1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
{
"metadata": {
"name": "",
"signature": "sha256:86191a5ead11f6d89d35b179bef2e551a162454413febb874f54db9641e75871"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3, Single Phase Controlled Rectifiers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3.1: page 3-11"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import symbols, simplify\n",
"from math import pi, sin, cos, sqrt\n",
"#form factor,ripple factor ,transformation utilization factor and peak inverse voltage\n",
"Vm=1 #assume\n",
"R=1 #assume\n",
"alfa = pi/3 # radian\n",
"Vm = symbols('Vm', real = True)\n",
"Vldc = Vm/2/pi*(1+cos(alfa))\n",
"Vlrms = Vm*sqrt(1/4/pi*(pi-pi/3)+1/4/pi*sin(2*pi/3))\n",
"ff=Vlrms/Vldc\n",
"print \"part (a):\"\n",
"print \"form factor is\",round(ff,3),\"or\",round(ff*100,1),\"%\"\n",
"#form factor is calculated wrong in the textbook\n",
"print \"part (b)\"\n",
"rf=sqrt(ff**2-1) #\n",
"print \"ripple factor is\",round(rf,2),\"or\",round(rf*100),\"%\"\n",
"#ripple factor is calculated wrong in the textbook\n",
"Vs=Vm/(sqrt(2)) #rms secondary voltage\n",
"Is=Vlrms/R #\n",
"TUF=((Vldc**2)/R)/(Vs*Is) #\n",
"print \"part (c)\"\n",
"print \"transformation utilization factor is\",round(TUF,3),\"or\",round(TUF*100,1),\"%\"\n",
"#transformation utilization factor is calculated wrong in the textbook\n",
"R=1 #assume\n",
"Vm=1 #assume\n",
"print \"part (d)\"\n",
"print \"PIV=Vm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a):\n",
"form factor is 2.033 or 203.3 %\n",
"part (b)\n",
"ripple factor is 1.77 or 177.0 %\n",
"part (c)\n",
"transformation utilization factor is 0.166 or 16.6 %\n",
"part (d)\n",
"PIV=Vm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4.1: page 3-25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"% matplotlib inline\n",
"from numpy import array, sqrt, pi, nditer, cos, sin\n",
"#plot the variation\n",
"vsrms=230 #volts\n",
"vm=sqrt(2)*vsrms #volts\n",
"alpha=array([0,30, 60, 90, 120, 150, 180]) #degree\n",
"x=array([0,(30*(pi/180)),(60*(pi/180)),(90*(pi/180)),(120*(pi/180)),(150*(pi/180)),(180*(pi/180))])\n",
"\n",
"def cur(alpha,x):\n",
" it = nditer([alpha,x,None, None])\n",
" for a,b,c,d in it:\n",
" c[...]=(vm/pi)*(1+cos(a*pi/180)) #\n",
" d[...]=vsrms*((1/pi)*(pi-b+(sin(2*b))/2))**(1/2) \n",
" return it.operands\n",
"vldc = cur(alpha,x)[2]\n",
"vlms = cur(alpha,x)[3]\n",
"from matplotlib.pyplot import subplot, xlabel, ylabel, title, plot, ylim, show\n",
"%matplotlib inline\n",
"subplot(1,3,1)\n",
"xlabel(\"alpha\") #\n",
"ylabel(\"Vldc\") #\n",
"title('(a) Variation of average load voltage')\n",
"plot(alpha,vldc) #\n",
"subplot(1,3,3)\n",
"xlabel(\"alpha\") #\n",
"xlabel(\"Vlrms\") #\n",
"title('(b) Variation of RMS load voltage')\n",
"plot(alpha,vlms) #\n",
"ylim(40,250)\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"-c:14: RuntimeWarning: invalid value encountered in double_scalars\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAEZCAYAAAAaKBUaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNW19/HvAkRAFFQUVEAIiqhxQHGKU4sTTmgSE4kk\ncUpMokm8XnOd4r1yY5w1mtyb+CYaEtSA85g4odeOOEcDokFUVBQcAAUVR1DW+8feBYeiurq6u6pO\nVZ3f53n66Rp2nVp16qxa5+wzbHN3REREpLhOaQcgIiJSD1QwRURESqCCKSIiUgIVTBERkRKoYIqI\niJRABVNERKQEJRVMMzvfzE4qse1NZjaqY2GVzszGmtm9HXj9XWb2nXLGVOL7/tLMFpjZm9V+77SY\n2Wwz27sC0x1nZtdUYLoVibfWJPPbzJrMbE6RtpeY2Q+rGNvuZjazA6+/wszOKmdMJb7vj8xsnpl9\nYGZrV/v9C2ntu+3gtMueK5WMt71aLZhmth7wHeD/lTjNC4FftjCtjcxsqZl9qcBzt5rZxSW+x3Lu\n/hd337+UtoV+WN39QHcv+49tK3EMBP4dGObuG1bzvVPm8a8S062E5fFWqiinrR35fQlwppmtVmBa\n3czsPTPbq8Bzl5nZjW2Nz92nuPuwUtqa2dFmNiXv9T9y94K/R5US582lwN7uvpa7L8p7fpCZLTOz\nxfFvtpn9Z16b2Wb2mZmtm/f41PjagfF+fzO7Oa58v2dmz5rZUZX+jAVUKreXi/NkZCXfozWlbGEe\nDfzN3T8rZYLu/g9gLTPbvsBzbwAPEBJ0OTNbBzgA+HMp75F4Xee2tK8hA4F33f3dNIMwsy5pvr/U\nhKNpW36/DcwERhd47lPgOuC7ycdjno6h7fldr8tnP6Ab8Hwr7Xq5+5rA14HTzOzAxHMOvAJ8K/eA\nmW0FdGflwnQN8BrhN2Udwm/rvI5+gBrlgKUbgXvRP0KBOzJxvzfwV2A+sBC4E9go7zV/AP6rhel9\nC5iV99gJwNPx9unALOAD4F/AYYl2RwOPAL8C3gHOiY9NSbT5NfA68D7wFLBbfHwU8BmwBFgMTI2P\nNwPHxdsGnAXMJix0E4C14nODgGWEH4PXgAXAmUXmWy/g6jifZgM/j9PfB/gY+CLGMb7Aa1ucx8