0BEmgM1CP+PxuwEijvTmKJqFJOPaOw5DzomEWkF3AVcEb5wgCBjUtVJ\nwCQRuQr4AFfdjWRMLwIDVFVFRAj/L/dgYloEVFPVgyLSEZgEnBvhmIoBF+GGfZcCfhKReaq6NsJx\npbsOmKuqe8IVjCeYmB4HlqhqgojUAb4Vkcaquj+CMY0AXhKRxcByYDGQGqZ4csL/7y3T1xKtCeJP\noJrP42q4TBdJQcXkdUy/DXRQ1ayqevkWUzpV/V5EiorIWaoarkXkg4npYuBjlxsoD3QUkWOqOjlS\nMfl+kahqooi8LiLlVHVXpGLC/dL7S1UPAYdEZA7QGAhngsjJZ+pmwt+8BMHFdDkwHEBV14tIMu6H\n0MJIxeR9pu5Kf+zFtCFM8QTLP+6q3nOBhbvTJJcdLUWB9bgOoOJk0VGG65zKj07qbGMCquM6rlpE\ny/sE1OHEcOaLgPWRjslv//eAf0Q6JuBsn/epOZASBTE1AGbgOkRL4X6FNox0XN5+Z+I6gkuGM54c\nvFejgCE+/5ebgHIRjulMoLh3/x7g/XC/V965ahJcJ3ULsumkjsoahGYyYU5E7vW2/1dEzgF+xnVI\npYlIf9wfz9+Rigl4EogH3vB+HR9T1ebhiCcHMV0P3C4ix4C/cb/6wibImPJVkDHdANwnIseBg0TB\n+6Sqq0XkG2AZkAa8raqhWcc5D3F5u3YDpqmr3YRVkDH9L/CeiCzF9a0+quGr/QUbU0PgfXHLA/2K\n65cMKxEZD7QEyovIH8AQXFNl+mdqqohcKyLrgAPAnVmW52USY4wx5iTROorJGGNMhFmCMMYYE5Al\nCGOMMQFZgjDGGBOQJQhjjDEBWYIwxhgTkCUIE/NEJNVnSewlIvKQt4QHItJLRF7x23+2iFwsIvO8\n4zaKyHafJaw/FJE+Pvtf6q3RFOdXTjERGSEia8Qtpf6jtwT09yLSwWe/G0Uk0bt/u7dE9jIRWSTe\nUvUi8r6IXO9Xfk0ROeQT12IRuS3A60/ylp1eKiKrROQVETkzFO+tKdyicqKcMTl0UFWbAnirZY7D\nTaAcSubrzKiqtvCOuQO4WFX7eY8r4tY9+hzYBbwC3Keq/uvoDMPN2j1fVY95x7UE+gCfichs3CSl\n4UB7b42n/sA1qrpVRIoDt6fHk0ms69JfWxYU6Kmqi0SkGPAs8CVuCXNjcs0ShClQVHWHiPw/3Cz7\noQS3EOBJCwaq6nYR+Q8wEreWz1JV/fGkA9xKpncDNdUt94yqbgc+87Z/BTyGW2J9jKomi8gY3LIw\nW739jwLv+MWRW+KVeUxEHgXWiciFqrosD2WaQs4ShClwvC/jOO8XfVCHBHjuTeAO3K/wiwNsrwv8\nnsXSLk/hVu88jLuwFcD5wC9BxpSujrcaaLp/quoPAfbLeA2qmuYtOdEAt0yHMbliCcIUZIpbwyiz\nbZkfqKoi8l9c01OOV+VVt2z4x8D+9BpGLq0PookpECE6l803McQ6qU2BIyK1gVRV3YFbcTTeb5dy\nBHdlvTQy/5JdB1QXkTI5OH4FJ2oTgYTkC93rTG8ErApFeabwsgRhChSvk/pNXMcyuD6EK8S7rKKI\nXIJbgtn3qlqZtf1n2iegqgeB0bgLwhRLP7eI3JBFeM8Cz/vEUlxEfFf4zHMfhE8n9e+q+mseyjPG\nmphMgVDSa6cvBhwHxgL/B6Cq27yl4KeKSBFgP3CL3/GZjSDK7Pl0g4BngJUichi3fPLgAGXgxZLo\nJYcZ3jBcxSWZdP8VkRe9+7/jrvfs3wcxWlVfDRDLRyJyBDgN+JasryNtTFBsuW9jjDEBWROTMcaY\ngCxBGGOMCcgShDHGmIAsQRhjjAnIEoQxxpiALEEYY4wJyBKEMcaYgCxBGGOMCej/A4Y/Nk5W++Ys\nAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7fa03d1e3fd0>"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.6: 6-10"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#Average output voltage,RMS output voltage,chopper efficiency and Effective input resistance\n",
"#given data :\n",
"r=10 #in ohms\n",
"d=0.3 #\n",
"v=230 #\n",
"vch=1.5 #in volts\n",
"D=80/100 # duty cycle\n",
"V=220 # in volts\n",
"Vch=1.5 #in volts\n",
"VL_dc=D*(V-Vch) \n",
"print \"part (a)\"\n",
"print \"Average output voltage, VL_dc = %0.2f V \" %VL_dc\n",
"print \"part (b)\"\n",
"VL_rms=sqrt(D)*(V-Vch) \n",
"print \"RMS output voltage, VL_rms = %0.2f V \" %VL_rms\n",
"print \"part (c)\"\n",
"Po=((v-vch)**2)*(d/r) #in watts\n",
"Pi=((d*v*(v-vch))/r) #in watts\n",
"cn=Po/Pi #chopper efficiency\n",
"print \"chopper efficiency = %0.4f or %0.1f %%\"%(cn,cn*100)\n",
"print \"part (d)\"\n",
"D=80/100 # duty cycle\n",
"R=20 #in ohm\n",
"Ri=R/D \n",
"print \"Effective input resistance, Ri = %0.2f ohm\" %Ri"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"Average output voltage, VL_dc = 174.80 V \n",
"part (b)\n",
"RMS output voltage, VL_rms = 195.43 V \n",
"part (c)\n",
"chopper efficiency = 0.9935 or 99.3 %\n",
"part (d)\n",
"Effective input resistance, Ri = 25.00 ohm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5.7 : page 6-11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#average output voltage and current\n",
