summaryrefslogtreecommitdiff
path: root/Introduction_To_Modern_Physics_Volume_1/Unit_4,Chapter_1.ipynb
blob: 516314f0b72aee0e39a7e255eba463d7bc2d0bf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 1:Atomic Spectra-I"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:1,Page no:405"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "z=2                                                                             #atomic no. of He\n",
      "a0=0.529                                                                        #radius of first Bohr orbit of H atom (\u00c5)\n",
      "n=1                                                                             #no. of Bohr orbit\n",
      "A=2.19*10**6                                                                     #velocity of e in first Bohr orbit of H atom (m/s)\n",
      "B=4.14*10**15                                                                    #orbital frequency in the first Bohr orbit of H atom (rad/s)\n",
      "E0=13.6                                                                         #energy of electron in ground state of H atom (eV)\n",
      "n1=1 \n",
      "n2=2 \n",
      "R=1.097*10**7                                                                    #Rydberg constant (m-1)\n",
      "\n",
      "#Calculation\n",
      "#(i) radius of first Bohr orbit\n",
      "r=a0/2.0                                                                          #radius of first Bohr  orbit (\u00c5)\n",
      "#(ii) velocity of electron in the first orbit\n",
      "v=A*(z/n)                                                                       #velocity of electron in the first orbit (m/s)\n",
      "#(iii) orbital frequency in the first orbit\n",
      "omega=B*(z**2/n**3)                                                               #orbital frequency in the first orbit (rad/s)\n",
      "#(iv) kinetic and binding energy\n",
      "KE=E0*(z**2/n**2)                                                                 #kinetic energy of electron in the ground state (eV)\n",
      "BE=KE                                                                           #binding energy of electron in the ground state (eV)\n",
      "#(v) ionization potential and first excitation potential\n",
      "IP=KE                                                                           #ionization potential (eV)\n",
      "EE=E0*z**2*((1.0/n1**2)-(1.0/n2**2))                                                   #first excitation potential (eV)\n",
      "#(vi) wavelength of the resonance line emitted in the transition n=2 to n=1\n",
      "lembda=(1.0/(R*z**2*((1.0/n1**2)-(1.0/n2**2))))*10**10                                    #wavelength of the resonance line emitted in the transition n=2 to n=1 (\u00c5)\n",
      "\n",
      "#Result\n",
      "print\"\\n(i) radius =\",round(r,3),\"\u00c5\"\n",
      "print\"(ii) velocity =%.2e\"%v,\"m/s\"\n",
      "print\"(iii) orbital frequency =\",omega,\"rad/s\"\n",
      "print\"(iv) Kinetic energy =\",KE,\"eV    Binding energy =\",BE,\"eV\"\n",
      "print\"(v) Ionization potential =\",IP,\"eV    EE =\",EE,\"eV\"\n",
      "print\"(vi) wavelength =\",lembda,\"\u00c5\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "(i) radius = 0.265 \u00c5\n",
        "(ii) velocity =4.38e+06 m/s\n",
        "(iii) orbital frequency = 1.656e+16 rad/s\n",
        "(iv) Kinetic energy = 54.4 eV    Binding energy = 54.4 eV\n",
        "(v) Ionization potential = 54.4 eV    EE = 40.8 eV\n",
        "(vi) wavelength = 303.85900942 \u00c5\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:2,Page no:406"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "z=1                                                                             #atomic no. of H atom\n",
      "m=1.68*10**-27                                                                   #mass of H atom (kg)\n",
      "h=1.054*10**-34                                                                  #Planck's constant (joule second)\n",
      "R=10967800                                                                      #Rydberg constant (m-1)\n",
      "e=1.6*10**-19                                                                    #Charge of electron (coulombs)\n",
      "c=3*10**8                                                                        #speed of light (m/s)\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "#(i) recoil velocity\n",
      "v=(3*math.pi*h*R*z**2)/(2*m)                                                         #recoil velocity of H atom (m/s)\n",
      "#(ii) recoil kinetic energy\n",
      "Er=(9/8.0)*((math.pi*h*R*z**2)**2/(m*e))                                                #recoil kinetic energy of H atom (eV)\n",
      "#(iii) energy of emitted photon\n",
      "E=(1.5*math.pi*h*c*R*z**2)/e                                                         #energy of emitted photon (eV)\n",
      "\n",
      "#Result\n",
      "print\"(i) recoil velocity =\",round(v,2),\"m/s\"\n",
      "print\"(ii) recoil kinetic energy =%.1e\"%Er,\"eV\"\n",
      "print\"(iii) energy of emitted photon =\",round(E,2),\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i) recoil velocity = 3.24 m/s\n",
        "(ii) recoil kinetic energy =5.5e-08 eV\n",
