summaryrefslogtreecommitdiff
path: root/Introduction_to_Electric_Drives_by_J._S._Katre/chapter10_2.ipynb
blob: 8b10d43dd9749d82ec34a95b8aaec1cc4ae1b9e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
 "metadata": {
  "name": "",
  "signature": "sha256:6c3e9861fb7b86a80c4d5ca0c3d83de8fac426220f4a72ee4169a76eb0964c4c"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter10, Control of AC drives"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.15.1: page 10-42"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import pi\n",
      "#slip,the air gap power and  efficiency\n",
      "#given data :\n",
      "w=100 # in rad/sec\n",
      "F1=50 #in Hz\n",
      "P=4 \n",
      "Ns=(120*F1)/P \n",
      "ws=2*pi*(Ns/60) \n",
      "s=((ws-w)/ws) \n",
      "print \"part (1)\"\n",
      "print \"slip is\", round(s,4),\" or \", round(s*100,2), \" % \"\n",
      "print \"part (2)\"\n",
      "T=100 # in N-M\n",
      "w=100 # in rad/sec\n",
      "Pag=ws*T \n",
      "P_slip=s*Pag \n",
      "P_mech=(1-s)*Pag \n",
      "print \"(a)the air gap power, pag = %0.f W\" %Pag\n",
      "print \"(b)slip power = %0.f W\" %P_slip\n",
      "print \"(c)Mech o/p power, P_mech = %0.f W\" %P_mech\n",
      "#air gap power is calculated wrong in the textbook\n",
      "print \"part (3)\"\n",
      "eta=(P_mech/Pag) \n",
      "print \"efficiency of the rotor circuit is\", round(eta,4),\" or\", round(eta*100,2),\" % \""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "part (1)\n",
        "slip is 0.3634  or  36.34  % \n",
        "part (2)\n",
        "(a)the air gap power, pag = 15708 W\n",
        "(b)slip power = 5708 W\n",
        "(c)Mech o/p power, P_mech = 10000 W\n",
        "part (3)\n",
        "efficiency of the rotor circuit is 0.6366  or 63.66  % \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.15.2 :page 10-43"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "#voltage per phase,slip,slip frequency ,slip and rotor loss\n",
      "#given data :\n",
      "V_rms=240 # in volts\n",
      "F1=50 #in Hz\n",
      "Vs_rms=240/2 \n",
      "print \"part (1)\"\n",
      "print \"supply voltage = %0.2f V\"%Vs_rms\n",
      "print \"part (2)\"\n",
      "N=1440 # in rpm\n",
      "P=4 # pole\n",
      "Ns=(120*F1)/4 \n",
      "S=((Ns-N)/Ns) \n",
      "print \"slip is \", S, \" or\", S*100, \" % \"\n",
      "print \"part (3)\"\n",
      "S_frequency=S*F1 \n",
      "print \"slip frequency = %0.2f Hz\" %S_frequency\n",
      "print \"part (4)\"\n",
      "f=2 #Hz\n",
      "f1=25 #Hz\n",
      "s=(f/f1) #\n",
      "print \"slip is\", s, \" or\", s*100, \" % \"\n",
      "print \"part (5)\"\n",
      "F2=25 #in Hz\n",
      "S1=(S_frequency/F2) \n",
      "rotor_loss=S1/(1-S1) \n",
      "print \"Rotor loss = %0.4f %%\" %rotor_loss "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "part (1)\n",
        "supply voltage = 120.00 V\n",
        "part (2)\n",
        "slip is  0.04  or 4.0  % \n",
        "part (3)\n",
        "slip frequency = 2.00 Hz\n",
        "part (4)\n",
        "slip is 0.08  or 8.0  % \n",
        "part (5)\n",
        "Rotor loss = 0.0870 %\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.15.6: page 10-45"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#voltage per phase , slip ,slip frequency and percentage rotor loss\n",
      "Ns1=750 #\n",
      "V_rms=240 # in volts\n",
      "f2=25 #Hz\n",
      "F1=50 #in Hz\n",
      "Vs_rms=240/2 \n",
      "N=1440 # in rpm\n",
      "P=4 # pole\n",
      "Ns=(120*F1)/4 \n",
      "S=((Ns-N)/Ns) \n",
      "S_frequency=S*F1 \n",
      "fs12=S_frequency/4 #\n",
      "S1=fs12/f2 \n",
      "rotor_loss=S1/(1-S1) \n",
      "n=Ns1-((S1*Ns1)) #\n",
      "print \"supply voltage = %0.2f V\" %Vs_rms\n",
      "print \"slip,S = %0.2f %%\"%(1*100)\n",
      "print \"slip frequency at 50Hz = %0.2f Hz\"%S_frequency\n",
      "print \"slip frequency at 25Hz = %0.2f Hz\"%fs12\n",
      "print \"Rotor loss = %0.2f %%\" %rotor_loss \n",
      "print \"speed = %0.2f rpm\" %n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "supply voltage = 120.00 V\n",
        "slip,S = 100.00 %\n",
        "slip frequency at 50Hz = 2.00 Hz\n",
        "slip frequency at 25Hz = 0.50 Hz\n",
        "Rotor loss = 0.02 %\n",
        "speed = 735.00 rpm\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}