summaryrefslogtreecommitdiff
path: root/Introduction_To_Chemical_Engineering/ch6.ipynb
blob: 1a7b64a40c27c4361afd7edb215c6dbc9ded5819 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6 : Mass Transfer"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.3 page number 215"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "D_AB=6.75*10**-5   #in m2/s\n",
      "Z=0.03   #in m\n",
      "R=8314\n",
      "p_A1=5.5*10**4   #in Pa\n",
      "p_A2=1.5*10**4   #in Pa\n",
      "T=298   #in K\n",
      "\n",
      "N_A=D_AB*(p_A1-p_A2)/(R*T*Z);\n",
      "print \"flux = %f kmol/sq m s\"%(N_A)\n",
      "\n",
      "Z=0.02;   #in m\n",
      "p_A2=p_A1-((N_A*R*T*Z)/D_AB);\n",
      "print \"pressure = %f Pa\"%(p_A2)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "flux = 0.000036 kmol/sq m s\n",
        "pressure = 28333.333333 Pa\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.4 page number 216\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "Z=0.15   #in m\n",
      "P=1.013*10**5    #in Pa\n",
      "p_A1=1.5*10**4    #in Pa\n",
      "p_A2=5*10**3    #in Pa\n",
      "\n",
      "p_B1=P-p_A1;\n",
      "p_B2=P-p_A2;\n",
      "\n",
      "D_AB=2.30*10**-5   #in m2/s\n",
      "R=8314.\n",
      "T=298.   #in K\n",
      "\n",
      "p_BM=(p_B2-p_B1)/math.log (p_B2/p_B1);\n",
      "print p_B1, p_B2\n",
      "N_A=D_AB*(p_A1-p_A2)*P/(R*T*Z*p_BM);\n",
      "print \"flux = %.4e kmol/sq m s\"%(N_A)\n",
      "\n",
      "N_A=D_AB*(p_A1-p_A2)/(R*T*Z);\n",
      "print \"flux = %.4e kmol/sq m s\"%(N_A)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "86300.0 96300.0\n",
        "flux = 6.8736e-07 kmol/sq m s\n",
        "flux = 6.1889e-07 kmol/sq m s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.6 page number 218\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "M_A=36.5    #molar mass of HCl\n",
      "M_B=18.      #molar masss of water\n",
      "w_A1=12.;    #weight % of HCL\n",
      "w_A2=4.      #weight % of HCL\n",
      "\n",
      "x_A1=(w_A1/M_A)/((w_A1/M_A)+((100-w_A1)/M_B));\n",
      "print 'x_A1 =%f'%(x_A1)\n",
      "\n",
      "x_B1=1.-x_A1;\n",
      "M1=100./((w_A1/M_A)+((100-w_A1)/M_B));\n",
      "print \"molar mass at point 1 = %f kg/kmol\"%(M1)\n",
      "\n",
      "x_A2=(w_A2/M_A)/((w_A2/M_A)+((100-w_A2)/M_B));\n",
      "x_B2=1-x_A2;\n",
      "M2=100/((w_A2/M_A)+((100-w_A2)/M_B));    #avg molecular weight at point 2\n",
      "print \"molar mass at point 2 = %f Kg/kmol\"%(M2)\n",
      "\n",
      "density_1=1060.7;    #in kg/m3\n",
      "density_2=1020.15;   #in kg/m3\n",
      "C_av=((density_1/M1)+(density_2/M2))/2;\n",
      "print \"C_av = %f kmol/cubic m\"%(C_av)\n",
      "\n",
      "x_BM=(x_B2-x_B1)/(math.log (x_B2/x_B1));\n",
      "Z=0.004    #in m\n",
      "D_AB=2.5*10**-9;\n",
      "N_A=(D_AB*C_av*(x_A1-x_A2))/(x_BM*Z);\n",
      "print \"flux = %f kmol/sq m-s\"%(N_A)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "x_A1 =0.063011\n",
        "molar mass at point 1 = 19.165694 kg/kmol\n",
        "molar mass at point 2 = 18.372483 Kg/kmol\n",
        "C_av = 55.434825 kmol/cubic m\n",
        "flux = 0.000002 kmol/sq m-s\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.8 page number 229\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "Gs=700/22.4    #in kmol of dry air/hr\n",
      "Ls=1500./18     #in kmol of dry air/hr\n",
      "y1=0.05\n",
      "Y1=y1/(1-y1);\n",
      "Y2=0.02*Y1;\n",
      "X2=0\n",
      "X1=(Gs/Ls)*(Y1-Y2);\n",
      "m=Gs*(Y1-Y2);\n",
      "\n",
      "delta_Y1=Y1-1.68*X1;\n",
      "delta_Y2=Y2-1.68*X2;\n",
      "delta_Y=(delta_Y1-delta_Y2)/(math.log (delta_Y1/delta_Y2));\n",
      "print \"driving force = %f kmol acetone/kmol dry air\"%(delta_Y)\n",
      "\n",
      "K_G=0.4    #in kmol acetone/kmol dry air\n",
      "A=m/(K_G*delta_Y);\n",
      "print \"area = %f sq m\"%(A)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "driving force = 0.006466 kmol acetone/kmol dry air\n",
        "area = 623.154093 sq m\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.9 page number 229\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "G1=(855/22.4)*(106.6/101.3)*(273/299.7);\n",
      "y1=0.02;\n",
      "Y1=y1/(1-y1);\n",
      "Gs=G1*(1-y1);\n",
      "\n",
      "Y2=0.05*Y1;\n",
      "x2=0.005;\n",
      "X2=x2/(1-x2);\n",
      "Y=0.204;\n",
      "X1=0.176;    #in kmol bgenzene/kmol benzene free oil\n",
