1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1:Origin of Quantum Concepts"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:1,Page no:58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"c1=0.01\n",
"c2=0.1\n",
"c3=1\n",
"c4=10\n",
"b=2.898*10**-3 #Wien's constant (meter-kelvin)\n",
"h=(6.625*10**-34)/(2*math.pi) #Planck's constant (joule-second)\n",
"c=3*10**8 #speed of light (meter/second)\n",
"k=1.38*10**-23 #Boltzmann constant (joule/kelvin)\n",
"T=3000 #Temperature of black body (kelvin)\n",
"Delta_lembda=1*10**-9 #wavelength interval (meter)\n",
"\n",
"#Calculation\n",
"from sympy import *\n",
"kT=Symbol('kT')\n",
"#(a)Average energy of Planck's oscillator:\n",
"E1=round(c1/(math.exp(c1)-1))*kT #Average energy of Planck's oscillator\n",
"E2=round(c2/(math.exp(c2)-1),2)*kT #Average energy of Planck's oscillator\n",
"E3=round(c3/(math.exp(c3)-1),2)*kT #Average energy of Planck's oscillator\n",
"E4=round(c4/(math.exp(c4)-1),5)*kT #Average energy of Planck's oscillator\n",
"#(b)Power radiated by a unit area of a black body\n",
"P=(4*(math.pi**2)*h*(c**2)*(T**5)*Delta_lembda)/((b**5)*((math.exp((2*math.pi*h*c)/(b*k)))-1.0)) #The power radiated per unit area (watt/meter**2)\n",
"\n",
"#Result\n",
"print\"(a)The average energy of Planck`s oscillator:\"\n",
"print\"(i) Energy =\",E1\n",
"print\"Energy =\",E2\n",
"print\"Energy = \",E3\n",
"print\"Energy =\",E4\n",
"print\"(b) The power radiated per unit area =%.f\"%P,\"W/m**2\"\n",
"print\"NOTE:Approximate values are used in book,that's why different answer\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The average energy of Planck`s oscillator:\n",
"(i) Energy = 1.0*kT\n",
"Energy = 0.95*kT\n",
"Energy = 0.58*kT\n",
"Energy = 0.00045*kT\n",
"(b) The power radiated per unit area =3115 W/m**2\n",
"NOTE:Approximate values are used in book,that's why different answer\n"
]
}
],
"prompt_number": 87
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2,Page no:59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v=2*10**-2 #side of the cube (meter)\n",
"lembda=5000*10**-10 #wavelength (meter)\n",
"delta_lembda=10*10**-10 #range of wavelength (meter)\n",
"k=1.38*10**-23 #Boltzmann constant (joule/kelvin)\n",
"T=1500 #Temperature of the cavity (kelvin)\n",
"\n",
"#Calculation\n",
"import math\n",
"#(i)Number of modes:\n",
"N=(8*math.pi*v**3*delta_lembda)/lembda**4 #number of modes\n",
"#(ii)Total radiant energy in the cavity:\n",
"U=N*k*T #energy density (joule)\n",
"\n",
"#Result\n",
"print\"\\n(a) Number of modes =%.3e\"%N,\"joule\\n(b) Energy density =%.2e\"%U ,\"J\"\n",
"print\"Note: In book the answers of both the parts are WRONG by one order of magnitude in powers\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a) Number of modes =3.217e+12 joule\n",
"(b) Energy density =6.66e-08 J\n",
"Note: In book the answers of both the parts are WRONG by one order of magnitude in powers\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3,Page no:59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"m=0.1 #mass of a spring-mass system (kg)\n",
"k=10 #spring constant of a spring-mass system (newton/meter)\n",
"A=0.1 #Amplitude of system oscillation (meter)\n",
"h=(6.625*10**-34)/(2*math.pi) #Planck's constant (joule-second)\n",
"delta_n=1 #change in quantum number\n",
"\n",
"#Calculation\n",
"#(a) Quantum number n associated with the energy of the oscillator\n",
"f=(k/m)**(1.0/2.0) #frequency of oscillator (radian/second)\n",
"E=0.5*f*A**2 #Energy of oscillator (joule)\n",
"n=E/(h*f) #Quantum number of the oscillator\n",
"#(b) Fractional change in energy\n",
"change_E=delta_n/n #fractional change in energy\n",
"\n",
"\n",
"#Result\n",
"print\"\\n(a) Quantum number of the oscillator =%.e\"%n\n",
"print\"(b) Fractional change in energy =%.g\"%change_E\n",
"print\"(c) This example illustrates that the energy levels of macroscopic oscillators are so close together that even most delicate instruments cannot reveal the quantized nature of energy levels. All this is due to smallness of Planck\u2019s constant h. In the limit h->0, the energy levels become continuous.\"\n",
