summaryrefslogtreecommitdiff
path: root/Introduction_To_Modern_Physics_Volume_1/UNIT_1,Chapter_1.ipynb
blob: cc6e8d6496b25045e1585f44dedd9dbba0ac200e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 1:The special theory of relativity"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:3,Page no:32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "x=50.0\n",
      "y=20.0\n",
      "z=10.0                            #x,y,z cordinates in meters(frame s)\n",
      "t=5.0*10**(-8)                              #time in seconds(frame s)\n",
      "velocity=0.6*3*10**8                      #velocity of observer in s' frame relative to s in meter/second\n",
      "c=3.0*10.0**8                                 #speed of light in meter/second\n",
      "Beta=0.6 \n",
      "Gamma=1.0/((1.0-Beta**2)**(1.0/2.0)) \n",
      "\n",
      "#Calculation \n",
      "xdash=Gamma*(x-(velocity*t))              #value of x cordinate in frame s' in meters\n",
      "ydash=y                                   #value of y cordinate in frame s' in meters\n",
      "zdash=z                                   #value of z cordinate in frame s' in meters\n",
      "tdash=Gamma*(t-((velocity*x)/(c**2)))      #value of t in frame s' in seconds\n",
      "\n",
      "#Result\n",
      "print\"\\nValue of space time cordinates in frame s`:\\n\\t x`=\",xdash,\" m\\n\\t y`=\",ydash,\"m\\n\\t z`=\",zdash,\"m\\n\\t t`=\",tdash,\"s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Value of space time cordinates in frame s`:\n",
        "\t x`= 51.25  m\n",
        "\t y`= 20.0 m\n",
        "\t z`= 10.0 m\n",
        "\t t`= -6.25e-08 s\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:4,Page no:32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "x1=20.0                                         #position of event 1 in meters(frame s)\n",
      "t1=2.0*10**(-8)                                 #time of event 1 in seconds(frame s)\n",
      "x2=60.0                                        #position of event 2 in meters(frame s)\n",
      "t2=3.0*10**(-8)                                 #time of event 2 in seconds(frame s)\n",
      "c=3.0*10**8                                    #speed of light in meter/second\n",
      "v=0.6*c                                     #speed of frame s' relative to frame s (meter/second)\n",
      "Beta=0.6\n",
      "Gamma=1.0/((1.0-Beta**2.0)**(1.0/2.0)) \n",
      "\n",
      "#Calculation\n",
      "#part(i)\n",
      "separation=Gamma*((x2-x1)-v*(t2-t1))        #spatial separation of the events in frame s' (meter)\n",
      "#part(ii)\n",
      "interval=Gamma*((t2-t1)-(v*(x2-x1))/(c**2))  #time interval between the two events in frame s' (second)\n",
      "\n",
      "#Result\n",
      "print\"\\nIn frame s`:\\n\\t (i)spatial separation=\",separation,\"m\\n\\t (ii)time interval=\",interval,\"s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "In frame s`:\n",
        "\t (i)spatial separation= 47.75 m\n",
        "\t (ii)time interval= -8.75e-08 s\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:5,Page no:33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "x1=24.0                                         #position of event 1 in meters(frame s)\n",
      "t1=8.0*10**(-8)                                  #time of event 1 in seconds(frame s)\n",
      "x2=48.0                                         #position of event 2 in meters(frame s)\n",
      "t2=4.0*10**(-8)                                  #time of event 2 in seconds(frame s)\n",
      "c=3.0*10**8                                      #speed of light in meter/second\n",
      "\n",
      "#calculation \n",
      "v=((c**2)*(t2-t1))/(x2-x1)                     #velocity of the frame s' (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"\\nvelocity of the frame s` =\",v/(3*10**8),\"c\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "velocity of the frame s` = -0.5 c\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:6,Page no:33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "#variable declaration\n",
      "interval_s=1.0                                              #time difference between two events in frame s (second)\n",
      "interval_sdash=4.0                                          #time difference between two events in frame s' (second)\n",
      "separation_s=0.0                                           #spatial separation of two events in frame s (meter)\n",