      "\n",
      "Ls_molar=(Gs*(Y1-Y2))/(X1-X2);\n",
      "Ls=Ls_molar*260;\n",
      "\n",
      "print \"minimum oil circulation rate = %f kg/hr\"%(Ls)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "minimum oil circulation rate = 1057.149516 kg/hr\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.10 page number 231\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "P_M = 53.32   #kPa\n",
      "P_W = 12.33   #in kpA\n",
      "P = 40  #IN K pA\n",
      "\n",
      "x = (P - P_W)/(P_M-P_W);\n",
      "\n",
      "print \"liquid phase composition = %f\"%(x)\n",
      "\n",
      "y = P_M*x/P;\n",
      "print \"vapor phase composition = %f\"%(y)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "liquid phase composition = 0.675043\n",
        "vapor phase composition = 0.899832\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.12 page number 231\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "from numpy import *\n",
      "\n",
      "%pylab inline\n",
      "\n",
      "x = [1,0.69,0.40,0.192,0.045,0];\n",
      "y = [1,0.932,0.78,0.538,0.1775,0];\n",
      "plot(x,y)\n",
      "x = linspace(0,1,10)\n",
      "y = linspace(0,1,10)\n",
      "plot(x,y)\n",
      "x = [0.5,0.31];\n",
      "y = [0.5,0.7];\n",
      "plot (x,y)\n",
      "\n",
      "xlabel(\"x\")\n",
      "ylabel(\"y\")\n",
      "suptitle(\"distillation curve\")\n",
      "Z=0.5;\n",
      "y_D=0.69;\n",
      "x_W=0.31;\n",
      "\n",
      "show()\n",
      "\n",
      "print \"composition of top product = %f mole percent of hexane\"%(y_D*100)\n",
      "print \"composition of bottom product = %f mole percent of hexane\"%(x_W*100)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'new_figure_manager']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEhCAYAAAB7mQezAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVGX+B/APAiF5SXMBVwZvaCoj14DEyzpmiZfUUhM0\ncdFs1bK2tVx7beVtvVZ2sxZxTcsbiuI1k9zSUfFHqDBkXvKaySCStw0vIAOc3x/POjICOgxz5szl\n8369fAlxnPl61j3f+Zznec7jJkmSBCIiov+pp3QBRERkX9gYiIjIBBsDERGZYGMgIiITbAxERGSC\njYGIiEywMZBdmjFjBhYuXAgAmD59Or7//vsaj92yZQuOHz9u/H769OnYtWsXAECj0SAnJwcA0Lp1\na1y9evW+7zt37lyT77t162ZR/USOjI2B7JKbm5vx65kzZ6J37941Hrtp0yYcO3bM5Pgnn3yyyutU\n/rom8+bNM/l+//79Ztcsl4qKCqVLIBfDxkB2Y9q0aWjXrh00Gg1OnDhhvJAnJiYiLS0NADBlyhSo\n1WqEhYVh8uTJyMzMxLZt2zBlyhRERETg7NmzJsfXZNCgQYiMjMRjjz2GTz/9FADw1ltvobi4GOHh\n4UhISAAANGzYEIC4OL/66qsICgpCUFAQVqxYAQDQarXQaDSIj4/HY489hueffx7VrRk9fvw4unfv\njtDQUISHh+Ps2bPQarUYOHCg8ZhJkybhq6++AiDSzVtvvYUnnngCs2fPxhNPPGE87ty5cwgJCQEA\nZGZmIiYmBiEhIejVqxfy8/Nrf+KJ7uGhdAFEgLjAbd68GcePH4fBYEBoaCgiIyMBiE/6bm5u+O23\n37Bjxw4cPXoUAHDz5k00aNAAgwYNwsCBAzFkyBCT4+9n1apVaNy4MYqLi/H4449jxIgRmD9/Pj7/\n/HPodDrjcXdeZ+3atTh16hSOHTuGq1evIjg42JhicnNzceLECfj6+qJbt27Ys2cPNBqNyfvFx8dj\n7ty5GDBgAMrLy1FaWorz58+bHFO5bjc3N/j5+SErKwuASEXnzp1D69atsW7dOsTHx8NgMGDSpEnY\nuXMnmjVrhnXr1mHq1KlYtWqVJf8TEBkxMZBd2LdvH4YMGQJPT088/PDDGDRoUJVjmjVrBk9PT7z4\n4otIS0uDp6en8We1fbLLvHnzEBwcjJiYGFy4cAGnTp267/EZGRmIj48HADz66KPo3bs3MjMz4ebm\nhujoaPj5+cHNzQ1hYWHIy8sz+bOXLl3ClStXMGDAAACAu7s7vL29H1jjsGHDjF8PHz4c69atAwCk\npqYiLi4OP/74I06fPo2nnnoK4eHhmDNnDgoLC2t1Hoiqw8ZAdqFevXomF/d7L/SSJMHd3R1ZWVkY\nNmwYduzYgb59+xp/bs74wR07d+5ERkYGsrOzkZubi/DwcJSVld33z7i5uVWp6c57enl5Gf+bu7u7\n2WMC9erVMzm2uLjY5OcNGjQwfh0XF4fU1FScOnUKbm5uCAwMhCRJCA0NhU6ng06nw+HDh/Gf//zH\nrPcmuh82BrIL3bt3x+bNm1FaWopbt27h66+/rnLMzZs3cf36dfTr1w8LFy40zjby9vbGzZs3zX6v\nkpISNG3aFA899BBOnTqFH374wfgzd3d3lJeXV/kzPXr0wPr16yFJEq5evYpdu3YhJibGrKTi4+MD\nHx8f49/JYDCguLgYKpUKR48eRWlpKa5fv26cSVWdtm3bwt3dHf/85z+NySUkJATnz5833voqKyvD\niRMnzD4PRDVhYyC70KVLFzz77LMICgpC//79ER0dbfJzNzc3FBUVoW/fvggPD0ePHj3w0UcfARCf\npmfNmmUcfH6Qvn37oqSkBJ06dcLUqVMRExNj/FliYiI6depkHHy+kwri4uIQGBiIoKAgdO/eHfPm\nzUOLFi2qHc+oLr2kpKRg3rx5CAkJQZcuXVBYWIi2bdti8ODB6NixI4YPH46IiIj71h0XF4fVq1dj\n+PDhAERSWb9+PSZMmICwsDCEhYVhz549D/z7Ez2IGx+7TURElTExEBGRCTYGIiIywcZAREQm2BiI\niMgEGwMREZlgYyAiIhNsDEREZIKNgYiITLAxEBGRCVkbw9ixY+Hn54fg4OAaj3nttdegVqsRERFh\n8rhjIiJShqyNYcyYMUhPT6/x52lpaTh//jyOHj2KL774AmPGjJGzHCIiMoOsjaFHjx5o2rRpjT//\n5ptvjA8ru/PoY71eL2dJRET0AIqOMej1egQEBBi/V6lUbAxERApTfPC5ps1PiIhIGYru+axSqZCX\nl2fc6Fyv10OlUlU5rl27djhz5oytyyMicmiBgYE4ffp0rf+coomhf//+WL16NQAgJycH7u7u8Pf3\nr3LcmTNnIEkSf0kSpk+frngN9vKL54LnwpnORUWFhIICCXv3Sli6VMLUqRKee05C584SvL0l/PGP\nEnr2lDBunIT33pOwaZOEo0clFBeLP68r0CE0KRQDVg9AflE+JEmy+AO1rIlhxIgR2LNnDy5fvoyA\ngADMnDkTBoMBADB+/HgMHToUu3fvhlqthpeXF5YvXy5nOUREirt6FTh1Cjh50vT3U6eAhx4CHnsM\naN9e/