AR\nwD/y2p8M3B5vr07YCngNeBu4AugWn2sC5gKnAm/Fz1f0+wQGAw/F72My8FvgmsTzOwOPAouAacCe\nRebJq8DIRJyXA2/Ev8uArqUsYzGmv8eY7gP+JxlT3ns+DxyUuN8lfnfbxvujCcvZIuBBwlb/SvEW\nWXaOAWbEOF4Gjs9771OBN+M8/15cfr7U2vdUzT9Wze8mYA5wRpxPryafj23OLLTcxud2ifOje+Kx\nAwn51KnYPGth+WwC5iTaFPx9ADYHPgE+j9/Rwvj4n4FzEq//PvAS8C5wO7BB4rllwA+AF+Py8L9F\n5lvB5RcYCnwYp7UYuL/AawfF5zslHnsC+Fnesvdz4MnEY5fEeb8MGBgfWwxsXeJ3nT8vNyf8/i0C\nngMOSTx3EDCV8Dv6OnB23rS+E5fdd2JMy3M7r91O8bu0xGNfBZ4p4XdgebyEFYMvCL+di3PzCrgx\nTv89wm/CFon3WZfw2/E+8CSh5zNZK4YRftPeJawEfqPVeVjCTJ4PbJ+4v078wN2AnsANwK15rzkZ\nuLmF6XWPH27XxGOPAT+Ntw8H+sXb34wLX994/2hgKXAiIfm6sWrBHAusHZ//9zgzc1/A2cDVefE8\nCBwbbx9LSKZBwBrAzbn2rFjIfx+/5K2BT0n8wOZN92rg1jidjYEXEu+zJ4kFt8BrW5zHQA/Cj8Um\nifb/AL4Zb18G3EYoOj2BO4DzEgvgUuB8YLU4/aLfZ/xuLiIUml3jwpebJxsREmZUvL9PvN+nhc+V\nLJi/IBTaPvHvEeAXpSxjMaZL4mfYPc6Pq1t4z/8Ers37IfhXvJ37cdsb6Az8R/z+uxSIt9CycyAw\nON7eA/gIGB7vjyIse5sTlvlrWblgtvg9VfOPVfM7t4zk5u8ecR4NTbT5GnEFt4VpvgCMTdyfBPyq\nhHlWaPlsYuUf+WK/D0eR+C2Ij/0psVyNJK4sEYrbb4C/J9oui9/DWsCAOG/2b+EzFlt+NyavIOa9\ndlB8vnO8v3P8HHvm5crehB/yYXH5nEPYkkwWzMnAw4QV6YGtfNfL52Wcv7MIKyBdgL0IeTQ08Ru1\nZby9FWGl7tB4fwtC0dotzsdL4/e2SsGM7WcB+yTu3wicWsJ8zP/uVynKhN//NeLnuYy4Mhufuw6Y\nGJejzQmF/6H43Bpxfh5FqBXbxmVj86LzsISEWkIiWQo8vy1xbS7x2PeBB4q85krg9/H2poS195Z+\nZKcCoxMz57UCM2xKkfdaCGwVb48jb0uElQvmA8APE88NjZ+/EysW8g0Tzz8BHFHgPTvHz5TcWjke\neLDQglDCd7DSPCasbf1nYv59EBcKIyTelxJtdwFeSbzvZ8QViNbei5CcS0ls+cT3zhXM01i1iNwD\nfLeFaScL0CxioY339wNebUNMyS2Yv+R/r4nnhuTmT6LtWfH2fwLXJdoaYQtnjwLxrrLsFHivW1mx\n4jceODcvjmXAl1r7nqr5R15+s6JoJefv9bl5Fu/vC7xcZJo/B+6Nt9ciFMVtSphnqyyfreUKq/4+\nFCuYfwQuSDy3Rvz8ueKzDPhK3uc+rYX3bXH5pcAWZN5rc88vImwxLQNOKZAre8d5eR5hBexewm9L\nsmD2JqxgPEfYup4KjGjhfZfPS8KK5lt5z08kb0sy8dzlrFjp+S9gYuK5HvF7a6lgngP8Md5eMy77\nA0qYjyt997SwFZt4vnecN2vG+bQE2DQvjinx9hHE4pl4/ve00DOa+ytlH+aiGAAAZtbDzH4fd8C+\nT9gM7mVmyb7lNQlbkS2ZAHzDzFYnbNrf4+7vxOl/N+7YXmRmi4AvEzatc4oeNWVmPzOzGXEH+CJC\n12ifEj4nwAaEboac1wlrX30Tj72duP0xIeny9SGs8eRPa6NSgihhHk9kxb6NIwlbX58C6xEW3qcT\n8+9uVv78C9x9SYnvtSGhUH2aeP1cVuxH2JjwPS5KvN+uhH04rdmQVefPhiXGtMjdP0m8Njmdlbj7\ny4Ru2dFm1gM4hDD/IHzfryfaOmH5KvV7OsDMHjezd+NnP5AVy+oGrLyszk3cLuV7qpaV8jv3WIH5\nmzw4rbX8vhbYy8w2IGwRznL3Z6DVeQZ5y2e+En4filkpv939I0J3XPL7zs/vni1Mq8Xltw3WjdM/\nBfg3M1sr73knrKCOJWwJXU3ePjx3f8/dz3D3LxN+p6YRei5asyGr/pa+RpwXZraTmT1oZvPN7D1C\nV/W6idcuX57d/WPCfGzJROBrZtaVFb0Tufdu93w0s05mdoGZzYq/E68S5lkfQo51oeUc3BjYKe+3\n60hW/q1fRSkFczqwWeL+KYQtrx3dvRdh091Y+YvcnPDFteQRwpbfoYSFYQKAmW1M2P95IrCOu69N\nWHNKTttbmqiZ7U7oVvuGu/eOr38/8foWXxu9SVj7yxlIWGtr6070dwhr6fnTmluw9apam8f3A+uZ\n2TaEgylyBeAdwn6cLdx97fjX292TiZg/D4q911vAOmbWPdF+QGIarxO2utZO/K3p7heV8BkLzes3\nSoxp7Vj8cjYu8LmSJhFWMA4FZrj7K4kYNs41igV5QCKOpJWmH1f2biZ0V68fl7W7WPEdvRWnlZO8\nXcr3VC35+Q2F529ynhTNb3d/DZgCfDv+5fK7tXkGxfO7td+HNuW3ma1BKAKFvu/WFFp+23yKmLsv\nc/fLCMc5nFzg+dcJB/8cANzSyrTeJXSPbmitn8ryJjAgb0NnY1b8Rk0kFN7+7t6bcBS1JV+be1Fc\nVlpcaXH35wlF8QBCUZqYeLot8zH/+x1LOAZh7/g7MZgVvxMLCL/dLeXg64Tu+PzfrhNb+hxQWsG8\ni/CDldOTkOzvx6Nbzy7wmj0Ia8wFxTX5qwmJ04uwYxbC1poTflA6mdkxhDXIUq1JmEnvmFlXM/sv\nQpdQztvAoLyFJGkScHI87LsnoSvkOndfVuQ9V5mWu39B2O92rpn1jIl+MmHNuxRF57G7LyXsB7iE\nsL92cnx8GaG7+3ILpwvkTuXZrz3vFX/4ngLGmdlqZrYLcHDitdcCh5jZfmbW2cJpBU1mVsoW2iTg\nLDPrY2Z9CN08uflTSkz/HWPaLS+mQq4D9gd+SOiSzbkBOMjMRlo4FeAUwn7pRwtMI3/Z6Rr/3gGW\nmdkBhO6k5LSPMbNh8Qdl+WkD7fyeKiU/v3Ny83d3wn7f5Ckhe1Ikv6MJwE+Ar7Binrc2z1rT2u/D\nPKC/rXzKS3JFcxLhO9kmFu/zgMdjUSqk2BGZhZbfjpx2dAHwk7wVlZzjCF2Rn+Q/YWYXmtmWZtbF\nzNYEfgS85HmnshTwBGEL+tT4PTcR8ui6+HxPQk/DEjPbkVDocm4GDjazXeNW4y9ovZZMBP6N0BWc\nXJbaMh/nEXZt5PQkdAUvjCs/5+WeiL/BtxB+u7qb2TBCb2au6P4NGGpm346ffzUz2yG2a1EpBfNq\n4EAz6xbvX044iOEdwg/L3YkgMLMdgMXu/lQJ0x0AXB8LAO4+g7CG9BjhB+rLhB3aOc6qaxnJx+6J\nfy8S1tg+IdHlxoov6l0zKxTfeMKX9RBhre5jQtIn3ytfS2u1PyHsu3mFsLb9F8L+lNZeB63M42gi\nYR/HjXkF/TTCfoHHYzfFZMLWWkvv29p7jSXsX3uXsA/gesK+Adx9LmGr7UzCARKvE4pOKcvVLwmF\nb3r8e4oV5++2FtORhKPvFhISbEKxN/JwKsSj8XNcn3j8RcIW0P8Q1kgPIhwp+HmByay07Lj7YuCn\nhMK4kLAFe3ti2vcQDip5kLA8Phafyp2+0dr3VC35+e2EreNFhDX9a4AfxHlF7GbdnNa7/W4mrMw9\n4O7zAFqbZ4n3z+fx9a39PjxAOHL2bTObn3ht7vUPEFZcbo6fbTChh6al9y70e5NTbPlt6XOs8pmW\n33H/W/xM31ulofsr7v7PFl7bnbAfeBHhqOMBFDjlJ/+1sdv7EMJW3wLgf4Hv5L5nwpkLvzCzDwjz\nLJk3/yJs5U8kzMeFtLKrjFAY9yAsDwsTj7dlPp5PKK6LzOzfCcvua4QegucIy0Wy/Y8JG2RvE34j\nJrHit2sxYWVtTHz9W3H6XYt9CIs7O4sys3OB+e7+6xLa3gRcFX8wKsrMBhBm2vqEGfUHd/+NmY0j\nLHgLYtMz3f3u+JozCEfDfkE42OC+SsfZSMzsekK35n+nHUs9MbPNgWcJB7QU67Goujbm9yWEfZKl\nXugg+Vrlq6TGzC4k7Ao4pt3TKKVg1ioz60c4xHxa7EJ9GjiMcLj5Ynf/VV77LQhrRTsQdm7fTzhC\nsKZ+wGqJmY0grL2+SujWvAXYOXcQh7TMzL5K6PLsQVjD/dzdv5ZuVOlRvko1mdlmhFMAnyUsQ38j\nnHN/R3unWdcXX3f3t919Wrz9IeFoyNz+s0L7Hw4FJrn7UnefTegS27EasdaxfoRuxcWE85x+qGJZ\nsuMJ+11mEQ4C+1G64aRL+SpVtiah+/1Dwr7ZSzpSLCEcdtsQzGwQMBx4nHBqw0/M7LuEPvFT3P09\nwuHKjydeNpcSTyHIKnf/K+GqO9JG7n5A2jHUKuWrVFo8jmbTck6zrrcwc2L3zk3ASXHN9QrCDv1t\nCTtzLy3y8vrtkxapQ8pXqVd1v4UZDyG/mXD5s9sA3H1+4vmrWHHayhusfC5Of/LOwTIzJWQNcfd0\nL7YsZVXufI2vUc7WiEbP17rewoznxP2RcNTm5YnHN0g0+yphpy+E60SOiedoDiZsrj+ZP10v8bJi\nZ599ttpWsK00lkrlK5Ses21dBtvTvhrvUYsxZUG9b2HuSjiPbrqZTY2PnQl8y8y2JXTfvEq4rBPu\nPsPMbiCMlvA5cIJn5ZsWSZ/yVepaXRdMd3+YwlvJxa4ydB6JK0KISHUoX6Xe1XWXbNqamprUtoJt\nRSqhrctge5bZSr9HLcaUBXV94YJKMDP1+tQIM8Mb/CAC6TjlbG3IQr5qC1NERKQEKpgiIiIlUMEU\nEREpgQqmiIhICVQwRURESqCCKSIiUgIVTBERkRKoYIqIiJRABVNERKQEKpgiIiIlUMEUEREpgQqm\niIhICVQwRURESqCCKSIiUgIVTBGpezfdBC+/DBrlSypJ42Hm0dh6tSML4+tJx5mZH3KIM3UqLF4M\n224Lw4eHv+22g2HDoEuXtKNsfFnIVxXMPCqYtSMLCSgdl8zZBQtg2jSYOhX++c/wf+5c2HLLFQV0\n+HDYaivo3j3lwBtMFvJVBTOPCmbtyEICSse1lrOLF8P06SsX0RdegCFDVmyJDh8O228Pa65ZxcAb\nTBbyVQUzjwpm7chCAkrHtSdnP/sMZsxYuYjOmQOPPQYbbVShQBtcFvJVBTOPCmbtyEICSseVK2cv\nuABuuAEeegh69ixDYBmThXxVwcyjglk7spCA0nHlyll3+N734J134JZboHPnMgSXIVnIV51WIiIC\nmMEVV4R9nqeemnY0UotUMEVEoq5d4eab4W9/g//3/9KORmqNzk4SEUlYe+1QMHfdFQYPhv33Tzsi\nqRXawhQRyTNkSLh60He+A889l3Y0UitUMEVECthtN7jsMjjkEJg3L+1opBaoYIqItGDsWDj6aBg9\nGj75JO1oJG06rSSPTiupHVk4TF06rtI56w7f/jYsWQLXXw+dtJlRUBbyVV+9iEgRZvDHP8Jbb8FZ\nZ6UdjaRJBVNEpBXdusFtt4UrAf3pT2lHI2nRaSUiIiXo0wf++lfYc08YNAj22ivtiKTatIVZwPvv\npx2BiNSiYcNg0iQYMyaMeCLZooJZwPbbhxEMRETyjRwZLtR+0EHhurOSHSqYBZx3HowaFa4rqQNm\nRSTfMcfAN74BX/1qGCpMsqGuC6aZDTCzB83sX2b2nJn9ND6+jplNNrMXzew+M+udeM0ZZvaSmc00\ns/0KTfeb34RHHoE//AG+9S344INqfSIRqRfnngv9+sFxx2nFOivqumACS4GT3X1LYGfgRDPbHDgd\nmOzuQ4EH4n3MbAvgCGALYBTwOzMrOA823TQMJtu7N4wYAc88U4VPIyJ1o1MnuPpqeOkl+MUv0o5G\nqqGuC6a7v+3u0+LtD4HngY2A0cCE2GwCcFi8fSgwyd2XuvtsYBawY0vT79YtjFgwbhzssw9ceaXW\nJEVkhe7d4fbbw6kmf/lL2tFIpdV1wUwys0HAcOAJoK+7567+OA/oG29vCMxNvGwuocAWdeSRMGUK\n/OY38N3vwocfli1sEalz/fqF001OPjnsypHG1RDnYZpZT+Bm4CR3X2y24upM7u5mVmy7cJXnxo0b\nt/x2U1MTTU1NDBsGTzwBP/4x7LAD3HgjfPnL5fsMAs3NzTQ3N6cdhkibffnLcM01cPjh8PDDYbQT\naTx1fy1ZM1sN+Ctwt7tfHh+bCTS5+9tmtgHwoLsPM7PTAdz9gtjuHuBsd38iMb1Wr0s5YQL87Gdw\n8cXhwsxSGVm4NqV0XC1d//mKK+DXv4Ynn4S11ko7murKQr7WdZeshU3JPwIzcsUyugM4Kt4+Crgt\n8fgYM+tqZoOBTYEn2/q+Rx0Fzc1w0UXh8PKPP273RxCRBvKjH8HWW+vyeY2qrgsmsCvwbWAvM5sa\n/0YBFwD7mtmLwMh4H3efAdwAzADuBk5o76rplluGtcgvvoCddoKZM8vxcUSk3p14YjglrUY2eqWM\n6r5Lttza2r3jHkYyOOMMuPzyMH6elEcWuniyxMwGAFcD6xOOHfiDu//GzNYBrgc2BmYD33T39+Jr\nzgCOBb4Afuru9xWYbs10yUL4TRg2DMaPh113TTua6slCvqpg5mlv8k2fHq78seee4Wjabt0qEFzG\nZCEBs8TM+gH93H1aPFDvacIpX8cA77j7RWZ2GrC2u58ez5ueCOxAOJr9fmCouy/Lm25NFUyASy8N\nvwkTJrTetlFkIV/rvUu2Zmy9NTz1FLzxBvz3f6cdjUjtqfR507XkqKPC+ZmLFqUdiZSTCmYZrbkm\n/Pa3Yf/FwoVpRyNSuyp53nQt6NMHDjhAFzNoNCqYZTZoEBx6KPzP/6QdiUhtyj9vOvlc7Ftt03nT\nter443XwT6NpiAsX1JrTTw87+08+OXvnYokUE8+bvhm4xt1zp3vNM7N+ifOm58fH3wAGJF7ePz62\nikIXG0lbUxN88km44MnOO6cdTfll8UIjOugnT7kOIDjySNhmGzjttDIElVFZOIggS+J50xOAd939\n5MTjF8XHLowXF+mdd9DPjqw46GeT/AStxYN+ci66KJxyNn582pFUXhbyVQUzT7mS77nnwgXbX3kF\nevQoQ2AZlIUEzBIz2w14CJjOiq7VMwgXD7kBGMiqp5WcSTit5HNCF+69BaZbswVz/nwYOhReew16\n9Uo7msrKQr6qYOYpZ/J9/euwxx5w0kllmVzmZCEBpeNquWBCGF+3qQlOOCHtSCorC/mqgpmnnMn3\nz3/C6NEwa5bOy2yPLCSgdFytF8z77w/Xnp46FayBl+Ys5KuOkq2g7bYL+zH//Oe0IxGRtIwcCYsX\nh/O0pb6pYFbYWWfBBRfA0qVpRyIiaejUCb7//XCKidQ3FcwK22WXMDaeTmAWya6jj4abboIPPkg7\nEukIFcwqOOssOO+8MLKJiGRPv36w994waVLakUhHqGBWQVMTrL8+3Hhj2pGISFrULVv/VDCrwCxs\nZf7yl7BsWevtRaTx7LsvvPsuPP102pFIe6lgVsn++4dTS26/Pe1IRCQNOvin/uk8zDyVPKfrttvg\nnHPC4eWNfD5WuWThvC7puFo/DzPpzTfhy1+G11+Hnj3Tjqa8spCv2sKsotGjYckSuOeetCMRkTRs\nuGEYZP6669KORNpDBbOKOnUK+zLPOUdD/ohkVW7YL6k/KphVdvjhYcd/xkbFEZFov/1g3rxwqTyp\nLyqYVda5M5x5ZtjKFJHs6dwZvvc9uPLKtCORttJBP3mqcQDB0qVhyJ9rrw0DTUthWTiIQDqung76\nyZk7F7beGubMgTXWSDua8shCvmoLMwWrrQannw7nnpt2JCKShv79Ybfd4Prr045E2kIFMyVHHw3P\