"print\"WRONG ANSWER NOTE:The answer given in the book for quantum number is just the order of it as it is a very large number. But the answer generated by the code is the exact value of it.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a) Quantum number of the oscillator =5e+31\n",
"(b) Fractional change in energy =2e-32\n",
"(c) This example illustrates that the energy levels of macroscopic oscillators are so close together that even most delicate instruments cannot reveal the quantized nature of energy levels. All this is due to smallness of Planck\u2019s constant h. In the limit h->0, the energy levels become continuous.\n",
"WRONG ANSWER NOTE:The answer given in the book for quantum number is just the order of it as it is a very large number. But the answer generated by the code is the exact value of it.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:4,Page no:63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"e=1.6*10**-19 #Charge of electron (coulombs)\n",
"h=(6.625*10**-34)/(2*math.pi) #Planck's constant (joule-second)\n",
"c=3*10**8 #Speed of light (meter/second)\n",
"\n",
"#Calculation\n",
"ch=(2*math.pi*h*c*10**9)/e #Value of ch (eV nm)\n",
"\n",
"#Result\n",
"print\"\\nch =\",round(ch),\"eV nm\"\n",
"print\"WRONG ANSWER:Approximate answer is given in book\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"ch = 1242.0 eV nm\n",
"WRONG ANSWER:Approximate answer is given in book\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:5,Page no:63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"h=(6.625*10**-34)/(2*math.pi) #Planck's constant (joule-second)\n",
"c=3*10**8 #speed of light (meter/second)\n",
"lembda=2000 #Wavelength of the light (\u00c5)\n",
"phi=4.2 #work function of aluminium surface (eV)\n",
"ch=12400 #constant (eV \u00c5)\n",
"\n",
"#Calculation\n",
"#(a) maximum kinetic energy of photoelectrons\n",
"Tmax=(ch/lembda)-phi #maximum kinetic energy of photoelectrons (eV)\n",
"\n",
"#(b) minimum kinetic energy of photoelectrons\n",
"Tmin=0\n",
"\n",
"#(c) cut-off wavelength\n",
"lembda_cut=ch/phi # cut-off wavelength (\u00c5)\n",
"\n",
"#(d) stopping potential\n",
"v=2 #stopping potential (volt)\n",
"\n",
"\n",
"#Result\n",
"print\"\\n(a) Maximum kinetic energy of photoelectrons =\",round(Tmax),\"eV\"\n",
"print\"(b) Minimum kinetic energy of photoelectrons =\",Tmin\n",
"print\"(c) Cut-off(Threshold) wavelength =\",round(lembda_cut),\"\u00c5\\n\"\n",
"print\"(d) Stopping potential =\",v,\"volt\" \n",
"print\"Note: In book answer of cut_off wavelength is wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a) Maximum kinetic energy of photoelectrons = 2.0 eV\n",
"(b) Minimum kinetic energy of photoelectrons = 0\n",
"(c) Cut-off(Threshold) wavelength = 2952.0 \u00c5\n",
"\n",
"(d) Stopping potential = 2 volt\n",
"Note: In book answer of cut_off wavelength is wrong\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:6,Page no:64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"lembda1=4000.0 #wavelength of light (\u00c5)\n",
"V1=2.0 #stopping potential (volt)\n",
"lembda2=6000.0 #wavelength of light (\u00c5)\n",
"V2=1.0 #stopping potential (volt)\n",
"e=1.6*10**-19 #Charge of electron (coulombs)\n",
"c=3.0*10**8 #speed of light (meter/second)\n",
"ch=12400.0 #constant (eV \u00c5)\n",
"\n",
"#Calculation\n",
"#(i) Planck's constant\n",
"h=(e*(V1-V2)*lembda1*10**-10*lembda2*10**-10)/(c*((lembda2*10**-10)-(lembda1*10**-10))) #Planck's constant (joule-second)\n",
"#(ii) Work function\n",
"phi=(ch/lembda1)-V1 #work function of the material (eV)\n",
"\n",
"#Result\n",
"print\" Planck`s constant = h =\",h,\"J-s\\n\"\n",
"print\" Work function of the material =\",phi,\"eV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Planck`s constant = h = 6.4e-34 J-s\n",
"\n",
" Work function of the material = 1.1 eV\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:7,Page no:64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"ch=12400 #constant (eV \u00c5)\n",
"phi_Tantalum=4.2 #work function of Tantalum (eV)\n",
"phi_Tungsten=4.5 #work function of Tungsten (eV)\n",
"phi_Aluminium=4.2 #work function of Aluminium (eV)\n",