B4fL35v1w5o2LD61ystL8X03XOQdCgJH/T5AAkhCXW+JS9rY0hJSXngMZ999pmcJRAR2dz1\n68Dp01Uv/idPAgaD6cX/mWfufn+fSZzVyr2Yi8TNiVA1ViF3Qi5aNGphlfoVHWOg2tNoNEqXYDd4\nLu7iubjLVueipAQ4c6b6i//vv4tP+Xcu/hoN8NJL4mtfX6Cuc2xKy0sxZ691U0JlDrHns5ubGxyg\nTCJyMgYDcO5c9bd9Ll4EWre+e/Fv3/7u1/7+QD2ZRnArp4QlA5fcNyVYeu1kYyAil1ZRAeTlVX/x\n//VXcZGv7uLfqhXgYcN7LpakBEuvnbyVREROT5LEJ/zqLv5nzgDNmple9Hv1Er+3bQt4eSldvXxj\nCTVhYiAip3HlSvUX/1OnAG9v04v/nd/btQMaNFC68urVdSyBiYGIXEJRkekFv3IjKC83vegPGnT3\n+yZNlK68dmydEipjYiAiu1NcLKZ73vvJ/+RJMRW08oyfyr/7+NR9xo/SrDnjiIPPRORQSkuBX36p\n/uL/229AmzbVX/xbtJBvxo/SajPjyBxsDERkd8rLgfPnq7/tk5cHqFTVX/xbtrTtjB+lybUugWMM\nRKQISQIuXKj+4v/LL8Af/mB60X/qKfF7mzb2MeNHaUqOJdSEiYGIaqWiAti3D1i7FsjMFGMBDRpU\n/8m/XTvg4YeVrtg+yb16GWBiICIZSRKQkwOkpIiG0KwZMGIEMHasaAKPPKJ0hY7FHlNCZWwMRFSj\nEydEM0hJAcrKRDP49ltArVa6Msdki5RgDWwMRGRCrwfWrQPWrBFjB3FxwIoVQHS0408FVZK9p4TK\nOMZARLhyBdiwQTSDn34CnnsOGDlSPBXU3V3p6hybkimBYwxEVCs3bgBbtojbRPv2AX37An/7G9Cv\nH2cLWYsjpYTKmBiIXMjt22KMYM0aYMcOoHt3MW4weDDQqJHS1TkPexlLYGIgomqVlwN79ohmsGmT\nGDgeORL47DOxxoCsy1FTQmVsDEROSJKAgwfFbaJ164DmzUUy0OnEqmKyPntJCdbAxkDkRI4fF8kg\nJUU8T2jECGDXLqBjR6Urc27OkBIqY2MgcnDnz4tFZ2vWAJcuAfHx4vvHH+f0Urk5U0qojI2ByAFd\nugSsXy+awc8/A0OGAB9/DPTowemltuJsKaEyzkoichBFRcDmzeI2UWYm0L+/uFUUGws89JDS1bkO\nR0oJnJVE5IRKSsS00jVrgJ07gZ49gdGjxWI0e92O0pk5c0qojImByM6UlQG7d4tksHkzEBoqppcO\nHQo8+qjS1bkmR0oJlTExEDkwSQJ++EE0g9RUICBA3Cb65z8Bf3+lq3NtrpISKmNjIFLQkSPiNtHa\ntWKcYORI8XiK9u2VrowcNSVYAxsDkY398svd6aX//a9IBmlpQFgYp5faC1dMCZVxjIHIBgoLxS2i\nlBSx7eWwYSIddOvmvBvbOyJnSwkcYyCyM7//DmzcKJrBgQPAwIHAO+8ATz8NeHoqXR3dy9VTQmVM\nDERWVFwMbN8ubhN9/z3w5JPiVtEzz3DvY3vlbCmhMiYGIoUYDKIJpKQAW7eKR1GMHAksWwY0aaJ0\ndXQ/TAnVY2IgskBFhVh9vGaNeDRF27YiGQwfDvzxj0pXRw/izCmhMiYGIplJEnD48N3ppQ0bimSQ\nmQkEBipdHZmLKeHB2BiIHuDMGXGbaM0a4NYtkQy2bQOCgzm91JG4SkqwBjYGomoUFIgNblJSgHPn\ngOefB5YuBbp04fRSR8SUUDuy/hNPT09HcHAwgoKCsGDBgio/v3jxInr37g21Wo0OHTogOTlZznKI\n7uvaNXHx790bCAoCcnOBWbOA/HyxDWbXrmwKjqa0vBTTd09Hn5V9MDlmMraN2MamYAbZBp9v376N\njh07IiMjA35+foiJicGSJUsQHh5uPOadd95BeXk55s2bh8uXL6N9+/a4ePEivLy8TIvk4DPJ5NYt\ncVtozRpAqwWeekqMG/TvD3h7K10d1UXllLBk4BKXbAiWXjtl+/yTlZUFtVoNf39/eHh4IC4uDtu3\nbzc5JiAgAEVFRQCAoqIi+Pj4VGkKRNZmMIi1BqNGAS1aiGmlQ4aIndDS0sRTTNkUHBdTQt3JNsag\n1+sREBBg/F6lUkGr1Zoc89JLL+HJJ59EixYtcP36daSmpspVDrm4igrxcLqUFHHxf+wxMYi8cCHg\n56d0dWQtHEuwDtkagzmj/XPnzkVYWBi0Wi3OnDmDp59+Gj/++CMaNWpU5dgZM2YYv9ZoNNBoNFas\nlpyRJAE6nbhNtG4d0LSpuE108CDQurXS1ZE1ccaRoNVqq3wAt4RsjUGlUiEvL8/4fV5enkmCAICM\njAy8++67AIDAwEC0adMGx48fR3R0dJXXq9wYiO7n5Mm700sNBpEMduwAOndWujKSA1PCXfd+aJ45\nc6ZFryPbGENUVBSOHDmC/Px8GAwGpKamol+/fibHBAYG4rvvvgMAFBYW4tixY2jNj3JkAb1e3BaK\njBTbX169CqxYIdYgzJnDpuCMOJYgH9kSQ/369ZGUlITY2FhUVFQgISEBERERximp48ePx7Rp0zBq\n1CgEBQWhvLwcs2fPhq+vr1wlkZO5ckXsfZySIlYkP/ccMH8+oNEAHlyh49SYEuTFZyWRw7l5E3j1\nVTGIHBsrxg369QM4oc35cSyhdvisJHIJJ06I6aSRkUBeHtC4sdIVka0wJdgO13GSw0hLA7p3B/76\nV2D5cjYFV8GxBNtjYiC7V1YGvPWWGE/YsUOkBXINTAnKYGMgu3bxIhAXJ1YiZ2cDzZopXRHZAscS\nlMVbSWS39u0Tu6H16iUeYcGm4BpyL+Yi+t/RyC7IRu6EXIwOHc2mYGNMDGR3JAn4+GMx9fTLL8WM\nI3J+TAn2g42B7Mr168CLLwJnzwJZWXx0havQFeiQuCURAY0DOJZgB3griezGsWNAdDTQpAmQkcGm\n4AruzDiKXRWLN2Le4IwjO8HEQHZh3Tpg0iTgvfeAMWOUroZsgSnBfrExkKJKS4G//11slrNzJ1Bp\nHydyUhxLsH9sDKSY/Hxg+HDxOOxDh8Tv5NyYEhwDxxhIEbt3A1FRYgvNrVvZFJwdxxIcCxMD2ZQk\nAe+/D3z4IbByJfD000pXRHJjSnA8bAxkM7//DiQmAhcuAAcOAC1bKl0RyYljCY6LjYFs4qefxFNR\nn3oKWLuWj8h2dkwJjo2NgWS3ahXwt7+J20cJCUpXQ3JiSnAObAxUN6WlwEMPVfuj27eByZPFNNTv\nvwdCQmxcG9kUU4Lz4KwkqptnnwXefls0iEry8sTeyxcuiKmobArOizOOnA8bA9XNsmVAbi7QtSvw\n888AgO++E4+2GDIE2LgReOQRhWsk2egKdIj6dxSfhOpkuOcz1Z0kAcnJkN59F9/GzMTYgxOxeo0b\nevVSujCSS2l5KWbvnY3FhxZzLMGOWXrtZGMgq7h2DfjH0BP464EX0DraF/XXLAOaN1e6LJJBTkEO\nEjcnouUjLbFk4BLeNrJjll47eSuJ6iw3V2y36RXSAYG/ZaJ+1wggLAzYskXp0siKSstLMW33NPRd\n1Rdvdn2TYwlOjImB6uTLL4EpU4BFi4D4+Eo/2L9fzE3t3Rv46COgYUOlSiQrYEpwTEwMZFMlJcBf\n/gIsWADs2XNPUwCAbt1ElCgvF49M/eEHReqkumFKcE1cx0C1du4cMGwY0KaNeLRFo0Y1HNi4sZi1\nlJYGDB4MTJwoprZ6etqyXLKQrkCHP2/+M1o+0pLrElwMEwPVyo4dwBNPAC+8AKSm3qcpVDZ0KKDT\nAZmZQI8ewKlTstdJlruTEmJXxTIluCg2BjJLRQUwYwYwbhywYYN4xEWtZie2aCG6ygsvADExwL//\nLaa5kl3JKchB5JJI5BTkcF2CC+PgMz3QlSvAqFHArVtiC846z0I9dkw0iJYtRYPw9bVKnWQ5rktw\nThx8JlkcOgQ8/jjQubNY0WyVpQlBQUBWFtCpk5jWun27FV6ULMWUQPdiYqBqSZL4MP/228DixWKY\nQBZ79wKjRwP9+gEffAA0aCDTG9G9mBKcH1c+k9UUFwMvvyxmHG3cCHToIPMb/v47MGmSeMPVq8Vq\nOZIV1yW4Bt5KIqs4c0aMDd++Le72yN4UAPGUvZUrgVmzxCbQc+YAZWU2eGPXw3UJZA42BjLatk00\nhXHjxAd3my9WjosDcnKAXbvEM7vPnrVxAc6NYwlkLjYGQnm5GEt4+WXxeKNJk2o5FdWaVCrgP/8R\nK+ieeAJYvpzTWuuIKYFqi2MMLu7SJWDkSNEc1q