nPquTmEWy6vjj1S1bb1QwU7L66vAf/6GtTJGsGjUqdM1On552JFIqFcwUfe978Oij8NxzaUciItXW\npQscd5y2MuuJDvrJU+0DCC66CKZNg4kTq/aWdSMLBxFIx9XjQT85r78Ow4eHg3969Eg7mo7JQr5q\nCzNlP/oRTJ4ML76YdiQiUm0DB4YxczWSUX1QwUzZmmvCT34C55+fdiQikgZdkL1+qEs2TxrdO++9\nB0OGhCNmBw2q6lvXtCx08UjH1XOXLMDnn8PGG8N998GWW6YdTftlIV+1hVkDeveGH/4QLrww7UhE\npNq6dIFjj9XBP/VAW5h50lpbXbAANtssnJu50UZVf/ualIU1Vum4et/CBJg9G0aMCAf/dO+edjTt\nk4V81RZmjVhvPTjmGLjkkrQjEZFqGzQIdtgBbr457UikGG1h5klzbfWtt8I+jJkzYf31UwmhpmRh\njVU6rhG2MAFuvRUuuwweeijtSNonC/mqLcwassEGcOSRcOmlaUciItV28MEwaxY8/3zakUhL6rpg\nmtl4M5tnZs8mHhtnZnPNbGr8OyDx3Blm9pKZzTSz/dKJurhTToHx42HJkrQjEZFqWm21sFtGB//U\nrroumMCfgFF5jznwK3cfHv/uBjCzLYAjgC3ia35nZjX3+QcPhmHDwiHmIpItxx0H11wDn36adiRS\nSM0VjLZw9ynAogJPFepHPxSY5O5L3X02MAvYsYLhtdvYsfCXv6QdhYhU25e+FC6Vd+utaUcihdR1\nwSziJ2b2jJn90cx6x8c2BOYm2swFavIEjm98A+6+GxYvTjsSEam244/XlX9qVSMWzCuAwcC2wFtA\nsUNoavLQunXXhT32gNtuSzsSEam20aPDgT+6vnTt6ZJ2AOXm7vNzt83sKuDOePcNYECiaf/42CrG\njRu3/HZTUxNNTU3lDrNVRx4Jf/4zfOc7VX/r1DQ3N9Pc3Jx2GCKp6to1DDB/5ZVw8cVpRyNJdX8e\nppkNAu50963i/Q3c/a14+2RgB3c/Mh70M5Gw33Ij4H5gk/wTuGrlnK6PPw5X/Jk5E/r2TTuadGTh\nvC7puFrJ2XKaNQu+8pVw5Z/VV087mtJkIV/rukvWzCYBjwKbmdkcMzsWuNDMppvZM8CewMkA7j4D\nuAGYAdwNnFDLWdajBxxyCFx/fdqRiEi1bbIJbL21dsvUmrrfwiy3Wlpbvfde+K//gieeSDuSdGRh\njVU6rpZytpwmTQqnmNx1V9qRlCYL+aqCmaeWku/zz6F/f5gyBTbdNO1oqi8LCSgdV0s5W07vvQcD\nBsD8+fVxQfYs5Gtdd8k2ui5d4IgjYOLEtCMRkWrr3Tuck6nj4GqHCmaNy13EoAFXoEWkFQccEM7J\nltqgglnjdtghFMunnko7EhGpNhXM2qKCWePMwlamumVFsmebbeCjj8JpJpI+Fcw6cOSRcN118MUX\naUciItVkBqNGaSuzVqhg1oGhQ8PRsv/3f2lHIiLVpm7Z2qGCWSc0golINu27Lzz8MHzySdqRiApm\nnRgzBm6/XUkj9a0RB32vtN69w77Mv/897UhEBbNO9OsXjpi9887W24rUsIYb9L0a1C1bG2pi4TOz\n+xPjVmJm65jZvWnGVIvULSv1rlEHfa80FczaUBMFE+jj7u/l7rj7QiCjY3S07KtfDd0yCxemHYlI\n2dX1oO+Vtu22YUD5l19OO5Jsq5WC+YWZbZy7E4fsWpZaNDVqrbVg//3hxhvTjkSkrOp+0PdK0+kl\ntaFWBpD+OTDFzB6K9/cAjk8xnpo1dixccgn84AdpRyJSHo0y6HulHXAATJgAP/5x2pEEWRzwvWZG\nKzGz9YCdCWuQj7v7OynFUdMjHyxZAhtuCE8/DRtv3Hr7epaF0Q+yqFEHfa+0RYtCzs+fD926pR3N\nqrKQr6nXjLh5AAAa90lEQVR2yZrZ9ma2nZltR1iTfJPQJTMwPiZ5unaFr389jJUnUm8aedD3Slt7\n7TCotE4vSU+qW5hm1kzYouwObA9Mj09tDTzl7rukEFPN5+RDD4VumenTW29bz7KwxiodVw85Wy7n\nngsLFsDll6cdyaqykK+pbmG6e5O770XYstzO3bd39+2B4fExKWC33cLgss8+23pbEWkcOr0kXbVy\nlOwwd1/+8+/uzwGbpxhPTevUKVyQXedkimTLttvC++/DK6+kHUk21UrBnG5mV5lZk5ntZWZXAs+k\nHVQtyw35tUwn34hkRqdOOr0kTbVSMI8h7Ng/CfhpvH1MqhHVuK22CteYfPjhtCMRkWpSt2x6aua0\nklpRTwcQXHhh6Jr5/e/TjqQysnAQgXRcPeVsOSxcCIMG1d7pJVnI17SPki122Iq7+9ZVCyaqp+R7\n/XXYbjt4881wukmjyUICSsfVU86Wy667wtlnw341NH5LFvI17Sv9zAHOj/+dwhdglhYMHAhbbhm6\nZw49NO1oRKRact2ytVQwsyDtfZj3ARcBfwdOBNZ299m5v1QjqxMawUQke7QfMx01sQ8zXiprDGHs\nux6Ey2FNcvcXU4ilrrp3Fi6EwYNhzpxwcfZGkoUuHum4esvZcli2DDbYAB5/POR/LchCvqa9hQlA\n3KK8wN2HEwrnV4HnUw6rLqyzDjQ1wS23pB2JiFRLp05h5CJtZVZXTRRMM+tiZqPNbCJwDzAT+FrK\nYdUNdcuKZI+6Zasv7aNk9yNsUR4EPAlMAu5w9w9TjKnuunc++SSMYDJjRuimaRRZ6OKRjqvHnC2H\nd98N3bG1cnpJFvI17S3M04HHgM3d/RB3n5hmsaxX3buHo2Svvz7tSESkWtZdNxwlP2VK2pFkR9oX\nXx/p7le6+8I042gE6pYVyR51y1ZX2luYUiYjR8LcufBi1Y8rFpG0qGBWlwpmg+jcGcaM0VamSJZs\nv33Ylzl7dtqRZIMKZgPJdctm8PgHkUzKnV5yzz1pR5INKpgNZPvtw5bmk0+mHYmIVIu6ZatHBbOB\nmGlgaZGs2W8/aG6Gzz5LO5LGV9cF08zGm9m85KgnZraOmU02sxfN7D4z65147gwze8nMZsZzQBvO\n2LHh9JLPP087EhGphj59YPPNNTZuNdR1wQT+BIzKe+x0YLK7DwUeiPcxsy0I16rdIr7md2ZW759/\nFZtsEsbKu//+tCMRkWpRt2x11HXBcPcpwKK8h0cDE+LtCcBh8fahhAu6L40jocwCdqxGnNWmczJF\nskUFszrqumC2oK+7z4u35wF94+0NgbmJdnOBjaoZWLUccQTceSd8/HHakYhINYwYES6R9/rraUfS\n2BqxYC4XLzBZ7CSLhjwBo29f2HlnuOOOtCMRkWrQ6CXV0SXtACpgnpn1c/e3zWwDYH58/A1gQKJd\n//jYKsaNG7f8dlNTE01NTZWJtIJy3bJjxqQdSemam5tpbm5OOwyRunTAAXDjjfCDH6QdSeOqiQGk\nOyIOPn2nu28V718EvOvuF5rZ6UBvdz89HvQzkbDfciPgfmCT/GEOGmXkg8WLYcAAmDUrHEVXj7Iw\n+oF0XKPkbEe98w4MGQILFkDXrtV//yzka113yZrZJOBRYDMzm2NmxwAXAPua2YvAyHgfd58B3ADM\nAO4GTmjkLFtzzRVrnCLS+Pr0gWHDdHpJJdX9Fma5NdLa6p13woUX1m8CZWGNVTqukXK2o8aNg48+\ngosvrv57ZyFf63oLU4rbf3944QVdmFkkK3R6SWWpYDawrl3h8MNh4sS0IxGRahgxAubNgzlz0o6k\nMalgNjiNYCKSHZ07h2vLaiuzMlQwG9xXvhL2aTzzTNqRiEg1qFu2clQwG1ynThrBRCRL9t8fHnwQ\nlixJO5LGo4KZAWPHwqRJsGxZ2pGISKWttx4MHQqPPJJ2JI1HBTMDttwynKP10ENpRyIi1TBqlLpl\nK0EFMyM0golIdmg/ZmXowgV5GvUk6LlzYZtt4M03YfXV046mNFk4EVo6rlFztiO++ALWXx+mTQuX\nyKyGLOSrtjAzon9/2GoruOuutCMRkUrLnV5yzz1pR9JYVDAzRN2yItmhbtnyU5dsnkbu3lm0CAYN\nCoPM9uqVdjSty0IXj3RcI+dsR8ybB5ttFgaWrsboJVnIV21hZsjaa8PIkXDzzWlHIiKV1rcvbLIJ\nPPpo2pE0DhXMjFG3rEh2qFu2vFQwM+bgg2HqVHjjjbQjEZFKU8EsLxXMjOnWDQ47DK6/Pu1IRKTS\ndtoprBzPnZt2JI1BBTOD1C0rkg2dO8O+++r0knJRwcygpiZ46y2YOTPtSCRrzGy8mc0zs2cTj61j\nZpPN7EUzu8/MeieeO8PMXjKzmWa2XzpR1zd1y5aPCmYGde4MY8ZoK1NS8SdgVN5jpwOT3X0o8EC8\nj5ltARwBbBFf8zsz029WG40aBQ88AEuXph1J/dPCl1Fjx8LEiRpYWqrL3acAi/IeHg1MiLcnAIfF\n24cCk9x9qbvPBmYBO1YjzkbSty8MGQKPPZZ2JPVPBTOjttsOVlsNHn887UhE6Ovu8+LteUDfeHtD\nIHm4ylxgo2oG1ij23x/uvTftKOpfl7QDkHSYrTj4Z5dd0o5GJHB3N7Ni/R4Fnxs3btzy201NTTQ1\nNZU3sDq3//5wyilw7rnlm2ZzczPNzc3lm2Ad0KXx8mTpMlsvvxyK5RtvhK3NWpOFS21lkZkNAu50\n963i/ZlAk7u/bWYbAA+6+zAzOx3A3S+I7e4Bznb3J/Kml5mcba8lS8LA0rNmhf+VkIV8VZdshg0Z\nEv4mT047Esm4O4Cj4u2jgNsSj48xs65mNhjYFHgyhfjqXteu4eh45XrHqGBmnM7JlGoys0nAo8Bm\nZjbHzI4BLgD2NbMXgZHxPu4+A7gBmAHcDZygTcn2037MjlOXbJ6sde/Mnw9Dh4Zu2TXWSDualWWh\ni0c6Lms5214vvwy77RYGkbcKZFUW8lVbmBm3/vrwla/A7benHYmIVNKQIWGlePr0tCOpXyqYwpFH\nqltWJAvULdsxKpjCYYfBI4/AggVpRyIilaSC2TEqmELPnnDggXDDDWlHIiKVtNde8OST8NFHaUdS\nn1QwBdDRsiJZsOaasP32kLHrDZSNCqYAsN9+4aTmV15JOxIRqSR1y7afCqYA4Uo/3/hGuCC7iDQu\nFcz2U8GU5XLdsjqlTaRxbbstvPcezJ6ddiT1RwVTlttlF/jsM5g6Ne1IRKRSOnWCfffVVmZ7qGDK\ncmY6J1MkC9Qt2z4Ne2k8M5sNfAB8ASx19x3NbB3gemBjYDbwTXd/L+91mb7M1vPPwz77wOuvQ+fO\n6caShUttScdlPWfbY9482GyzcO51uUYqykK+NvIWphOGDBru7rlR2k8HJrv7UOCBeF8SNt88XC7v\n739POxIRqZS+fWHwYHjiidbbygqNXDAB8td2RgMT4u0JwGHVDac+fPvbMH582lGISCWpW7btGrlg\nOnC/mT1lZt+Pj/V193nx9jygbzqh1bbjjoO779Y5mSKNTAWz7bqkHUAF7erub5nZesDkOKr7cu7u\nZlZwx8e4ceOW325qaqKpqamScdac3r3hhz+ECy+E3/++eu/b3NxMsy5BIlIVu+4KM2fCO+9Anz5p\nR1MfGvagnyQzOxv4EPg+Yb/m22a2AfCguw/La6sDCAhJNHRoGAqof/90YsjCQQTSccrZ9jvkkHD+\n9ZgxHZ9WFvK1IbtkzayHma0Zb68B7Ac8C9wBHBWbHQXclk6Eta9PHzj2WLj44rQjEZFKUbds2zTk\nFqaZDQZujXe7AH9x9/PjaSU3AAPRaSWteust2HJLmDED+vWr/vtnYY1VOk45234vvQRNTTB3bjgP\nuyOykK8NWTA7Qsm3sh//GHr0gIsuqv57ZyEBpeOUs+3nDkOGwO23w1ZbdWxaWcjXhuySlfI59VS4\n6ip49920IxGRcjNTt2xbqGBKUQMHwte/Dr/+ddqRiEglqGCWTl2yedS9s6qXX4addgr/e/Wq3vtm\noYtHOk452zEffAAbbRQul9ejR/unk4V81RamtGrIEDjgAPjtb9OORETKba21YPhwXQ6zFCqYUpIz\nzoDLL4cPP0w7EhEpN3XLlkYFU0qyxRaw557VvfKPiFSHCmZptA8zj/aHtOyZZ0LX7MsvQ/fulX+/\nLOwTkY5TznbcsmVhBJOnnw4H+rVHFvJVW5hSsm22gREjNJKJSKPp1An23Vdbma1RwZQ2+fnPw0XZ\nlyxJOxIRKSd1y7ZOBVPaZKedYNgwuOaatCMRkXLabz944AH4/PO0I6ldKpjSZmedBeefr8QSaSQb\nbBD2Xz75ZNqR1C4VTGmzPfYIJzpfd13akYhIOalbtjgVTGmXs86Cc88NR9eJSGNQwSxOBVPaZZ99\nwhVCbrkl7UhEpFx22y0M57dwYdqR1CYVTGkXs7CV+ctfhiGCRKT+rb467L473H9/2pHUJhVMabeD\nDw7///a3dOMQkfJRt2zLVDCl3XJbmeeco61MkUaRK5jK6VWpYEqHfO1rsHixunBEGsXQodClS9iX\nKStTwZQO6dQJzjwz7MsUkfpnpm7ZlqhgSoeNGQNz58JDD6UdiYiUgwpmYRqtJI9GPmifq66CG28s\nb5JlYfQD6TjlbPm9/z707w/z55c+MlEW8lVbmFIW3/0uPP+8Lqsl0gh69QqjE6nXaGUqmFIWXbvC\naadpX6ZIo1C37KpUMKVsjj0WnnoKpk1LOxIR6SgVzFWpYErZdO8Op5wC552XdiQi0lHbbw/z5sGc\nOWlHUjtUMKWsfvAD+Pvfw/5MkbYws9lmNt3MpprZk/Gxdcxsspm9aGb3mVnvtOPMis6dwzWj77sv\n7UhqhwqmlFXPnnDSSWG8TJE2cqDJ3Ye7+47xsdOBye4+FHgg3pcqUbfsynRaSR4dot5x778PW2wB\nJ54Ip58eLm7QHlk4TF1WMLNXgRHu/m7isZnAnu4+z8z6Ac3uPizvdcrZCnnjDdhqK1iwIGxxFpOF\nfNUWppRdr17wxBNw111w0EHwzjtpRyR1woH7zewpM/t+fKyvu8+Lt+cBfdMJLZs22ij8/eMfaUdS\nG7qkHYA0pv794cEHw8XZhw+H666DXXdNOyqpcbu6+1tmth4wOW5dLufubmYFNyXHjRu3/HZTUxNN\nTU2VjDNTct2yO++88uPNzc00NzenElNa1CWbR9075ffXv8Jxx8HPfhaOoi21izYLXTxSmJmdDXwI\nfJ+wX/NtM9sAeFBdstU1eTKcfTY8+mjxdlnIV3XJSsUdfHDo0rnlFjj0UI3mLqsysx5mtma8vQaw\nH/AscAdwVGx2FHBbOhFm1+67w7PPwqJFaUeSPhVMqYqBA8PpJptuCtttF/ZxiiT0BaaY2TTgCeCv\n7n4fcAGwr5m9CIyM96WKunWD3XaDBx5IO5L0qUs2j7p3Ku+22+D448OwYCedFIYTKiQLXTzSccrZ\nyrv8cvjXv+DKK1tuk4V8VcHMo+SrjldfhW9+EwYMgPHjoXeB09GzkIDSccrZynv++XDwz2uvZXsF\nN3NdsmY2ysxmmtlLZnZa2vFk1eDB8PDD4Wja7bYL16AVkdo0LB5mNXNm8XaNLlMF08w6A/8LjAK2\nAL5lZpu3d3ptOaRabVdtu/rq8JvfwEUXwYEHwm9/C9pQkEpr66kQ7Tl1otLvUe2YzHTVH8hYwQR2\nBGa5+2x3XwpcBxza3onVWgGq17aHHx4OWb/qKjjiiHClIJFKqfXiVIn25XgPFczsFcyNgOS19+fG\nxyRlm2wCjz0G664LI0ZoiDCRWrP33mE3yqefph1JerJWMNXhV8O6dYMrroBf/AL23TftaEQkae21\nw3Vlp0xJO5L0ZOooWTPbGRjn7qPi/TOAZe5+YaJNdmZIHWj0o+6k45SztaPR8zVrBbML8AKwN/Am\n8CTwLXfX6I0iIlJUpi6+7u6fm9mPgXuBzsAfVSxFRKQUmdrCFBERaa+sHfRTVLGLGpjZADN70Mz+\nZWbPmdlP4+PrmNlkM3vRzO4zs96J13Q2s6lmdmextmbW28xuMrPnzWyGme1UpO0ZMYZnzWyima2e\naPu+mX1mZv9KxLDKdMxsvJnNM7O342edaWY3xPd/xsxuMbNe8fXjzWxxnO5MM9svMe1TzGyZma1T\nrK2Z/SRO+zkzu7Cltma2o5k9GefZP8xsh8R7nZGIdXkMkl2tXYSkPTmbeG1JuRufKzl/Y/tiOZxr\nf23M0WcTrys2zafM7HMz+zSRdxcXyumW2ieeWymvEzG/H1/zal77VfI78ZrGyll311/Yyu4MzAIG\nAasB04DNE8/3A7aNt3sS9oVuDlwEnBofPw24IPGafwf+AtwR7xdsC0wAjo23uwC9CrWNsb0CrB4f\nv54wgsNFwKnA7sCvgfmJGApNZ3fga8An8bMOAt4AOsd2FyRi+3b8rM/GdrMIK1oDgHuAV4F1irQd\nCUwGVott1ivSthnYPz5/AGEoJwgXmZiWiHUW0CntZUZ/6f21lq+xTZtzNvHaknI33i8pf+Ptojmc\naH8tMBx4NvE+LU1zC+AlYAdgZiJH983lSV5OF2wfnyuU17n8awIOBD5LtN+rhfxuyJzVFuYKRS9q\n4O5vu/u0ePtD4HnCOZyjCQlD/H8YgJn1JyxcVwG5I8dWaRvX+nZ39/Fx2p+7+/stTPcDYCnQw8IB\nTD0IBy+NBia4+xRCoq2V+FyrTCe22wl4z92XuvtsQuHKbdE9AfSPtwcAt8bYZhMW/B2BXxGKdFKh\ntmcC58d5irsvKNJ2CeHHBqA3oYhD+B4mJWLNxSDZ1epFSNqaszml5m5s25b8hVZyONF+BJA/oFZL\n0zw0xrogTnsWsKO7T3b3ZbFNMqcLto/PFcrrXP41AzMIeZpr/yMK53dD5qwK5golX9TAzAYR1v6e\nAPq6+7z41DzCMEUAlwH/ASxLvLRQ28HAAjP7k5n908yutDAe4Cpt3X0hcCnwOiHJ3nP3yXltFxDW\n6oq9J/H/0hY+77HAXfH2hsBbee0OA+a6+/S8WVOo7ZeAPczscTNrNrMRRdreDFxqZq8DFwNnJNrO\nbSFWyaY2XYSkxJzNKTV3oQ35C1BiDheKqVgMpeRHfk6v0t7MDqXlvE62X5qY/qa0nN8Nl7MqmCuU\ndPSTmfUk/LCf5O6LV5pA6ItwMzuY0C06lRVrqBRqS+jC2Q74nbtvB3wEnN7CdIcA/0bo4tgQ6Glm\n3y71syTesyVuZj8Hlrj7xBbadCZ0556deKzYuVedgbXdfWfCj9ANRdqeAPzU3QcCJwPji8Va5Dlp\nfCV//6XkbKJtW3IX2pC/cfqt5nAJeVpSLic+U2s5DWEl+0xKz+vk5y81v+s+Z1UwV3iD0E2YM4CV\n15Aws9UIiXeNu+dGfp9nZv3i8xsA84GvAKPjzvFJwEgzu6aFtnMJa3X/iNO7iZCAbxdoOwJ41N3f\ndffPgVuAXZJtgfWAzxNhF3pPCGuoXRPt+gPbErqixubNlw0T9zcF1gWeiZ+vP/C0mfUt0LZ/fOwW\ngPgZl5lZnxbabuLutybmQ64LJ/+7yU1XsqvVfIU25WxOW3IX2pa/UEIOF4gpp6UYWswPMzuawjmd\n374ToYi3lNfJ9quxIv/m0nJ+N1zOqmCu8BSwqZkNMrOuwBHAHbknzcyAPwIz3P3yxOvuIOy0J/6/\nzd3PdPcB7j4YGAP8n7t/p4W2bwNzzGxofHwf4F/AnfltCTvodzaz7jGefQj7FJJtDyfsJ2kxvnh7\nMtDLzLqa2WBga+DrwKHu/mne6w+Js2AwsAHQx90Hx883F9gudhXlt92UsK9lZJyHQ4Gu7v5OC21f\nMLM94/uOBF5MxDAmEeumhItOSHYVzVdoW87mnmhL7sb2bclfKC2HV4qphLjviLGuFv82BZ40s1GE\nrb5COZ3ffpK79y2S12PifO5PWNHO5d9ttJzfjZezHTliqNH+CEdmvkDYQX1G3nO7EfZpTAOmxr9R\nwDrA/YQf9/uA3nmv25MVR9oVbAtsA/wDeIawttarSNtTCQn5LKEYrZZo+wHwKWGn/BzgmELTIaw5\nv0nYEl1K2Jf4BvBa4rP9Lr7fpDhdj20vzft8r7DiaLpV2sb4ronxPg00FWk7grCPaRrwGDA88T5n\nxu9lJvFIWv1l+69Yvsbn25Wzide3mrvxuZLzN7YvlsO59jfFHC2ay4lpPhPz2QnHMRxLOBJ2lZzO\na78stj8m77Mvz+t4/0xgcczVZEwF8zvxmobKWV24QEREpATqkhURESmBCqaIiEgJVDBFRERKoIIp\nIiJSAhVMERGREqhgioiIlEAFs46Z2ezkEDztbSMi5WFm/1dguKx/M7O7LDFUl9QnFcz6VspJtE7x\na0KKSPlMIlxFJ+kI4PxCjeOIJVInVDDrhJndamHQ1+fM7Pt5zw2Kg7Rea2EA2xvNrHuiyU/M7Gkz\nm25mm8XX7Ghmj8YRFh5JXNpLRNrvZuCgXCGMo6RsSGJkFTM72szuMLMHgPvN7Cgzu83CoNCvmtmP\nzexnMTcfM7O14+t+amHg6WfMbFL1P5qoYNaPY919BGHMyp8W6GYdCvzW3bcgXHLuhMRzC9x9e+AK\n4GfxsecJ4/htRxih4LyKRi+SAR6G73qScMFzCFub17Nqb9Bw4Ovu3kToAdoS+Cohv88FPoi5+Rjw\n3fia0wgDYm8D/KCCH0NaoIJZP04ys9w1VvsTLmacNMfdH4u3ryVcRzPnlvj/n4QRCSBcU/amuF/l\nV4SEFZGOS3bLHhHv5+8Wmezu78XbDjzo7h95uHD5e4SLsUO4RuugeHs6MNHMxgJfVCh2KUIFsw6Y\nWROwN7Czu29LuJh0t7xmyTVYy7v/Wfz/BWH8OoBzgAfcfSvCqCH50xOR9rkD2NvMhgM9PIytme+j\nvPufJW4vS9xfxoqcPQj4LWH4sH+YWefyhSylUMGsD2sBi9z9UzPbHNi5QJuBZpZ7/EhgSgnTfDPe\nPqY8YYqIu38IPAj8CSg2aHNOsYPyDJYPVTbQ3ZsJA1T3AtboWKTSViqY9eEeoIuZzSDsa8x1vSa3\nIl8AToxtehH2V+a3SY7SfhFwvpn9E+hMA4yGLlJDJgFbxf85nvjfUl7SwnOdgWvMbDph18qv3T05\n7q1UgYb3agDxSLw7Y/eqiIhUgLYwG4fWfEREKkhbmCIiIiXQFqaIiEgJVDBFRERKoIIpIiJSAhVM\nERGREqhgioiIlEAFU0REpAT/H/mNE3klMROZAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1219c765d0>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4.5: page 3-38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import pi, sqrt, degrees, acos\n",
"from numpy import arange\n",
"#delay angle,rms , averae output current ,average and rms thyristor current\n",
"Vrms=120 #RMS VOLTAGE \n",
"R=10 #in ohms\n",
"Vldc= (0.25*(2*sqrt(2)*Vrms))/pi #in volts\n",
"csd= (Vldc*pi)/(sqrt(2)*Vrms) #\n",
"alpha= degrees(acos(csd-1)) #\n",
"print \"part (a)\"\n",
"print \"delay angle = %0.2f degree\" %alpha\n",
"Vrms=120 #RMS VOLTAGE \n",
"Vm=sqrt(2)*Vrms #assume\n",
"t=arange(2*pi/3,pi,0.1) \n",
"Vlms=((Vm/(sqrt(2)))*(((1/pi)*((pi-(2*pi)/3)+sin(4*pi/6*pi/180))))**(1/2)) \n",
"Vldc= (0.25*(2*sqrt(2)*Vrms))/pi #in volts\n",
"Ildc=Vldc/R #average load current in ampere\n",
"Ilms=Vlms/R # rms load current in ampere\n",