"phi_Barium=2.5 #work function of Barium (eV)\n",
"phi_Lithium=2.3 #work function of Lithium (eV)\n",
"\n",
"#Calculation\n",
"lembda_Tantalum=ch/phi_Tantalum #Threshold wavelength of Tantalum (\u00c5)\n",
"lembda_Tungsten=ch/phi_Tungsten #Threshold wavelength of Tungsten (\u00c5)\n",
"lembda_Aluminium=ch/phi_Aluminium #Threshold wavelength of Aluminium (\u00c5)\n",
"lembda_Barium=ch/phi_Barium #Threshold wavelength of Barium (\u00c5)\n",
"lembda_Lithium=ch/phi_Lithium #Threshold wavelength of Lithium (\u00c5)\n",
"\n",
"\n",
"#Result\n",
"print\"Tantalum %d\"%lembda_Tantalum,\"\u00c5\"\n",
"print\"Tungsten %d\"%lembda_Tungsten,\"\u00c5\"\n",
"print\"Aluminium %d\"%lembda_Aluminium,\"\u00c5\"\n",
"print\"Barium %d\"%lembda_Barium,\"\u00c5\"\n",
"print\"Lithium %d\"%lembda_Lithium,\"\u00c5\"\n",
"if(lembda_Tantalum<8000 and lembda_Tantalum>4000): \n",
" print\"Tantalum can be used for designing photocell\"\n",
"\n",
"\n",
"if(lembda_Tungsten<8000 and lembda_Tungsten>4000): #Checking whether Threshold wavelength of Tungsten lies in visible range or not\n",
" print\"Tungsten can be used for designing photocell\"\n",
"\n",
"\n",
"if(lembda_Aluminium<8000 and lembda_Aluminium>4000): #Checking whether Threshold wavelength of Aluminium lies in visible range or not\n",
" print\"Aluminium can be used for designing photocell\"\n",
"\n",
"\n",
"if(lembda_Barium<8000 and lembda_Barium>4000): #Checking whether Threshold wavelength of Barium lies in visible range or not\n",
" print\"Barium can be used for designing photocell\"\n",
"\n",
"\n",
"if(lembda_Lithium<8000 and lembda_Lithium>4000): #Checking whether Threshold wavelength of Lithium lies in visible range or not\n",
" print\"Lithium can be used for designing photocell\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Tantalum 2952 \u00c5\n",
"Tungsten 2755 \u00c5\n",
"Aluminium 2952 \u00c5\n",
"Barium 4960 \u00c5\n",
"Lithium 5391 \u00c5\n",
"Barium can be used for designing photocell\n",
"Lithium can be used for designing photocell\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:8,Page no:68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"lembda_c=0.024 #Compton wavelength of electron (\u00c5)\n",
"lembda=1 #Wavelength of X-rays (\u00c5)\n",
"Theta1=(60*math.pi)/180 #angle (radian)\n",
"Theta2=(90*math.pi)/180 #angle (radian)\n",
"Theta3=(180*math.pi)/180 #angle (radian)\n",
"ch=12400 #constant (eV \u00c5)\n",
"\n",
"#Calculation\n",
"#(a) Compton shift\n",
"shift1=lembda_c*(1-math.cos(Theta1)) #Compton shift (\u00c5)\n",
"shift2=lembda_c*(1-math.cos(Theta2)) #Compton shift (\u00c5)\n",
"shift3=lembda_c*(1-math.cos(Theta3)) #Compton shift (\u00c5)\n",
"#(b) Kinetic energy imparted to the recoil electron\n",
"T1=(ch*shift1)/(lembda*(lembda+shift1)) #Kinetic energy imparted to the electron (eV)\n",
"T2=(ch*shift2)/(lembda*(lembda+shift2)) #Kinetic energy imparted to the electron (eV)\n",
"T3=(ch*shift3)/(lembda*(lembda+shift3)) #Kinetic energy imparted to the electron (eV)\n",
"\n",
"#Result\n",
"print\"\\n(a) Compton shift:\\n\\t (i)\",shift1,\" \u00c5\\n\\t (ii)\",shift2,\" \u00c5\\n\\t (iii)\",shift3,\" \u00c5\\n\"\n",
"print\"(b) Kinetic energy imparted to the recoil electron:\\n\\t (i)\",round(T1),\" eV\\n\\t (ii) %d\"%T2,\" eV\\n\\t (iii)\",round(T3),\" eV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a) Compton shift:\n",
"\t (i) 0.012 \u00c5\n",
"\t (ii) 0.024 \u00c5\n",
"\t (iii) 0.048 \u00c5\n",
"\n",
"(b) Kinetic energy imparted to the recoil electron:\n",
"\t (i) 147.0 eV\n",
"\t (ii) 290 eV\n",
"\t (iii) 568.0 eV\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:9,Page no:69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"lembda_c=0.024 #Compton wavelength of electron (\u00c5)\n",
"Theta=(45*math.pi)/180 #Scattering angle (radian)\n",
"\n",
"#Calculation \n",
"lembda=lembda_c*(1-math.cos(Theta)) #Wavelength of incident photon (\u00c5)\n",
"\n",
"#Result\n",
"print\"\\n(a) Wavelength of incident photon = \",round(lembda,4),\" \u00c5 (gamma ray)\"\n",
"print\"(b) Photon lies in the gamma ray spectrum\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"(a) Wavelength of incident photon = 0.007 \u00c5 (gamma ray)\n",
"(b) Photon lies in the gamma ray spectrum\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:10,Page no:69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E=1 #Energy of photon (MeV)\n",
"eta=0.25 #Relative change in photon's wavelength\n",
"\n",
"#Calculation\n",
"T=(E*eta)/(1+eta) #Kinetic energy of recoil electron (MeV)\n",
"\n",
"#Result\n",
"print\"\\nThe kinetic energy of recoil electron =\",T,\"MeV\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The kinetic energy of recoil electron = 0.2 MeV\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:11,Page no:69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#Variable declaration\n",
"E=0.25 #Energy of photon (MeV)\n",
"Theta=(120*math.pi)/180 #Scattering angle of photon (radian)\n",
"a=0.51 #Value of m0*c**2 (Mev)\n",
"\n",
"#Calculation \n",
"E_das=E/(1+(E/a)*(1-math.cos(Theta))) #Energy of the scattered photon (MeV)\n",
"\n",
"#Result\n",
"print\"\\nEnergy of the scattered photon =\",round(E_das,3),\"Mev\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Energy of the scattered photon = 0.144 Mev\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:12,Page no:69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"p=1.02 #momentum of the photon (MeV/c)\n",
"p_dash=0.255 #momentum of the photon after scattering (MeV/c)\n",
"a=0.51 #Value of m0*c**2 (Mev)\n",
"\n",
"#Calculation\n",
"Theta=2*math.degrees(math.asin(((0.5*a*(p-p_dash))/(p*p_dash))**(1.0/2.0))); \n",
"\n",
"#Result\n",
"print\"\\nAngle of the photon after scattering =\",Theta,\"degree\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Angle of the photon after scattering = 120.0 degree\n"
]
}
],
"prompt_number": 46
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:13,Page no:70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Theta=120 #Scattering angle of photon (degree)\n",
"T=0.45 #Kinetic energy of electron (MeV)\n",
"a=0.51 #Value of m0*c**2 (Mev)\n",
"import math\n",
"\n",
"#Calculation \n",
"\n",
"E=(T/2.0)*(1.0+math.sqrt(1.0+(2.0*a)/(T*((math.sin(math.radians(Theta/2.0)))**2)))) #Energy of the incident photon (MeV) \n",
"\n",
"\n",
"#Result\n",
"print\"\\nEnergy of the incident photon =%.3g\"%E,\"Mev\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Energy of the incident photon =0.676 Mev\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:14,Page no:74"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"lembda0=2536*10**-10 #wavelength of exciting line (meter)\n",
"lembda=2612*10**-10 #wavelength of Raman line (meter)\n",
"\n",
"#Calculation \n",
"v0=1.0/lembda0 #wave number of exciting line (1/meter)\n",
"v=1.0/lembda #wave number of Raman line (1/meter)\n",
"shift=v0-v #the Raman shift (1/meter)\n",
"\n",
"#Result\n",
"print\"\\nThe Raman shift =\",shift,\"m-1\"\n",
"print\"Note: v0 and v values in the book are VERY LESS PRECISE,Therefore an approximate answer\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"The Raman shift = 114733.745248 m-1\n",
"Note: v0 and v values in the book are VERY LESS PRECISE,Therefore an approximate answer\n"
]
}
],
"prompt_number": 80
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:15,Page no:75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"lembda0=5000*10**-10 #Wavelength of radiation (meter)\n",
"lembda=5050.5*10**-10 #Wavelength of Raman line (meter)\n",
"\n",
"#Calculation\n",
"#(a) Raman frequency\n",
"v0=1.0/lembda0 #Wave number of radiation (1/meter)\n",
"v=1.0/lembda #Wave number of Raman line (1/meter)\n",
"shift=v0-v #Raman shift (1/meter)\n",
"va=v0+shift #Frequency of antistoke's line (1/meter)\n",
"#(b) Position of the antistokes' line\n",
"lembdaa=(10.0**10.0)/va #Wavelength of antistoke's line (\u00c5)\n",
"\n",
"#Result\n",
"print\"(a) Raman frequency =%.2e\"%va,\"m**-1\"\n",
"print\"(b) Wavelength of antistoke`s line =%.1f\"%lembdaa,\"\u00c5 (APPROX)\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Raman frequency =2.02e+06 m**-1\n",
"(b) Wavelength of antistoke`s line =4950.5 \u00c5 (APPROX)\n"
]
}
],
"prompt_number": 86
}
],
"metadata": {}
}
]
}
|