      "c=3.0*10**8                                                 #speed of light (meter/second)\n",
      "v=numpy.random.rand()                                                   #assign a random value to unknown velocity(meter/second)\n",
      "import math\n",
      "#calculation \n",
      "Gamma=interval_sdash/(interval_s-(v*(separation_s))/(c**2))  #calculating gamma\n",
      "separation=-2.0*(((Gamma**2.0)-1)**(1.0/2.0))*c                      #spatial separation in s' (meter)\n",
      "\n",
      "#Result\n",
      "print\"\\nspatial separation of the events in frame s` =\",separation/(3*10**8*math.sqrt(15)),\"c sqrt(15)\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "spatial separation of the events in frame s` = -2.0 c sqrt(15)\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:7,Page no:33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "#variable declaration\n",
      "interval_s=0.0                                                   #time difference between two events in frame s (second)\n",
      "separation_s=1.0                                                 #spatial separation of two events in frame s (meter)\n",
      "separation_sdash=2.0                                             #spatial separation of two events in frame s' (meter)\n",
      "c=3*10**8                                                       #speed of light (meter/second)\n",
      "v=numpy.random.rand()                                                       #assign a random value to unknown velocity of frame s' with respect to frame s (meter/second)\n",
      "\n",
      "#calculation \n",
      "Gamma=separation_sdash/(separation_s-(v*interval_s))           #calculating value of Gamma\n",
      "Beta=(1-1/(Gamma**2))**(1/2)                                     #calculating value of Beta\n",
      "v=Beta*c                                                       #velocity of s' with respect to s (meter/second)\n",
      "interval_sdash=Gamma*(interval_s-((v*separation_s)/(c**2)))     #time interval between the events in frame s' (second)\n",
      "\n",
      "#Result\n",
      "print\"\\nThe time interval between the events in frame s` =\",interval_sdash/(3*10**8),\"X0\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The time interval between the events in frame s` = -2.22222222222e-17 X0\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:8,Page no:34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "IbyI_not=.99                       #ratio of moving length and rest length\n",
      "c=3*10**8                           #speed of light (meter/second)\n",
      "\n",
      "#calculation\n",
      "Beta=(1-IbyI_not**2)**(1/2.0)          #calculating value of Beta\n",
      "v=Beta*c                           #velocity of rocket ship (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"\\nThe velocity of the rocket ship = %.2e\"%(v/(3*10**8)),\"c\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The velocity of the rocket ship = 1.41e-01 c\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:9,Page no:34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "l_dash=1.0                                    #length of the rod in frame s' (meter)\n",
      "Theta_dash_degree=45.0                        #angle of the rod with x-axis in frame s' (degree)\n",
      "Beta=1/2.0                                    #value of Beta\n",
      "import math\n",
      "\n",
      "#calculation \n",
      "Theta_dash_radian=Theta_dash_degree*(math.pi/180.0)                                           #conversion of angle Theta in radian from degree (radian)\n",
      "l=((l_dash**2)*((math.sin(Theta_dash_radian))**2+((1-(Beta**2))*((math.cos(Theta_dash_radian))**2))))**(1.0/2.0)           #length of the rod in frame s (meter)\n",
      "tan_theta=math.tan(Theta_dash_radian)/((1.0-Beta**2)**(1.0/2.0))                              #tan of angle of rod with x-axis in frame s\n",
      "theta=math.atan(tan_theta)                                                      #angle of rod with x-axis in frame s (degree)\n",
      "\n",
      "#Result\n",
      "print\"\\nThe length of the rod =\",round(l,2),\"m\\nInclination of rod with x-axis =\",round(math.degrees(theta)),\" degree\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The length of the rod = 0.94 m\n",
        "Inclination of rod with x-axis = 49.0  degree\n"
       ]
      }
     ],
     "prompt_number": 89