"#given data :\n",
"vs=120 #in volts\n",
"vb=1 #in volts\n",
"d=0.33 #\n",
"rl=10 #in ohms\n",
"f=200 #in Hz\n",
"Vldc=d*vs #\n",
"Ildc=round(Vldc)/rl #in amperes\n",
"print \"average/DC output voltage = %0.f V\" %round(Vldc)\n",
"print \"average load current = %0.f A\" %Ildc"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average/DC output voltage = 40 V\n",
"average load current = 4 A\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6.5 : page 6-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Average armature current\n",
"#given data :\n",
"V=200 # in volts\n",
"D=50/100 # duty cycle\n",
"VL_dc=V*D \n",
"Eb=75 # in volts\n",
"Ra=1 # in ohm\n",
"Ia=(VL_dc-Eb)/Ra \n",
"print \"Average armature current, Ia = %0.2f A \" %Ia"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average armature current, Ia = 25.00 A \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6.6 : page 6-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import exp, array, linalg\n",
"#minimum instantaneous load current,peak instantaneous current and maximum peak to peak ripple\n",
"v=220 #volts\n",
"r=10 #in ohms\n",
"l=15.5 #in mH\n",
"f=5 #in kHz\n",
"Eb=20 #in volts\n",
"d=0.5 #\n",
"x=exp((-(1-d)*r)/(f*10**3*l*10**-3)) #\n",
"y=(1-x)*(Eb/r) #\n",
"y1=(1-x)*((v-Eb)/r) #\n",
"A=array([[0.94, -0.94*0.94],[0.94, -1] ])\n",
"B=array([-0.94*0.125, -1.25] )\n",
"X=linalg.solve(A,B) #\n",
"print \"part (a)\"\n",
"print \"minimum instantaneous current = %0.2f A\" %X[0]\n",
"print \"part (b)\"\n",
"print \"peak instantaneous current = %0.2f A\" % X[1]\n",
"print \"part (c)\"\n",
"PP=X[1]-X[0]\n",
"print \"maximum peak to peak ripple in the load current = %0.3f A\" %PP"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"minimum instantaneous current = 9.02 A\n",
"part (b)\n",
"peak instantaneous current = 9.73 A\n",
"part (c)\n",
"maximum peak to peak ripple in the load current = 0.709 A\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6.7 page 6-21"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#inductance\n",
"v=220 #in volts\n",
"r=0.2 #in ohms\n",
"ia=200 #in amperes\n",
"f=200 #in hz\n",
"di=0.05*ia #in amperes\n",
"e=0 #in volts\n",
"d=0.5 #\n",
"l=((1-d)*v*d*(1/f))/di #\n",
"print \"inductance = %0.2f mH\" %(l*10**3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"inductance = 27.50 mH\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6.9: 6-24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log, pi, sin\n",
"#load current is continuous or not,Average output current , \n",
"#maximum and minimum steady state output current and RMS values of first and second harmonics of the load current\n",
"#given data :\n",
"V=220 #in volts\n",
"La=5 # in mH\n",
"Eb=24 #in volts\n",
"Ra=1 # in ohm\n",
"T=2 #in m-sec\n",
"D=0.6/2 \n",
"D_dash=(La/(T*Ra))*log(1-((Eb/V)*(1-exp((T*Ra)/La)))) \n",
"print \"part (c)\"\n",
"print \"As D =\",D,\"% is greater then D_dash =\",round(D_dash,3),\"% so load current is continous.\"\n",
"print \"part (d)\"\n",
"Io=((D*V)-Eb)/Ra \n",
"print \"Average output current,Io(A) = \",Io\n",
"I_max=(V/Ra)*((1-exp(-(D*T*Ra)/La))/(1-exp(-(T*Ra)/La)))-(Eb/Ra) \n",
"print \"Maximum steady state putput current, I_max = %0.2f A \" %I_max\n",
"I_min=(V/Ra)*((1-exp((D*T*Ra)/La))/(1-exp((T*Ra)/La)))-(Eb/Ra) \n",