        "(iii) energy of emitted photon = 10.21 eV\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:3,Page no:407"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "z=2                                                                             #atomic no. of He atom\n",
      "h=1.054*10**-34                                                                  #Planck's constant (joule second)\n",
      "R=10967800                                                                      #Rydberg constant (m-1)\n",
      "e=1.6*10**-19                                                                    #Charge of electron (coulombs)\n",
      "c=3*10**8                                                                        #speed of light (m/s)\n",
      "\n",
      "#calculation\n",
      "E=1.5*math.pi*h*c*R*z**2                                                             #The energy of the emitted photon (J)\n",
      "IE=2*math.pi*h*c*R                                                                  #Ionization energy of H atom (J)\n",
      "KE=(E-IE)/e                                                                     #Kinetic energy of the photoelectron (eV)\n",
      "\n",
      "#Result\n",
      "print\"\\nKinetic energy of photoelectron =\",round(KE,1),\"eV\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Kinetic energy of photoelectron = 27.2 eV\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:4,Page no:407"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "ratio=4                                                                         #ratio of wavelengths\n",
      "z1=1                                                                            #atomic no. of hydrogen atom\n",
      "\n",
      "#calculation\n",
      "z2=math.sqrt(ratio*z1**2)                                                             #atomic no. of unknown element\n",
      "\n",
      "#Result\n",
      "print\"Atomic no. =\",z2,\"(helium)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Atomic no. = 2.0 (helium)\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:5,Page no:407"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "lembda1=108.5*10**-9                                                             #wavelength (m)\n",
      "lembda2=30.4*10**-9                                                              #wavelength (m)\n",
      "R=1.097*10**7                                                                    #Rydberg constant (m-1)\n",
      "z=2                                                                             #atomic no. of He\n",
      "n0=1                                                                            #ground state\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "n=math.sqrt(1.0/((1.0/n0**2)-(((1.0/lembda1)+(1.0/lembda2))/(R*z**2))))                        #quantum no. corresponding to the excited state of He+\n",
      "\n",
      "#Result\n",
      "print\"n =\",round(n )\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "n = 5.0\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:6,Page no:408"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "z=2                                                                             #atomic no. of He+ ion\n",
      "lembda=133.7*10**-9                                                              #difference b/w the first lines of the Balmer and Lyman series (m)\n",
      "n1=1\n",
      "n2=2\n",
      "n3=3\n",
      "\n",
      "#calculation\n",
      "R=(1.0/(lembda*z**2))*((1.0/((1.0/n2**2)-(1.0/n3**2)))-(1.0/((1.0/n1**2)-(1.0/n2**2))))            #Rudberg constant (m-1)\n",
      "\n",
      "#Result\n",
      "print\"R =%.3e\"%R,\"m**-1\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "R =1.097e+07 m**-1\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:7,Page no:409"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "R=1.097*10**7                                                                    #Rydberg constant (m-1)\n",
      "lembda=59.3*10**-9                                                               #wavelength difference b/w first lines of Balmer and Lyman series (m)\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "z=math.sqrt(88.0/(15.0*R*lembda))                                                        #atomic no.\n",
      "\n",
      "#Result\n",
      "print\"Z =\",round(z)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Z = 3.0\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:8,Page no:409"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "R=1.097*10**7                                                                    #Rydberg constant (m-1)\n",
      "ratio=1836                                                                      #ratio of maas of tritium and hydrogen\n",
      "\n",
      "#calculation\n",
      "lembda=(36*2*10**10)/(5*R*3*ratio)                                               #separation of the first line of the Balmer series (\u00c5)\n",
      "\n",
      "#Result\n",
      "print\"\u0394\u03bb =\",round(lembda,1),\"\u00c5\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\u0394\u03bb = 2.4 \u00c5\n"
       ]
      }
     ],
     "prompt_number": 22
    }
   ],
   "metadata": {}
  }
 ]
}