1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 : Computers and their application"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 9.1 page number 384"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"D = 38.*10**-3; #in m\n",
"U = 1. #in m/s\n",
"density = 998. #in kg/cubic m\n",
"viscosity = 8.*10**-4 #in Pa-s\n",
"DC = 1. #in m\n",
"N = 10.\n",
"e = 4.*10**-6; #in m\n",
"\n",
"Re = (density*U*D)/viscosity;\n",
"print \"Reynolds number = %f\"%(Re)\n",
"\n",
"f = (4*math.log10((e/D)/3.7+(6.81/Re)**0.9))**-2;\n",
"print \"friction factor = %f\"%(f);\n",
"\n",
"L = 3.14*DC*N;\n",
"\n",
"delta_Pstr = (2*f*U*density*L)/D;\n",
"print \"pressure drop through straight pipe = %f Pa\"%(delta_Pstr)\n",
"\n",
"S = 1+3.54*(D/DC);\n",
"print \"correction factor = %f\"%(S)\n",
"\n",
"delta_P = S*delta_Pstr\n",
"print \"pressure drop of coil = %f Pa\"%(delta_P)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reynolds number = 47405.000000\n",
"friction factor = 0.005330\n",
"pressure drop through straight pipe = 8791.184173 Pa\n",
"correction factor = 1.134520\n",
"pressure drop of coil = 9973.774268 Pa\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 9.2 page number 384\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"U = 0.5 #in m/s\n",
"N = 19.;\n",
"DT = 0.026 #in m\n",
"L = 2.7 #in m\n",
"DS = 0.2 #in m\n",
"e = 0.0002 #in m\n",
"density = 836. #in kg/cu m\n",
"viscosity = 0.00032 #in Pa s\n",
"Pr = 6.5;\n",
"Prw = 7.6;\n",
"\n",
"HYDIA = (DS**2-N*DT**2)/(DS+N*DT);\n",
"Re = HYDIA*U*density/viscosity;\n",
"print \"Reynolds number = %f\"%(Re)\n",
"\n",
"f = (4*math.log10((e/HYDIA)/3.7+(6.81/Re)**0.9))**-2;\n",
"print \"friction factor = %f\"%(f);\n",
"\n",
"L = 3.14*DT*N;\n",
"\n",
"delta_Pstr = (2*f*U*density*L)/HYDIA;\n",
"print \"pressure drop through straight pipe = %f Pa\"%(delta_Pstr)\n",
"\n",
"S = (Prw/Pr)**0.33;\n",
"print \"correction factor = %f\"%(S)\n",
"\n",
"delta_P = S*delta_Pstr\n",
"print \"pressure drop of coil = %f Pa\"%(delta_P)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reynolds number = 51113.148415\n",
"friction factor = 0.008158\n",
"pressure drop through straight pipe = 270.362537 Pa\n",
"correction factor = 1.052948\n",
"pressure drop of coil = 284.677794 Pa\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"example 9.3 page number 385\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"MH = 10. #in kg/s\n",
"MC = 12.5 #in kg/s\n",
"CPH = 4.2 #in kJ/kg\n",
"CPC = 4.2 #in kJ/kg\n",
"THI = 353. #in K\n",
"THO = 333. #in K\n",
"TCI = 300. #in K\n",
"U = 1.8 #in kW/sq m K\n",
"\n",
"Q = MH*CPH*(THI-THO);\n",
"print \"heat load = %f J\"%(Q)\n",
"\n",
"TCO = Q/(MC*CPC)+TCI;\n",
"print \"cold fluid outlet temperature = %f K\"%(TCO)\n",
"\n",
"\n",
"DT1 = THI-TCO;\n",
"DT2 = THO-TCO;\n",
"\n",
"LMTD = (DT1-DT2)/math.log(DT1/DT2);\n",
"\n",
"A = Q/(U*LMTD);\n",
"print \"for co current flow area = %f sq m\"%(A);\n",
"\n",
"\n",
"DT1 = THI-TCO;\n",
"DT2 = THO-TCI;\n",
"\n",
"LMTD = (DT1-DT2)/math.log(DT1/DT2);\n",
"\n",
"A = Q/(U*LMTD);\n",
"print \"for counter current flow area = %f sq m\"%(A);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"heat load = 840.000000 J\n",
"cold fluid outlet temperature = 316.000000 K\n",
"for co current flow area = 18.146440 sq m\n",
"for counter current flow area = 13.347874 sq m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|