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:10,Page no:34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "c=3*10**8                                   #speed of light (meter/second)\n",
      "\n",
      "#calculation \n",
      "Beta=(1-((1/1.25)**2))**(1.0/2.0)                  #calculating Beta (1.25 comes from the fact that in frame s' density of bloc is 25% greater than frame s)\n",
      "v=Beta*c                                     #velocity of the reference frame s'\n",
      "\n",
      "#Result\n",
      "print\"\\nBeta =\",Beta\n",
      "print\"NOTE solved in book:\\nThe velocity of the frame s` = %.1e\"%v,\" m/s\" \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Beta = 0.6\n",
        "NOTE solved in book:\n",
        "The velocity of the frame s` = 1.8e+08  m/s\n"
       ]
      }
     ],
     "prompt_number": 93
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:11,Page no:35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "del_tao=1436.0     #min\n",
      "del_t=1440.0       #min\n",
      "\n",
      "#Calculation\n",
      "def f(b):\n",
      "    return(del_t-del_tao/(math.sqrt(1-b**2)))\n",
      "\n",
      "from scipy.optimize import fsolve\n",
      "be=fsolve(f,0.5)\n",
      "\n",
      "#Result\n",
      "print\"Beta=\",be[0],\"=1/(sqrt(180))\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Beta= 0.0744838204322 =1/(sqrt(180))\n"
       ]
      }
     ],
     "prompt_number": 107
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:12,Page no:35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "deltaTow=1*10**(-6)                           #mean proper lifetime of particle (second)\n",
      "Beta=0.9                                     #value of Beta\n",
      "v=2.7*10**8                                   #velocity of particle (meter/second)\n",
      "\n",
      "#Calculation\n",
      "#part(i)\n",
      "deltaT=deltaTow/((1-Beta**2)**(1.0/2.0))           #lifetime of the particle in the laboratory frame (second)\n",
      "#part(ii)\n",
      "d=v*deltaT                                   #distance traversed by the particle in the laboratory before disintegration (meter)\n",
      "\n",
      "#Result\n",
      "print\"\\nIn laboratory frame:\\n\\t(i)Lifetime of the particle = %.2e\"%deltaT,\"s\\n\"\n",
      "print\"\\t(ii)Distance traversed by the particle = %.2g\"%d,\" m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "In laboratory frame:\n",
        "\t(i)Lifetime of the particle = 2.29e-06 s\n",
        "\n",
        "\t(ii)Distance traversed by the particle = 6.2e+02  m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:13,Page no:35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "d=3.0    #km\n",
      "d=d*1000.0  #[m]\n",
      "c=3.0*10**8  #m/s speed of light\n",
      "\n",
      "#Calculation\n",
      "v=0.99*c     #muon velocity\n",
      "b=(v**2)/(c**2)\n",
      "\n",
      "del_t=d/v\n",
      "del_tao=del_t*math.sqrt(1-0.99**2)\n",
      "#In moun's frame,\n",
      "d_dash=d*math.sqrt(1-0.99**2)\n",
      "\n",
      "#Result\n",
      "print\"(i)Proper lifetime of the muon= %.1e\"%del_tao,\"s\"\n",
      "print\"(ii)In muon's frame,distance travelled by it is %.3e\"%d_dash,\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)Proper lifetime of the muon= 1.4e-06 s\n",
        "(ii)In muon's frame,distance travelled by it is 4.232e+02 m\n"
       ]
      }
     ],
     "prompt_number": 130
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:14,Page no:36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "import sympy\n",
      "c=sympy.Symbol(\"c\")\n",
      "u1=0.6*c                                  #speed of Beta particle 1 in lab frame (meter/second)\n",
      "u2=-0.8*c                                 #speed of Beta particle 2 in lab frame (meter/second)\n",
      "v=u1                                      #velocity of frame s' where frame s' is attached to the first Beta particle (meter/second)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "u2_dash=(u2-v)/(1-((u2*v)/c**2))           #velocity of 2nd Beta particle relative to the 1st Beta particle (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"The velocity of 2nd Beta particle relative to the 1st Beta particle =\",round(u2_dash/c,3)*c\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of 2nd Beta particle relative to the 1st Beta particle = -0.946*c\n"
       ]
      }
     ],
     "prompt_number": 140
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:15,Page no:36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#variable declaration\n",