61s5mjP/0kprW2bw8kJwN/+IPSFTkcjiW4No4x\nUK1lZYmpqJGRYvtNu2oKABAcLAakW7cGQkOBb79VuiKHwZRAdSFrY0hPT0dwcDCCgoKwYMGCao/R\narWIjo5GWFgYevbsKWc59D+SBPzrX8DAgeKpqPPmAR72+tSs+vWBhQuBFSuAl14CXntNTJuiGnEs\ngepMkklJSYnUunVrSa/XSwaDQYqMjJRycnJMjikoKJDUarVUWFgoSZIkXblypdrXkrFMl3PjhiSN\nGiVJISGSdOqU0tXU0tWrkhQXJ0mdOknSPf+WSJJul92W3t31ruTzno+0IneFVFFRoXRJpDBLr52y\nJYasrCyo1Wr4+/vDw8MDcXFx2H7PCte1a9ciLi4Ovv+7h/Hoo4/KVQ4BOHkS6NJFDCxnZgLt2ild\nUS01bQqkpIiR8thY8czv8nKlq7ILd1KC7qIOuRNykRDKxWpkOdkag16vR0BAgPF7lUoFvV5vcsyJ\nEydw4cIFxMTEICQkBEuXLpWrHJe3aRPQvTvwyivAV18BDz+sdEUWcnMTA9IHDwLffAP06iWeA+6i\nKo8lTOk6BVvjt3IsgepMtjvL5nxaKS8vx5EjR7Br1y7cunULXbp0QUxMDNRqdZVjZ8yYYfxao9FA\no9FYsVrnVVYmPmCvWwd8/TUQHa10RVbSqpVY77BwIRAVJXaJe+EFBefZ2t6dGUetmrTifgkEQIzZ\narXaOr+ObI1BpVIhLy/P+H1eXp5JggCAli1bokWLFvD29oa3tzd69uyJw4cPP7AxkHkKC8XOag89\nJB6G53SzPd3dgb//HXj6afH416+/BpKSxC0nJ1b5GUcL+yzEqJBRvG1EAKp+aJ45c6ZFryPbraSo\nqCgcOXIE+fn5MBgMSE1NRb9+/UyOGTBgADIyMlBeXo5bt24hMzMTnTp1kqskl7J/v5iK+qc/iTsu\nTtcUKgsPF53Pzw8ICQG+/17pimTDsQSyCSsPgpv45ptvJLVaLXXq1EmaO3euJEmStHjxYmnx4sXG\nY95//30pKChIat++vbRgwYJqX0fmMp1KRYUkffyxJPn6StL27UpXo4Bvv5Ukf39J+tvfJKm4WOlq\nrIYzjsgSll47ufLZidy4IZ5zdPKk2Ga5TRulK1LIlSvAX/4iTsTq1SJFOLDKYwnJzyRzLIHMxpXP\nLu7nn8XAcsOGwP/9nws3BQBo1kzsP/rGG0Dv3sCHH4q9SR0MZxyRUpgYnMD69eIBePPnAy++qHQ1\ndubsWbERkJcX8OWXwD0TIOwVUwJZAxODCzIYgMmTgalTxWOE2BSq0bYtsGePSA6PPy6eFGjHmBLI\nHjAxOKiCAmD4cKBxY7HHDReNm+HQIbHWISoK+OwzoEkTpSsywZRA1sbE4EL27hVPRO3TR2yuw6Zg\npshIsRFQ48biaa1WWAhkDUwJZG+YGByIJImFvh98IB422qeP0hU5sO3bxdNaExLElqJeXoqUoSvQ\nIXGL2C+BKYGszdJrJxuDgygqAsaOBc6fF4PNrVopXZETuHRJNIdffwVWrQKqWXEvl9LyUszZOwdJ\nh5K4eplkw1tJTuzoUXFb3McH2LePTcFqfHzE0wVfeUXsMf3ppzaZ1qor0CHq31HIuZjD1ctkl5gY\n7NwPP4gNdRYuFLMuSSanT4vnLTVuLKa1trD+LR2mBLI1JgYnZDCIOx2ffcamILt27YCMDKBbN/Hs\npbQ0q748UwI5EiYGO7ZwoVif8O23LvU0aeVlZYn00L078MknIkVYiCmBlMTE4GT0erEX82efsSnY\n3BNPADod4OkJhIWJJGEBpgRyVEwMdmrYMDFJxsLHqZO1bN0KjB8vpoRNny42t3gApgSyF5yu6kR2\n7ABefRX46SfA21vpaggXL4rnjRQWimmtHTvWeCjXJZA94a0kJ1FcDEyaJG4hsSnYiebNxe5wL74o\nxh2SksRqw0pKy0sxffd0xK6KxZsxb3L1Mjk0JgY7M20acPy4WMRGdujECfG8JT8/4IsvgObNmRLI\nbsmWGD799FNcu3bNoqKodk6eBP71L7GvPdmpDh2AzEwgPBxSeDjWzI5nSiCn88DGUFhYiKioKAwf\nPhzp6eku88nd1iRJLMD9xz8AlUrpaui+PD2he2UoEkc1gO9/9iN3vI4zjsipmHUrqaKiAjt37sSX\nX36JQ4cOYfjw4Rg7dizatWtnixpd4lbSunXA3LlAdjbg4aF0NVQTzjgiR2LptdOsS1C9evXQvHlz\n+Pn5wd3dHdeuXcPw4cOh0Wjw4Ycf1vpNyVRRkdhwJzWVTcGeVR5LyJ2Qy9tG5LQemBg++eQTrFix\nAs2aNcO4cePw3HPPwdPTE5IkoWPHjjhx4oT8RTp5Ynj9deDGDWDpUqUroeowJZCjki0xXL16FRs3\nbkSrex7p6ebmhk2bNtX6DcmUTgekpIgnqJL9YUogV8TpqgqqqAC6dhUPyuN+zfaFKYGcgaxjDCSP\npUuBevWAMWOUroQqY0ogV8fEoJDffgM6dwa++w4ICVG6GgKYEsj5MDE4mKlTxXbDbAr2gSmB6C42\nBgXs2yeSwrFjSldCTAlEVbEx2JjBAEycKB570aiR0tW4NqYEouqxMdjYxx+LR14MHap0Ja6LKYHo\n/tgYbOj8eWDBAuCHH7grm1KYEogejI3Bhl5/XWzAY6NHTFEllVPCB30+QEIIH3pHVBM2BhvZvl3s\nyLZmjdKVuJ47KSGgcQBTApEZ2Bhs4NYtkRQWLwbq11e6GtfBlEBkGTYGG5g7F4iKAvr0UboS18GU\nQGQ5rnyW2c8/i22CDx8GWvDaJDumBKK7ZNvasy7S09MRHByMoKAgLFiwoMbjDh48CA8PD2zcuFHO\ncmzuzq5s77zDpmALugIdov4dheyCbOROyMXo0NFsCkQWkO1W0u3btzFx4kRkZGTAz88PMTEx6NOn\nD8LDw02OKy8vx9SpU9G3b1+HTQU1SUkBrlwBJk1SuhLnxpRAZF2yJYasrCyo1Wr4+/vDw8MDcXFx\n2L59e5XjFi1ahGHDhsHHx0euUhTx++/Am28CSUnclU1OTAlE1idbY9Dr9QgICDB+r1KpoNfrTY7J\nz8/Hli1bMHHiRABwqv9Dv/MO8MwzQEyM0pU4p9LyUkzfPR2xq2LxRswb2DZiGweYiaxEts+y5lzk\nX3/9dcyfP984QOIst5Kys4H167krm1w444hIXrI1BpVKhby8POP3eXl5JgkCALKzsxEfHw8AuHz5\nMnbs2AFPT08MGjSoyuvNmDHD+LVGo4FGo5Gl7roqLxcPyZs3D2jWTOlqnAvHEojuT6vVQqvV1vl1\nZJuuWlJSgo4dO2L//v3w9fVF165dkZycjIiIiGqPHzNmDAYOHIghQ4ZULdKBpqsmJYnVzXv2iN3Z\nyDoqp4QlA5cwJRCZwe426qlfvz6SkpIQGxuLiooKJCQkICIiAsnJyQCA8ePHy/XWiiksBKZNA3bt\nYlOwFqYEItvjAjcrGj0a8PMD3n9f6UqcA1MCUd3YXWJwNXv2AFotd2WzBqYEImWxMVhBaakYcP74\nY6BhQ6WrcWyccUSkPDYGK/joI6BNG+C555SuxHExJRDZDzaGOvr1VzGmcOAAd2WzFFMCkX1hY6ij\n114TO7O1bat0JY6HKYHIPrEx1MHWreKx2qmpSlfieJgSiOwXG4OFbt4UaeGLLwAvL6WrcRxMCUT2\nj43BQnPmAF27Ar17K12J42BKIHIMXOBmgePHgT/9SezK9sc/Kl2N/WNKIFIGF7jZiCQBL78sHn3B\npvBgTAlEjoeNoZZWrxab8PxvCwmqAVMCkeNiY6iFa9eAKVOAzZu5K9v95F7MReLmRKgaq5gSiBwQ\nxxhq4ZVXxH4LixcrXYl9Ykogsi8cY5DZwYPAxo18SF5NmBKInAcbgxnu7Mq2YAHQtKnS1dgXpgQi\n58PGYIbFi4EGDYCEBKUrsS9MCUTOiWMMD3DxIhAcLPZaUKsVKcHuMCUQOQaOMcjkzTeBsWPZFO5g\nSiByfmwM97FrF7BvHwecAaYEIlfCxlCD0lKxwvmTT8T4gitjSiByLWwMNfjgA6B9e2DwYKUrUQ5T\nApFrYmOoxi+/AB9+KNYuuOp1kCmByHWxMdxDksQ+C5Mni32cXQ1TAhGxMdxjyxbg9GkgLU3pSmyP\nKYGIAK6MsI4kAAAMiUlEQVRjMHHzJhAUBCxfDjz5pOxvZzeYEoicE9cxWMGsWUCPHq7VFJgSiOhe\nTAz/c/QooNEAP/0ENG8u61vZBaYEIufHxFAHd3ZlmzHDNZoCUwIR3Q8bA4CVK8X4woQJSlciL6YE\nIjKHyzeGq1eBqVOBbdsAd3elq5EPUwIRmcvlxxgmTBAN4fPPZXl5xTElELkujjFYICtLrFs4flzp\nSuTBlEBElnDZxlBWJnZle/99oEkTpauxLqYEIqoLl20MSUnAI48AL7ygdCXWxZRARHXlkmMMBQVA\nSAiwdy/QqZPVXlZRTAlEdC+OMdTC5MnASy85T1NgSiAia6on9xukp6cjODgYQUFBWLBgQZWfr1y5\nEiEhIQgODkZkZCSys7Nlree774DMTOCdd2R9G5soLS/F9N3T0WdlH0yOmYxtI7axKRBRncmaGG7f\nvo2JEyciIyMDfn5+iImJQZ8+fRAeHm48pkOHDti/fz8aNWqE9PR0jBs3DjqdTqZ6gFdeARYtAh5+\nWJa3sBmmBCKSi6yJISsrC2q1Gv7+/vDw8EBcXBy2b99uckx0dDQaNWoEAOjWrRvy8/Nlq+f994GO\nHYGBA2V7C9kxJRCR3GRNDHq9HgEBAcbvVSoVtFptjccnJydjsEx7aZ49C3z8MSDznSpZMSUQkS3I\n2hhqMytGq9Vi2bJl2L9/f7U/nzFjhvFrjUYDjUZj9mtLEvDqq8CUKUCrVmb/MbvBGUdEZA6tVnvf\nD9/mkrUxqFQq5OXlGb/Py8szSRB3HD58GOPGjUN6ejqaNm1a7WtVbgy1tWkTcO6c+N3R6Ap0SNyS\niIDGAUwJRHRf935onjlzpkWvI+sYQ1RUFI4cOYL8/HwYDAakpqaiX79+JsecP38eQ4YMwapVq9Cu\nXTur13DjBvD668C//gU89JDVX142d8YSYlfF4o2YNziWQEQ2I2tiqF+/PpKSkhAbG4uKigokJCQg\nIiICycnJAIDx48dj1qxZuHbtGiZOnAgA8PT0xIEDB6xWw8yZYgOenj2t9pKyY0ogIiU59crnn34C\nevcGjhwBfH1lKMzKOJZARNbElc/VmD9f7LXgCE2BKYGI7IXTJob//hdo3Ro4fRr4wx/kqcsamBKI\nSC5MDPdYuxZ46in7bgpMCURkj2R/VpJSli8Hxo5VuorqccYREdkzp0wMR48Cej3Qp4/SlVTFlEBE\n9s4pG8Py5UBCAuBhR387jiUQkaOwo0undRgMwKpVwJ49SldyF1MCETkSp2sMO3YAgYFAhw5KV8KU\nQESOyekaw7Jl9jHozJRARI7KqdYxFBaKpJCXB/xviwebKy0vxey9s7H40GKmBCJSFNcxQIwtDB6s\nXFPIKchB4uZEtHykJVMCETksp2kMkiRmI33+ue3fmymBiJyJ0zSGQ4eA4mLgT3+y7fsyJRCRs3Ga\nxrBsGZCYCNjqgzpTAhE5K6doDMXFQGoqoNPZ5v10BTr8efOfmRKIyCk5RWPYvBl4/HGgZUt534cp\ngYhcgVM0BlusXeBYAhG5Codfx3D+PBAeLh6a5+1t/fdmSiAiR+Wy6xi++gqIi5OnKTAlEJErcujE\nUFEBtGsHrFsHREVZ7/2YEojIGbhkYti7F2jQAIiMtN5rMiUQkatz6MawfDkwZox11i4wJRARCQ57\nK6moSExPPXkS8PWt2+tXTglLBi5hSiAip+Byt5JSU4FeverWFJgSiIiqctjGsHw5MHWq5X+eYwlE\nRNVzyFtJP/8MaDRi3wVPz9q9FlMCEbkKl7qV9OWXQEJC7ZsCUwIR0YM5XGIoKxODzt99BwQFmffn\nmRKIyBW5TGL49lvRGMxtCkwJRES143CN4c7ahQdhSiAisoxD3Uq6fFk8AuPXX4FHHqn5eK5LICJy\nkVtJq1cDzzxTc1NgSiAiqjuHagzLlwMLF1b/M44lEBFZh8M0Bp0O+O9/xWrnypgSiIisy2Eaw7Jl\nQGIiUK/e3f/GlEBEZH31HnyI5dLT0xEcHIygoCAsWLCg2mNee+01qNVqREREQKfT1fhaKSnAn/8s\nvi4tL8W03dPQd1VfvNn1TWwbsY1NgYjISmRrDLdv38bEiRORnp6Ow4cPY8OGDVUu/GlpaTh//jyO\nHj2KL774AmPuMw81JARo00akhMglkcgpyEHuhFyMDh3tUreOtFqt0iXYDZ6Lu3gu7uK5qDvZGkNW\nVhbUajX8/f3h4eGBuLg4bN++3eSYb775BgkJCQCA8PBwlJWVQa/XV/t6o8cwJQD8R18Zz8VdPBd3\n8VzUnWxjDHq9HgEBAcbvVSpVlf/BqjtGr9dDpVJVeb0PiiLRuoBjCUREcpOtMZh7e+fexRc1/bm/\nd3+TM46IiGxBksnevXulAQMGGL9/7733pNmzZ5scM3bsWGn9+vXG79VqtaTX66u8VmBgoASAv/iL\nv/iLv2rxKzAw0KLrt2yJISoqCkeOHEF+fj58fX2RmpqK5ORkk2P69++PVatWYdiwYcjJyYG7uzv8\n/f2rvNbp06flKpOIiO4hW2OoX78+kpKSEBsbi4qKCiQkJCAiIsLYHMaPH4+hQ4di9+7dUKvV8PLy\nwvLly+Uqh4iIzOQQD9EjIiLbkXWBW21Zc0Gco3vQuVi5ciVCQkIQHByMyMhIZGdnK1ClbZjz7wIA\nDh48CA8PD2zcuNGG1dmOOedBq9UiOjoaYWFh6Nmzp40rtJ0HnYuLFy+id+/eUKvV6NChQ5Xb2M5k\n7Nix8PPzQ3BwcI3H1Pq6adHIhAxKSkqk1q1bS3q9XjIYDFJkZKSUk5NjcsyGDRukwYMHS5IkSTk5\nOVJoaKgSpcrOnHORlZUlFRUVSZIkSTt27JDCwsKUKFV25pwLSZKksrIyqVevXtKAAQOkDRs2KFCp\nvMw5DwUFBZJarZYKCwslSZKkK1euKFGq7Mw5F2+//bb01ltvSZIkSZcuXZKaNGkilZSUKFGu7Pbu\n3Svl5ORInTt3rvbnllw37SYxWHtBnCMz51xER0ejUaNGAIBu3bohPz9fiVJlZ865AIBFixZh2LBh\n8PHxUaBK+ZlzHtauXYu4uDj4+voCAB599FElSpWdOeciICAARUVFAICioiL4+PjAy8tLiXJl16NH\nDzRt2rTGn1ty3bSbxlDTYrfaHuMMavv3TE5OxuDBg21Rms2Zcy7y8/OxZcsWTJw4EYD5a2gciTnn\n4cSJE7hw4QJiYmIQEhKCpUuX2rpMmzDnXLz00ks4evQoWrRogdDQUHzyySe2LtNuWHLdtJunq1p7\nQZwjq83fSavVYtmyZdi/f7+MFSnHnHPx+uuvY/78+cbdqu79N+IMzDkP5eXlOHLkCHbt2oVbt26h\nS5cuiImJgVqttkGFtmPOuZg7dy7CwsKg1Wpx5swZPP300/jxxx+NKdvV1Pa6aTeJQaVSIS8vz/h9\nXl6eSZer7piaHp/h6Mw5FwBw+PBhjBs3Dlu3br1vlHRk5pyL7OxsxMfHo02bNkhLS8PLL7+MrVu3\n2rpUWZlzHlq2bIk+ffrA29sbzZo1Q8+ePXH48GFblyo7c85FRkYGnn/+eQBAYGAg2rRpg+PHj9u0\nTnth0XXTaiMgdVRcXCy1atVK0uv1UmlpqRQZGSllZ2ebHLNhwwbp2WeflSRJkrKzs6WQkBAlSpWd\nOefi119/lQIDA6XMzEyFqrQNc85FZYmJiVJaWpoNK7QNc85DTk6O1Lt3b6msrEy6efOmFBQUJOl0\nOoUqlo855+Lll1+WZsyYIUmSJF28eFFq3ry5cVDeGf3yyy/3HXyu7XXTbm4lcUHcXeaci1mzZuHa\ntWvG++qenp44cOCAkmXLwpxz4QrMOQ/h4eHo27cvQkJCYDAYMG7cOISFhSlcufWZcy6mTZuGUaNG\nISgoCOXl5Zg9e7ZxUN7ZjBgxAnv27MHly5cREBCAmTNnwmAwALD8uskFbkREZMJuxhiIiMg+sDEQ\nEZEJNgYiIjLBxkBERCbYGIiIyAQbAxERmWBjICIiE2wMRERkgo2ByAIHDx5EaGgobt++jZs3b6Jz\n5844duyY0mURWQVXPhNZ6N1330VJSQmKi4sREBCAqVOnKl0SkVWwMRBZyGAwIDIyEt7e3sjMzHTK\nR8CTa+KtJCILXb58GTdv3sSNGzdQXFysdDlEVsPEQGShQYMGYeTIkTh79iwKCgqwaNEipUsisgq7\neew2kSNZsWIFvLy8EB8fj4qKCnTt2hVarRYajUbp0ojqjImBiIhMcIyBiIhMsDEQEZEJNgYiIjLB\nxkBERCbYGIiIyAQbAxERmWBjICIiE2wMRERk4v8BePf8wahk3K8AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x27f1450>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "composition of top product = 69.000000 mole percent of hexane\n",