"print \"Minimum steady state output current, I_min = %0.2f A\" %round(I_min)\n",
"print \"part (e)\"\n",
"C1_rms=((2*V)/(pi*sqrt(2)))*sin(pi*D) # in volts\n",
"C2_rms=((2*V)/(2*pi*sqrt(2)))*sin(2*pi*D) # in volts\n",
"Z1=((Ra**2+(2*pi*La*10**-3*(1/(T*10**-3)))**2)**(1/2)) #\n",
"Z2=((Ra**2+(2*2*pi*La*10**-3*(1/(T*10**-3)))**2)**(1/2)) #\n",
"Ifl=C1_rms/Z1 #in amperes\n",
"Ifl1=C2_rms/Z2 #in amperes\n",
"print \"fundamental component of load current = %0.2f A\" %Ifl\n",
"print \"second harmonic component of load current = %0.2f A\" %Ifl1"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (c)\n",
"As D = 0.3 % is greater then D_dash = 0.131 % so load current is continous.\n",
"part (d)\n",
"Average output current,Io(A) = 42.0\n",
"Maximum steady state putput current, I_max = 51.46 A \n",
"Minimum steady state output current, I_min = 33.00 A\n",
"part (e)\n",
"fundamental component of load current = 5.09 A\n",
"second harmonic component of load current = 1.50 A\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.6.11: page 6-27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#value of current limiting resistor ,maximum and minimum duty cycle\n",
"#given data :\n",
"v=325 #in volts\n",
"eb=120 #in volts\n",
"r=0.2 #in ohms\n",
"ra=0.3 #in ohms\n",
"e=120 #in volts\n",
"rb=0.2 #in ohms\n",
"rl=0.3 #in ohms\n",
"d=60 #in percentage\n",
"i=20 #in amperes\n",
"vo=(d/100)*v #\n",
"R=((i*rl)-(v-eb)+(i*rb))/(-i) #\n",
"print \"part (a)\"\n",
"print \"value of current limiting resistor = %0.2f ohm\" %R\n",
"#value of current limiting resistor is calculated wrong in the textbook\n",
"print \"part (b)\"\n",
"p=15 #\n",
"R=9.45 #\n",
"vmax=v+(v*(p/100)) #\n",
"vmin=v-(v*(p/100)) #\n",
"Dmax=((i*R)/vmin)*100 #\n",
"Dmin=((i*R)/vmax)*100 #\n",
"print \"maximum duty cycle = %0.2f %%\" %Dmax\n",
"print \"minimum duty cycle = %0.2f %%\" %Dmin"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"value of current limiting resistor = 9.75 ohm\n",
"part (b)\n",
"maximum duty cycle = 68.42 %\n",
"minimum duty cycle = 50.57 %\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9.1 : page 6-39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# pulse width and output voltage\n",
"#given data :\n",
"v=220 #in volts\n",
"vo=660 #in volts\n",
"toff=100 #in micro seconds\n",
"ton=((vo*toff)/v)-toff #in micro secondsT=ton+toff #in micro seconds\n",
"T=ton+toff \n",
"f=(1/T) #in Hz\n",
"Vo=((v)/(1-(f*(ton/2)))) #in volts\n",
"print \"pulse width (ton) = %0.f micro seconds\"%ton\n",
"print \"new output voltage = %0.f V\" %Vo"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"pulse width (ton) = 200 micro seconds\n",
"new output voltage = 330 V\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.9.2 : page 6-40"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#chopping frequency and new output voltage\n",
"#given data :\n",
"v=200 #in volts\n",
"vo=600 #in volts\n",
"ton=200 #in micro seconds\n",
"x=-((v/vo)-1) #\n",
"f=x/(ton*10**-6) #\n",
"ton1=ton/2 #\n",
"Vo=((v)/(1-(f*ton1*10**-6))) #in volts\n",
"print \"chopping frequency = %0.2f Hz\"%f\n",
"print \"new output voltage = %0.2f V\"%Vo"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"chopping frequency = 3333.33 Hz\n",
"new output voltage = 300.00 V\n"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|