      "m0=1.0                                    #let rest mass of particle to be 1 (kg)\n",
      "m=3.0*m0                                  #moving mass of particle (kg)\n",
      "import sympy                               #speed of light (meter/second)\n",
      "c=sympy.Symbol(\"c\")\n",
      "\n",
      "#calculation \n",
      "Beta=(1-(m0/m)**2)**(1.0/2.0)                 #Calculation fo Beta\n",
      "v=Beta*c                                #speed of particle (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"The speed of The particle =\",round(v/c,3)*c,\"=((2*sqrt 2)/3)c\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The speed of The particle = 0.943*c =((2*sqrt 2)/3)c\n"
       ]
      }
     ],
     "prompt_number": 142
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:23,Page no:38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RestEnergy=0.51                            #energy of electron if the electron is at rest (Mev)\n",
      "T=2                            #kinetic energy of electron (Bev)\n",
      "\n",
      "\n",
      "#Calculation\n",
      "#E=T=pc\n",
      "\n",
      "from sympy import Symbol\n",
      "c=Symbol(\"c\")                               #speed of light (meter/second)\n",
      "p=(T/c)                          #momentum of electron neglecting rest energy relative to kinetic energy (Bev*second/meter)\n",
      "\n",
      "#Result\n",
      "print\"The momentum of the electron =\",p,\"BeV/c\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The momentum of the electron = 2/c BeV/c\n"
       ]
      }
     ],
     "prompt_number": 57
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:24,Page no:38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "n=0.01                            #fractional increase in momentum\n",
      "c=3*10**8                          #speed of light (meter/second)\n",
      "\n",
      "#Calculation\n",
      "Beta=(n*(2-n))**(1.0/2.0)              #calculation of Beta\n",
      "v=Beta*c                          #velocity of particle (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"\\nBeta =\",round(Beta,2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Beta = 0.14\n"
       ]
      }
     ],
     "prompt_number": 58
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:26,Page no:39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RestEnergy=0.51                                   #rest energy of electron (Mev)\n",
      "T=1.0                                               #potential difference i.e. kinetic energy (Mev)\n",
      "c=3*10**8                                          #speed of light (meter/second)\n",
      "\n",
      "#Calculation\n",
      "Beta=(1-(RestEnergy/(T+RestEnergy))**2)**(1.0/2.0)      #calculation of Beta\n",
      "v=Beta*c                                          #speed of electron (meter/second)\n",
      "\n",
      "#Result\n",
      "print\"The speed of the electron,Beta =\",round(Beta,4)\n",
      "print\"Note: In the book answer of Beta is wrong\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The speed of the electron,Beta = 0.9412\n",
        "Note: In the book answer of Beta is wrong\n"
       ]
      }
     ],
     "prompt_number": 59
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:27,Page no:39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RestEnergy=0.51                                   #rest energy of electron (Mev)\n",
      "T=2000.0                                            #potential difference i.e. kinetic energy (Mev)\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "#part(i)effective mass of electron in terms of its rest mass\n",
      "EffectiveMass=1+(T/RestEnergy)                    #ratio of effective mass of electron and rest mass\n",
      "#part(ii)speed of electron in terms of the speed of light\n",
      "Beta=(1-(1/EffectiveMass)**2)**(1.0/2.0)                #Calculatio of Beta\n",
      "import sympy\n",
      "eff_mass=sympy.Symbol(\"3923\")\n",
      "beta=((1-(1/eff_mass)**2))**(1.0/2.0)               #Calculatio of Beta\n",
      "\n",
      "#Result\n",
      "print\"The effective mass of electron in terms of its rest mass is\",round(EffectiveMass)\n",
      "print\"The speed of electron =\",beta,\"c is speed of light\" \n",
      "print\"OR after solving:\"\n",
      "print\"Speed of electron=%.2f\"%Beta,\"c\"\n",