        "composition of bottom product = 31.000000 mole percent of hexane\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.13 page number 237\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%pylab inline\n",
      "import math \n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "F = 100.   #moles\n",
      "xf = 0.4;\n",
      "D = 60.   #moles\n",
      "W = 40.   #moles\n",
      "\n",
      "x = linspace(0.2,0.45,6)\n",
      "y = zeros(6)\n",
      "z = zeros(6)\n",
      "for i in range(6):\n",
      "    y[i] = 2.16*x[i]/(1+1.16*x[i]);\n",
      "    z[i] = (y[i]-x[i])**-1;\n",
      "z = z.T / 10\n",
      "plot(x,z)\n",
      "suptitle('Batch Distillation Curve')\n",
      "xlabel('x')\n",
      "ylabel('y')\n",
      "xw = 0.22;   #from the graph\n",
      "yd = (F*xf-W*xw)/D;\n",
      "show()\n",
      "\n",
      "print \"composition of distillate = %f\"%(yd)\n",
      "print \"composition of residue = %f\"%(xw)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEhCAYAAACHjCx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1clFX+//HXICKUpXkDJaDuasWN3AwKiZXQRiHrmuZq\n6Jpm5ma3j69+67fVtq2obUW6lrYbC9lWlmlmbXck67fFWaOQXDKVSltNi/GuTMsQRYTr98cVkwgq\nE4zXDPN+Ph7zaC7mXNd85jSP+XjOuc45NsMwDERERNwQYHUAIiLie5Q8RETEbUoeIiLiNiUPERFx\nm5KHiIi4TclDRETcpuQhHtWhQwfsdjvx8fHExcWxZs2aU5b/7rvvyMvLO+1109PTKS8vP2WZHTt2\nEBISQlJSEklJSQwePJjnnnvO9fqbb75Jbm7uSc/fsGEDK1eubLZ8Tk4Of/7znwGYPHkyr7zyyilj\nee6559i9e7fr+Le//S2ffvrpKc9pqZUrV3LJJZeQmJhIbGwsd955Z5tcV+RUAq0OQNq3s846i/Xr\n1wOwatUqfv/731NSUnLS8gcOHODJJ5/k1ltvPeV1bTZbi96/f//+fPjhhwDs3r2bkSNHYhgGkydP\nZsSIEYwYMeKk565fv57y8nKysrIAGpW32WyuGI5/fjLPPvssAwYM4IILLgDgqaeealH8p7N27Vpm\nzJjBqlWr6N27N/X19RQUFLT4/Lq6Ojp06NAmsYh/UctDzpjvvvuO0NBQAKqqqrjiiisYOHAgUVFR\nvPzyywDce++9bNu2Dbvdzj333APArFmziI6OJjExkXvvvdd1vZdffpkhQ4bws5/9jOLi4tO+/wUX\nXMCCBQtYuHAhYP6gN/wrfenSpcTFxWG32xk6dCi1tbX88Y9/5KWXXsJut7N8+fJG5QGam1+bk5ND\nSkoKUVFRTJ48mfr6elasWMF//vMfJkyYQFJSEkeOHGnUcnrmmWeIiYkhJiaG6dOnu67VuXNn/vCH\nP2C327Hb7Y1aLg0ee+wxZs6cSe/evQEICAjglltuAZq2iDp37gyAw+Hg8ssv59prryUuLo777ruP\nJ598stFnaGhVzZ49m/j4eKKjo7nvvvtOW8fiRwwRD+rQoYORmJhoREVFGV26dDHKy8sNwzCMY8eO\nGYcOHTIMwzC+/vpro2/fvkZ9fb2xY8cOY8CAAa7zX331VePSSy81jh49ahiGYXz33XeGYRhGenq6\ncc899xiGYRhvv/22kZaW1uS9t2/f3uhahmEYhw8fNkJCQgzDMIxnnnnGuPPOOw3DMIyYmBjjq6++\nMgzDMKqqqgzDMIxnn33W9XrD8R133GEYhmHk5OQY8+bNMwzDMCZPnmysWLGiUXyGYRgTJ050/T09\nPd312Y8//uKLL4zw8HDjwIEDRl1dnZGRkWEsW7bMMAzDsNlsxsqVKw3DMIzf/e53xsyZM5t8xujo\naGPLli1N/n5iXIZhGJ07dzYMwzBWr15tnH322YbT6TQMwzDWr1/fqP5iYmIMp9NpvP7668bNN99s\nGIZh1NXVGb/61a+M//u//2v2vcT/qOUhHhUSEsL69ev59NNPKSoqYtKkSQDU1tYyffp0BgwYwFVX\nXcVXX33F7t27m/xr/l//+hc33ngjHTt2BODcc891vTZy5EgAkpKSqKysbFE8J16/4Xjo0KFcf/31\nFBQUcPjwYddrJ5Y/mYZuq7feeouBAweSkJBAcXExW7ZsOeV7r127loyMDLp27UpAQADjx4/n3Xff\nBSAoKIhhw4YBMHDgwBZ/xpZISUkhPDwcgMTERFf9b9iwgfPOO4/w8HBWrVrFqlWrsNvtDBw4kC1b\ntrBjx442i0F8m8Y85IwZPHgw+/bt46uvvuK1117j4MGDbNq0CZvNxs9+9jOOHTvW7Hkn+wHv1KkT\nYA7K19fXtyiG9evXExMT0+TveXl5fPDBB6xcuZKBAwe6xmlO5cRxjqqqKqZPn87GjRs5//zzmTVr\nVqPP1Ny4iM1ma/T5DMNwlWtImGB2RzX3GePi4igvL+eiiy5q8trx59TX13P06FHXa2effXajsmPH\njmXFihXs2bOHcePGuf7+wAMPMGXKlOYrQPyaWh5yxmzevJna2lq6du3KkSNHCA0NxWazsWbNGr74\n4gvAbKlUV1e7zrnqqqt49tlnXT9833333U9+/927d3PXXXc1ezfSjh07SElJYebMmYSFhbF9+3bO\nOuusRrGc+CN/YlI7duwYAQEBdO3alcOHD7vGcRo+16FDhxqVt9lspKamUlxczLfffkt9fT3Lly9n\n6NChLf5M06dPZ/bs2Xz55ZeAmSTy8/MBiIiIcI2rFBYWUltbe9LrZGdns3TpUlasWMHYsWMByMzM\n5JlnnuHIkSMA7N27l3379rU4Nmnf1PIQjzp8+DB2u536+npqa2tZtGgRQUFBTJgwgczMTBISEhg0\naBDR0dEAhIWFkZiYSExMDCNGjCA3N5ePPvqI+Ph4QkJCyMrK4qGHHmryPie722nbtm0kJSVhGAad\nOnXitttuc3WdHX+X1IwZM/j888+pr693DeT37t2bhx56iISEBO6///7T3mHVtWtXbrzxRqKioujT\npw+XXHKJ67WJEydy4403cu655/L++++7/h4REcHs2bNJTU0FzB/shh/v469/sju6UlNTmTdvHmPG\njOHo0aPU1dWRkZEBwC233MIvf/lL/vnPfzJs2DDXgHlz9RUTE0NVVRURERGEhYUB5t1ln3zyCUlJ\nSQQFBdGpUyeWLVtGjx49mq1r8S82o6WduiIiIj9Qt5WIiLhNyUNERNym5CEiIm5T8hAREbcpeYiI\niNuUPERExG1KHiIi4jYlDxERcZuSh4iIuM2jyaOoqIi4uDhiYmJOumObw+EgJSWFxMRE0tLSXH+f\nOXMmF110EVFRUYwZM6bRGkMiImItjy1PUlNTQ1RUFCUlJYSFhZGamkpBQQF2u91VZs+ePWRkZFBc\nXExoaCj79++nW7dubN26lauvvprNmzcTFBREdnY2V199NTfddJMnQhURETd5rOVRVlZGbGws4eHh\nBAYGkp2dTWFhYaMyy5YtIzs727W7XLdu3Vz/7dixI4cOHeLYsWNUV1fTp08fT4UqIiJu8ljycDqd\nREZGuo4jIiJwOp2NymzZsoVdu3aRmppKfHw8ixYtAszkcdddd9G7d2969epF165dXSuFioiI9TyW\nPE62RPbx6urq2LBhA8XFxaxevZrc3Fw+/vhjtm3bxuOPP86OHTvYtWsXVVVVLFmyxFOhioiImzy2\nn0dERESjbTMrKysbtUQAV8siJCSEkJAQ0tLS2