"print \"part (b)\"\n",
"print \"rms load current = %0.2f A\" %Ilms\n",
"print \"average load current = %0.2f A\" %Ildc\n",
"#rms load current is calculated wrong in the textbook\n",
"Im=Vm/R #\n",
"from sympy.mpmath import quad, sin\n",
"f1 = lambda omega_t : Im*sin(omega_t)\n",
"Ith = (1/(2*pi)*(quad(f1,[alpha*pi/180,pi]))) # A (calculating integration)\n",
"f2 = lambda omega_t : (Im*sin(omega_t))**2\n",
"Ithrms = sqrt(1/(2*pi)*(quad(f2,[alpha*pi/180,pi]))) # A (calculating integration)\n",
"print \"part (c)\"\n",
"print \"average thyristor current = %0.2f A\" %Ith\n",
"print \"rms thyristor current = %0.2f A\" %Ithrms"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"delay angle = 120.00 degree\n",
"part (b)\n",
"rms load current = 7.05 A\n",
"average load current = 2.70 A\n",
"part (c)"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"average thyristor current = 1.35 A\n",
"rms thyristor current = 3.75 A\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6.1: page 3-69 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#average load voltage,rms load voltage,average and rms load currents ,form factor and ripple factor\n",
"R=10 #IN OHMS\n",
"r=10 #IN OHMS\n",
"Vi=230 #in volts\n",
"alpha=60 #fiirng angle in degree \n",
"Vm=Vi*sqrt(2) #in voltas\n",
"Vldc=((Vm)/pi)*(1+cos(alpha*pi/180)) #average load voltgae\n",
"print \"part (a)\"\n",
"print \"average load voltage = %0.2f Volts\" %Vldc\n",
"print \"part (b)\"\n",
"r=10 #IN OHMS\n",
"Vi=230 #in volts\n",
"alpha=60 #fiirng angle in degree \n",
"Vm=Vi*sqrt(2) #in voltas\n",
"Vlms=((Vm/(sqrt(2)))*(((pi-pi/3)+(sin(2*pi/3*pi/180))/2)/pi)**(1/2)) #\n",
"print \"rms load voltage = %0.2f V\" %Vlms\n",
"#rms voltage is calculated wrong in the textbook\n",
"print \"part (c)\"\n",
"Ildc=Vldc/R # in amperes\n",
"Irms=Vlms/R # in amperes\n",
"print \"rms load current = %0.2f A\" %Irms\n",
"print \"average load current = %0.2f A\" %Ildc\n",
"#rms load current is wrong in the textbook\n",
"print \"part (d)\"\n",
"ff=Vlms/Vldc \n",
"print \"form factor is =\",round(ff,2),\"or\",round(ff*100,2),\"%\"\n",
"rf=sqrt(ff**2-1) #\n",
"print \"ripple factor =\",round(rf,2),\"or\",round(rf*100,2),\"%\"\n",
"#form factor and ripple factor is calculated wrong in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"average load voltage = 155.30 Volts\n",
"part (b)\n",
"rms load voltage = 188.61 V\n",
"part (c)\n",
"rms load current = 18.86 A\n",
"average load current = 15.53 A\n",
"part (d)\n",
"form factor is = 1.21 or 121.45 %\n",
"ripple factor = 0.69 or 68.91 %\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7.1: page 3-72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import array, nditer, sqrt, pi, cos\n",
"from __future__ import division\n",
"#device ratings\n",
"Io=25 #in amperes\n",
"Vsrms=120 # in colts\n",
"Vm=sqrt(2)*Vsrms # in volts\n",
"alpha=array([0,60,90,135,180])\n",
"\n",
"def volt(alpha):\n",
" it = nditer([alpha, None])\n",
" for a,b in it:\n",
" \n",
" b[...]=Vm/pi*(1+cos(a*pi/180))\n",
" return it.operands[1]\n",
"vldc = volt(alpha)\n",
"print \"alpha : \",\n",
"for a in nditer([alpha]):\n",
" print a,'\\t',\n",
"print \"\"\n",
"\n",
"print \"VLdc(V) : \",\n",
"for a in nditer([vldc]):\n",
" print a,'\\t',\n",
"print \"\"\n",
"\n",
"PIV=Vm #peak inverse voltage\n",
"Iascr=Io/2 #scr average currentin ampere\n",
"Iadod=Io #average diode current in amperes\n",
"Ipscr=Iascr #peak current rating for SCR in amperes\n",
"Ipdod=Iadod #peak current rating for diode in amperes\n",
"print \"scr average current = %0.2f A\" %Iascr\n",
"print \"Average diode current = %0.2f A\" %Iadod\n",
"print \"Peak current rating for SCR = %0.2f A\" %Ipscr\n",
"print \"Peak current rating for diode = %0.2f A\" %Ipdod"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"alpha : 0 \t60 \t90 \t135 \t180 \t\n",
"VLdc(V) : 108 \t81 \t54 \t15 \t0 \t\n",
"scr average current = 12.50 A\n",
"Average diode current = 25.00 A\n",
"Peak current rating for SCR = 12.50 A\n",
"Peak current rating for diode = 25.00 A\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7.2: page 3-73"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sin\n",