      "print\"\\nNote: Wrong answer in book\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The effective mass of electron in terms of its rest mass is 3923.0\n",
        "The speed of electron = (1 - 1/3923**2)**0.5 c is speed of light\n",
        "OR after solving:\n",
        "Speed of electron=1.00 c\n",
        "\n",
        "Note: Wrong answer in book\n"
       ]
      }
     ],
     "prompt_number": 60
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:28,Page no:39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "c=3*10**8                                                           #speed of light(meter/second)\n",
      "v1=0.6*c                                                          #initial velocity of particle (meter/second)\n",
      "v2=0.8*c                                                          #final velocity of particle (meter/second)\n",
      "\n",
      "#Calculation\n",
      "#Classically\n",
      "W_Classic=0.5*((v2/c)**2-(v1/c)**2)                                 #ratio of work and m0*c**2 (mo is the rest mass of particle and c is the speed of light)\n",
      "#Relativistically\n",
      "W_Relative=(1/(1-(v2/c)**2)**(1.0/2.0))-(1/(1-(v1/c)**2)**(1.0/2.0))          #ratio of work and m0*c**2 (mo is the rest mass of particle and c is the speed of light)\n",
      "\n",
      "#Result\n",
      "print\"\\nWork required:\\n\\t Classically: Work =\",W_Classic,\"*m0*c**2\\n\\t Relativistically: Work =\",round(W_Relative,3),\"*m0*c**2\\nWhere m0:rest mass of particle & c:speed of light\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Work required:\n",
        "\t Classically: Work = 0.14 *m0*c**2\n",
        "\t Relativistically: Work = 0.417 *m0*c**2\n",
        "Where m0:rest mass of particle & c:speed of light\n"
       ]
      }
     ],
     "prompt_number": 61
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:29,Page no:40"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "h=6.63*10**-34                                     #planck's constant (joule*second)\n",
      "c=3*10**8                                          #speed of light (meter/second)\n",
      "lambda1=5000*10**-10                               #wavelength (meter)\n",
      "lambda2=0.1*10**-10                                #wavelength (meter)\n",
      "\n",
      "#Calculation\n",
      "#part(i): wavelength=5000 \u00c5\n",
      "m1=h/(lambda1*c)                                  #effective mass of photon of wavelength 5000 \u00c5\n",
      "#part(ii): wavelength=0.1 \u00c5\n",
      "m2=h/(lambda2*c)                                  #effective mass of photon of wavelength 0.1 \u00c5\n",
      "\n",
      "#Result\n",
      "print\"Effective mass of photon:\\n\\t(i) mass =\",m1,\"kg\\n\\t(ii) mass =\",m2,\"kg\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Effective mass of photon:\n",
        "\t(i) mass = 4.42e-36 kg\n",
        "\t(ii) mass = 2.21e-31 kg\n"
       ]
      }
     ],
     "prompt_number": 62
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:30,Page no:40"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "RestEnergy=0.51                                   #rest energy of electron (Mev)\n",
      "\n",
      "#Calculation\n",
      "E=2*RestEnergy                                    #minimum energy of gamma ray photon (Mev)\n",
      "\n",
      "#Result\n",
      "print\"\\nMinimum energy required =\",E,\"Mev\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Minimum energy required = 1.02 Mev\n"
       ]
      }
     ],
     "prompt_number": 63
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example no:33,Page no:41"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "c=3*10**8                                       #Speed of sound (meter/second)\n",
      "M=1.97*10**30                                   #Mass of sun (kg)\n",
      "R=1.5*10**11                                    #Mean radius of the earth orbit (meter)\n",
      "sigma=1.4*10**3                                 #Solar energy received by the earth (joule/meter**2*second)\n",
      "\n",
      "#Calculation\n",
      "import math\n",
      "loss=(4*math.pi*R**2*sigma)/(M*c**2)                 #Fractional loss of mass of the sun per second\n",
      "\n",
      "#Result\n",
      "print\"\\nThe fractional loss of mass of the sun= %.e\"%loss,\"s**-1\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The fractional loss of mass of the sun= 2e-21 s**-1\n"
       ]
      }
     ],
     "prompt_number": 64
    }
   ],
   "metadata": {}
  }
 ]
}