LhxIzabjSFDhtC9e3cARo8eTUlJCRMmTGh0fv/+\n/dm2bZunPoKISLvUr18/tm7d2qpreKzlkZycTEVFBTt37qS2tpbly5eTlZXVqMzw4cMpKSmhrq6O\n6upqSktLiY6Opl+/fqxdu5bDhw9jGAbvvPMO/fv3b/Ie27Ztc+3o5u+PmTNnWh6DtzxUF6oL1cWp\nH23xj26PtTyCg4PJy8sjMzOT+vp6Jk6cSFJSkmuLzGnTpmG32xk2bBjx8fHU1tYydepUEhMTARgz\nZgzx8fEEBARgt9u5/fbbPRWqiIi4yaPb0GZlZTVpbUybNq3R8d13383dd9/d5NycnBxycnI8GZ6I\niPxEmmHeTqSnp1sdgtdQXfxIdfEj1UXb8uk9zG02Gz4cvoiIJdrit1MtDxERcZuSh4iIuE3JQ0RE\n3KbkISIiblPyEBERtyl5iIiI25Q8RETEbUoeIiLiNiUPERFxm5KHiIi4TclDRETcpuQhIiJuU/IQ\nERG3KXmIiIjblDxERMRtSh4iIuI2n08en35qdQQiIv7Ho8mjqKiIuLg4YmJiyM3NbbaMw+EgJSWF\nxMRE0tLSXH//9ttvGTt2LAkJCURHR1NaWtrs+TfcAMeOeSR8ERE5CY9tQ1tTU0NUVBQlJSWEhYWR\nmppKQUEBdrvdVWbPnj1kZGRQXFxMaGgo+/fvp1u3bgCMHTuW0aNHM378eOrr66mqquLcc89tHLzN\nxlVXGaSlwf33e+JTiIi0P169DW1ZWRmxsbGEh4cTGBhIdnY2hYWFjcosW7aM7OxsQkNDAVyJ45tv\nvuGjjz5i/PjxZpABAU0SR4Onn4YFC+Cjjzz1SURE5EQeSx5Op5PIyEjXcUREBE6ns1GZLVu2sGvX\nLlJTU4mPj2fRokUA/Pe//6Vnz55cd911DBgwgEmTJlFVVdXs+0RGwrx5ZvdVTY2nPo2IiBwv0FMX\nttlspy1TV1dHRUUFxcXFVFdXM3jwYFJTU6mvr2fdunUsWLCA5ORkpk+fzpw5c5odN8nJycEwzMRx\n003pvPBCugc+jYiI73I4HDgcjja9pseSR0REBJWVla7jysrKRi0RgN69e9OrVy9CQkIICQkhLS2N\nTZs2cdlllxEeHk5ycjIAY8aMYc6cOc2+T05ODgC33QYJCVBWBpdc4pnPJCLii9LT00lPT3cdz5o1\nq9XX9Fi3VXJyMhUVFezcuZPa2lqWL19OVlZWozLDhw+npKSEuro6qqurKS0tJSoqioiICHr06MFn\nn30GwDvvvEN0dPQp3y8sDJ54wuy+OnzYU59KRETAgy2P4OBg8vLyyMzMpL6+nokTJ5KUlER+fj4A\n06ZNw263M2zYMOLj46mtrWXq1KkkJiYC8PTTTzNhwgSqq6vp06cPS5YsOe17jh0Lr75q3nk1f76n\nPpmIiHjsVt0zobnbzb75BuLj4cUX4bhpIyIi8gOvvlXXKt27Q34+3HgjfP+91dGIiLRP7a7l0eCm\nm6BjR/jb385wUCIiXq4tWh7tNnl8953ZfVVQAJmZZzgwEREvpm6rU+jSxZx9PnUqfPut1dGIiLQv\n7bbl0eCOO8yxj+eeO0NBiYh4ObU8WiA3F95/H157zepIRETaj3bf8gB47z0YMwY2boSePc9AYCIi\nXkwD5m5UwO9+B59/Di+/DC1YdktEpN1St5UbZs82dx1ctszqSEREfJ/ftDwA/vMfGD4c1q+HXr08\nGJiIiBdTy8NNgwbBLbfAzTeD76ZMERHr+VXyAHPRxF274JlnrI5ERMR3+VW3VYNNm+AXvzC7sfr0\n8UBgIiJeTN1WP1FcHNx1F0yZAvX1VkcjIuJ7/DJ5ANx9N1RXw5NPWh2JiIjv8ctuqwaffQZDhkBp\nKVx4YRsGJiLixdRt1UoXXQR//KO5dW1dndXRiIj4Dr9OHmAunNipk7atFRFxh193WzXYsQOSk8Hh\ngNjYVl9ORMSreX23VVFREXFxccTExJCbm9tsGYfDQUpKComJiaSdsOl4XV0ddrudESNGeDJM+vaF\nhx6CSZOgttajbyUi0i54rOVRU1NDVFQUJSUlhIWFkZqaSkFBAXa73VVmz549ZGRkUFxcTGhoKPv3\n76dbt26u1+fPn095eTnff/89b7zxRtPg26jlAeaM81/+EgYPhpkz2+SSIiJeyatbHmVlZcTGxhIe\nHk5gYCDZ2dkUFhY2KrNs2TKys7MJDQ0FaJQ4nE4nb7/9NlOnTm2zBHEqNhssWgR//SuUl3v87URE\nfJrHkofT6SQyMtJ1HBERgdPpbFRmy5Yt7Nq1i9TUVOLj41m0aJHrtRkzZjB37lwCAs7cmH54ODz2\nmHn3VU3NGXtbERGfE+ipC9tasGlGXV0dFRUVFBcXU11dzeDBg0lNTWX79u2EhoZit9txOBynvEZO\nTo7reXp6Ounp6a2K+ze/gVdfNbuuHnmkVZcSEfEKDofjtL+l7vJY8oiIiKCystJ1XFlZ2aglAtC7\nd2969epFSEgIISEhpKWlsXHjRjZt2sQbb7zB22+/zZEjRzh48CCTJk1i8eLFTd7n+OTRFmw2yMuD\nhAS45hpzEqGIiC878R/Ws2bNavU1PdYnlJycTEVFBTt37qS2tpbly5eTlZXVqMzw4cMpKSmhrq6O\n6upqSktLiY6O5qGHHqKyspLt27ezbNkyfvGLXzSbODwlNNQc+5g8GQ4dOmNvKyLiMzyWPIKDg8nL\nyyMzM5OEhARGjx5NUlIS+fn55OfnA2C32xk2bBjx8fEkJiZyww03kJiY2ORaLekCa2ujR0NKCtx3\n3xl/axERr6dJgqdw4IC5Au/ixeYS7iIi7YFX36rbHpx3Hjz1lLl0+8GDVkcjIuI91PJogYZta596\nyuNvJSLicW3x26nk0QLffw/x8eYg+i9/6fG3ExHxKCWPM5Q8AFavhokTYeNGOG4ivIiIz1HyOIPJ\nA+B//gf27YMlS87YW4qItDkNmJ9hDz8M69bBihVWRyIiYi21PNxUWgrXXmt2X/2wnqOIiE9Rt5UF\nyQPMiYObN5trYFkwf1FEpFXUbWWRnBzYulVjHyLiv9Ty+InWr4fMTPjwQ4iIsCQEEZGfRC0PC9nt\ncMcdMHWqOYFQRMSfKHm0wn33mbfuaua5iPgbdVu10scfQ1oafPAB/PznloYiItIi6rbyArGxcO+9\n5uKJ9fVWRyMicmYoebSBGTPg2DF44gmrIxEROTPUbdVGtm6FwYPhvffg4outjkZE5OTUbeVF+veH\nWbPghhvMVoiISHum5NGGbr0VOneGuXOtjkRExLPUbdXGvvwSBg6Ef/3L3ANERMTb+ES3VVFREXFx\nccTExJCbm9tsGYfDQUpKComJiaSlpQFQWVnJ0KFDiYuL4+KLL+bRRx/1dKhtondvePRRmDQJjh61\nOhoREc/waMujpqaGqKgoSkpKCAsLIzU1lYKCAux2u6vMnj17yMjIoLi4mNDQUPbv30+3bt3Yu3cv\nX3/9NQMGDKCqqoqkpCRefvllEhISfgzeC1seYM44v+Yacxb67NlWRyMi0pjXtzzKysqIjY0lPDyc\nwMBAsrOzKSwsbFRm2bJlZGdnE/rD+ubdftimLywsjAEDBgDQuXNn4uPj2bVrlyfDbTM2GxQUQH6+\nuf+HiEh749Hk4XQ6iYyMdB1HRETgdDobldmyZQu7du0iNTWV+Ph4Fi1a1OQ6O3bsYN26dVx22WWe\nDLdNXXABLFhg3n11+LDV0YiItK1AT17c1oLNLurq6qioqKC4uJjq6moGDx5MamoqsbGxAFRVVTF2\n7FgWLFjAOeec0+T8nJwc1/P09HTS09PbKvxWy8429/x44AGYN8/qaETEXzkcDhwOR5te06PJIyIi\ngsrKStdxZWVlo5YIQO/evenVqxchISGEhISQlpbGxo0biY2Npba2ll//+tf85je/YdSoUc2+x/HJ\nw9vYbPDkk+ZdVyNHwuWXWx2RiPijE/9hPWvWrFZf06PdVsnJyVRUVLBz505qa2tZvnw5WVlZjcoM\nHz6ckpIS6urqqK6uprS0lOjoaAzD4KabbiImJoYZM2Z4MkyP6tED/vY3mDwZqqqsjkZEpG14NHkE\nBweTl5dHZmYmCQkJjB49mqSkJPLz88nPzwfAbrczbNgw4uPjSUxM5IYbbiAxMZH33nuPF154gdWr\nV2O327Hb7RQVFXkyXI+55hqz1XHPPVZHIiLSNjRJ8Az59luz++rpp+Gqq6yORkT8mdffqis/6toV\nFi2Cm26C776zOhoRkdZRy+MMu/VWOHIEnnnG6khExF+p5eGD5s6FNWvgjTesjkRE5KdTy