"#Vldc,Vn,Vlrms,HF,DF and PF\n",
"Vsrms=120 #in volts\n",
"alpha=pi/2 #\n",
"vm=sqrt(2)*Vsrms #\n",
"vldc=((sqrt(2)*Vsrms)/(pi))*(1+cos(alpha)) #in volts\n",
"vldcm=(2*vm)/(pi) #in volts\n",
"vn=vldc/vldcm #normalised average output voltage in volts\n",
"x=((1/pi)*((pi-alpha)+(sin((2*alpha)))/2))**(1/2) #\n",
"vlrms=((vm/sqrt(2))*x) #RMS load voltage in volts\n",
"Io=1 #assume\n",
"Isrms=Io*(1-(alpha/pi))**(1/2) #in amperes\n",
"Is1rms=((2*sqrt(2))*Io*cos(alpha/2))/(pi) #in amperes\n",
"HF=((Isrms/Is1rms)**2-1)**(1/2) #Harmonic Fator is\n",
"DF=cos(alpha/2) #Displacement factor\n",
"PF=(Is1rms/Isrms)*(DF) #power factor\n",
"print \"average output voltage, Vldc = %0.2f V\" %round(vldc)\n",
"print \"Normalised average output voltage, Vn = %0.2f V\" %vn\n",
"print \"RMS load voltage, Vlrms = %0.2f V\" %vlrms\n",
"print \"Harmonic factor, HF = %0.2f %%\" %(HF*100)\n",
"print \"Displacement factor, DF = %0.2f %%\" %(DF*100)\n",
"print \"Power factor, PF = %0.4f lagging\" %PF"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average output voltage, Vldc = 54.00 V\n",
"Normalised average output voltage, Vn = 0.50 V\n",
"RMS load voltage, Vlrms = 84.85 V\n",
"Harmonic factor, HF = 48.34 %\n",
"Displacement factor, DF = 70.71 %\n",
"Power factor, PF = 0.6366 lagging\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7.5: page 3-77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import degrees, acos\n",
"#alpha\n",
"print \"part (a)\"\n",
"vc=135 #in volts\n",
"vs=220 #in vlts\n",
"rl=0.5 #in ohms\n",
"io=10 #in ampeeres\n",
"vm=sqrt(2)*vs #\n",
"vldc=io*rl+vc #\n",
"alpha=degrees(acos((vldc*pi)/(2*vm))) #\n",
"print \"alpha = %0.f degree \"%alpha\n",
"print \"part (b)\"\n",
"vc=145 #in volts\n",
"vs=220 #in vlts\n",
"rl=0.5 #in ohms\n",
"io=10 #in ampeeres\n",
"vm=sqrt(2)*vs #\n",
"vldc=io*rl-vc #\n",
"alpha=degrees(acos((vldc*pi)/(2*vm))) #\n",
"print \"alpha = %0.f degree \"%(alpha)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"alpha = 45 degree \n",
"part (b)\n",
"alpha = 135 degree \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7.6: page 3-79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#average output voltage,supply rms current ,\n",
"#supply fundamental current current,displacement factor,supply factor and supply harmonic factor\n",
"Vsrms=220 #in volts\n",
"alpha=pi/3 #\n",
"vm=sqrt(2)*Vsrms #\n",
"vldc=((2*vm)/(pi))*(cos(alpha)) #in volts\n",
"vldcm=(2*vm)/(pi) #in volts\n",
"vn=vldc/vldcm #normalised average output voltage in volts\n",
"x=((1/pi)*((pi-alpha)+(sin((2*alpha)))/2))**(1/2) #\n",
"vlrms=((vm/sqrt(2))*x) #RMS load voltage in volts\n",
"Io=1 #assume\n",
"Isrms=Io*(1-(alpha/pi))**(1/2) #in amperes\n",
"Is1rms=((2*sqrt(2))*Io*cos(alpha/2))/(pi) #in amperes\n",
"HF=((Isrms/Is1rms)**2-1)**(1/2) #Harmonic Fator is\n",
"DF=cos(alpha/2) #Displacement factor\n",
"PF=(Is1rms/Isrms)*(DF) #power factor\n",
"print \"part (a)\"\n",
"print \"average output voltage, Vldc = %0.2f V\" %round(vldc)\n",
"print \"part (b)\"\n",
"print \"due to exact 50% duty cycle the rms value of supply current Isrms=Io\"\n",
"Io=1 #assume\n",
"Isrms=Io #in amperes\n",
"Is1rms=((2*sqrt(2))*Io)/(pi) #in amperes\n",
"print \"part (c)\"\n",
"print \"supply fundamental current =\",Is1rms,\"Io \"\n",
"print \"part (d)\"\n",
"DF=cos(alpha) #\n",
"print \"displacement factor =\",DF\n",
"print \"part (e)\"\n",
"SPF=Is1rms*DF #\n",
"print \"supply power factor = %0.2f lagging \" %SPF\n",
"print \"part (f)\"\n",
"HF=(((Isrms/Is1rms)**2)-1)**(1/2) #\n",
"print \"supply harmonic factor = %0.2f %%\" %(HF*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part (a)\n",
"average output voltage, Vldc = 99.00 V\n",
"part (b)\n",
"due to exact 50% duty cycle the rms value of supply current Isrms=Io\n",
"part (c)\n",
"supply fundamental current = 0.900316316157 Io \n",
"part (d)\n",
"displacement factor = 0.5\n",
"part (e)\n",
"supply power factor = 0.45 lagging \n",
"part (f)\n",
"supply harmonic factor = 48.34 %\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|