8MCa9bA\nuHGwaRN07251NCLib9rit1PJwyJ33QU7d8KyZVZHIiL+Rt1WPuzBB2HDBnjpJasjERFxn1oeFvrg\nAxgxwkwi559vdTQi4i/U8vBxKSnw29+aDx/OgSLih5Q8LPbHP5q7Dz73nNWRiIi0nLqtvMCGDZCR\nAeXl5k6EIiKepG6rdiIhAWbMMGeft4NcKCJ+QMnDS/zud3DwoLkCr4iIt1O3lRfZvBkuuwzKyqBf\nP6ujEZH2St1W7UxUFNx/v7n3R12d1dGIiJyckoeX+Z//gYAAePxxqyMRETk5dVt5oc8/N+eArFkD\nMTFWRyMi7Y26rdqpn/8c/vQnuOEGOHbM6mhERJpS8vBSN98M3brBI49YHYmISFPqtvJilZUwcCCs\nWgWJiVZHIyLthdd3WxUVFREXF0dMTAy5ubnNlnE4HKSkpJCYmEhaWppb57Z3kZEwbx5MmgQ1NVZH\nIyLyI4+1PGpqaoiKiqKkpISwsDBSU1MpKCjAbre7yuzZs4eMjAyKi4sJDQ1l//79dOvWrUXnQvtv\neYA54/zaa82B84cesjoaEWkPvLrlUVZWRmxsLOHh4QQGBpKdnU1hYWGjMsuWLSM7O5vQ0FAAunXr\n1uJz/YXNBvn58Pe/w9q1VkcjImI6bfJYuHAhBw4ccPvCTqeTyMhI13FERAROp7NRmS1btrBr1y5S\nU1OJj49n0aJFLT7Xn4SFwV/+Yt59VV1tdTQiIhB4ugJ79+4lOTmZpKQkpkyZQmZmJjab7bQXbkmZ\nuro6KioqKC4uprq6msGDB5Oamtqicxvk5OS4nqenp5Oent7ic33JmDHwyivmDPTHHrM6GhHxJQ6H\nA4fD0abXPG3y+NOf/sScOXNYtWoVzz77LHfccQfXXXcdU6ZMoX///ic9LyIigsrKStdxZWVlo9YE\nQO/evenVqxchISGEhISQlpbGxo0bW3Rug+OTR3v3l79AfDyMHAntNEeKiAec+A/rWbNmtfqaLRrz\nCAgI4PzzzycsLIwOHTpw4MABrrvuOv73f//3pOckJydTUVHBzp07qa2tZfny5WRlZTUqM3z4cEpK\nSqirq6O6uprS0lKio6NbdK4/6t7dHP+48Ub4/nuroxERf3balseCBQtYvHgx3bt3Z+rUqcybN4+O\nHTtiGAZRUVHMnz+/2fOCg4PJy8sjMzOT+vp6Jk6cSFJSEvn5+QBMmzYNu93OsGHDiI+Pp7a2lqlT\np5L4w4SG5s4V+NWv4B//gLvvNhOJiIgVTnur7syZM5kyZQp9+vRp8tonn3xCjIWLL/nDrbrNOXjQ\n7L76299g2DCroxERX9MWv52aYe6j/vUvc+n2jRvhvPOsjkZEfImShx8nD4A77jBbIYsXWx2JiPgS\nr54kKJ6Xmwvvv2+OgYiInElqefi4994z54Bs3Ag9e1odjYj4ArU8hEsvhYkTzdnnhw9bHY2I+Asl\nj3Zgzhzo2hWGDoVdu6yORkT8gZJHO9CpEyxZYq6+m5IC69ZZHZGItHca82hn/vEPcxfChQth/Hir\noxERb6RbdZU8mrVhg7n+1cSJMGsWBKh9KSLHUfJQ8jipr76C0aMhNNScB9K5s9URiYi30N1WclKh\noeYs9K5d4bLL4IsvrI5IRNoTJY92rFMnePppcw/01FRzToiISFtQt5WfePttcy7I3Lnmmlgi4r80\n5qHk4ZZPPoFrroFRo8ylTTp0sDoiEbGCkoeSh9u++Qauuw6Cg+HFF6FLF6sjEpEzTQPm4rbu3aGo\nCPr0McdBtm2zOiIR8UVKHn6oY0d48klzSfchQ2D1aqsjEhFfo+Thx267zey6GjfO3JVQRKSlNOYh\nbN0KI0bAlVfCY4+ZLRMRab+8fsyjqKiIuLg4YmJiyM3NbfK6w+GgS5cu2O127HY7Dz74oOu1mTNn\nctFFFxEVFcWYMWOorq72ZKh+rX9/WLvWHP/IyoL9+62OSES8nceSR01NDbfeeitFRUVs3LiRFStW\nsH79+ibl0tLSWL9+PevXr+cPf/gDAFu3buX555+noqKCzZs306FDB5YuXeqpUAXzrqu33oKEBLjk\nEti82eqIRMSbeSx5lJWVERsbS3h4OIGBgWRnZ1NYWNikXHNNp27dutGxY0cOHTrEsWPHqK6upk+f\nPp4KVX7QoQP8+c9w333m3iBFRVZHJCLeymPJw+l0EhkZ6TqOiIjA6XQ2KmOz2SgtLSUuLo4rr7yS\nDRs2AGbyuOuuu+jduze9evWia9euZGRkeCpUOcGUKfDqq3DjjfD446BhJRE5UaCnLmyz2U5bZuDA\ngTidToKDg1m1ahWjRo1i+/btbNu2jccff5wdO3bQpUsXxo4dy5IlS5gwYUKTa+Tk5Liep6enk56e\n3oafwn9ddhmUlpoz0isqzFt7g4KsjkpEfgqHw4HD4WjTa3oseURERFBZWek6rqysbNQSAeh83Drh\nV199NUFBQezevZsPPviAIUOG0L17dwBGjx5NSUnJaZOHtK2+feH99+H66yEjA155BXr2tDoqEXHX\nif+wnjVrVquv6bFuq+TkZCoqKti5cye1tbUsX76crKysRmX27dvnel5eXs6hQ4cICwujX79+rF27\nlsOHD2MYBu+88w79+/f3VKhyCp07m11Yl19ubnG7caPVEYmIN/BYyyM4OJi8vDwyMzOpr69n4sSJ\nJCUlkZ+fD8C0adNYunQpBQUFAAQFBfHiiy8SEBBASkoKY8aMIT4+noCAAOx2O7fffrunQpXTCAiA\nP/0JYmPNuSCLFpk7FYqI/9IkQXHLBx+YOxTefjvcey+0YGhLRLyMVtVV8rDEzp1myyMqymyFBAdb\nHZGIuMPrZ5hL+xQeDmvWwLFjkJYGu3dbHZGInGlKHvKTnHUWLF1qromVkgLl5VZHJCJnkrqtpNVe\nfRWmTYO//tXcaEpEvJvGPJQ8vMZHH5njIJMnw8yZ5h1aIuKdlDyUPLzK3r1w7bXQqxc89xycfbbV\nEYlIczRgLl4lLMzclbBzZ3N5ky+/tDoiEfEUJQ9pU506wTPPwIQJMHiwuT6WiLQ/6rYSjyksNFfm\nnTcPJk2yOhoRaaAxDyUPr/fxx+bKvGPGwEMPmXuGiIi1lDyUPHzCvn1m8jjnHFiyBM491+qIRPyb\nBszFJ/ToAatWmTPThwyBzz+3OiIRaS0lDzkjgoIgLw9uvdVMIG28L42InGFKHnLG2GzmarwvvADZ\n2fDDavwi4oM05iGW+OwzcyD96qth/nwI9NjOMiJyIg2YK3n4tG+/hXHjoL4eXnoJzjvP6ohE/IMG\nzMWnde0Kb71l7lA4eDBs2WJ1RCLSUkoeYqnAQHjsMfh//8/cJ33VKqsjEpGWULeVeI01a8wl3X//\ne7jzTm1xK+IpXt9tVVRURFxcHDExMeTm5jZ53eFw0KVLF+x2O3a7nQcffND12rfffsvYsWNJSEgg\nOjqaUi1NvLqcAAAP10lEQVSS1O4NHWquhfXUU+b+IEePWh2RiJyMx1oeNTU1REVFUVJSQlhYGKmp\nqRQUFGC3211lHA4H8+fP54033mhy/tixYxk9ejTjx4+nvr6eqqoqzj1harJaHu3T99/D9debA+qv\nvGJOMhSRtuPVLY+ysjJiY2MJDw8nMDCQ7OxsCgsLm5Rr7gN88803fPTRR4wfP94MMiCgSeKQ9uuc\nc+Af/zAnE6akQEWF1RGJyIk8ljycTieRkZGu44iICJxOZ6MyNpuN0tJS4uLiuPLKK9mwYQMA//3v\nf+nZsyfXXXcdAwYMYNKkSVRVVXkqVPFCAQHw8MMwezZccQW8+abVEYnI8Tw2NcvWgtHOgQMH4nQ6\nCQ4OZtWqVYwaNYrt27dTX1/PunXrWLBgAcnJyUyfPp05c+Y0O26Sk5Pjep6enk56enobfgqx2vXX\nw4UXwujR8Omn5l1ZGkgXcY/D4cDRxmsCeWzM49133yU3N5e33noLgLlz53L06FHuv//+k55z8cUX\n8+9//5va2louv/xyduzYAUBJSQlz5szhn//8Z+PgNebhN5xOc4/02FhzWZPgYKsjEvFdXj3mkZyc\nTEVFBTt37qS2tpbly5eTlZXVqMy+fftcz8vLy6mqqiI0NJTIyEh69OjBZ599BsA777xDdHS0p0IV\nHxARAe++C0eOmN1Ye/ZYHZGIf/NYt1VwcDB5eXlkZmZSX1/PxIkTSUpKIj8/H4Bp06axdOlSCn5Y\nHS8oKIilS5cSEGDms6effpoJEyZQXV1Nnz59WLJkiadCFR9x1lnmMiZz5pgD6a+9BklJVkcl4p80\nSVB80ooV5vLueXnmRlMi0nJaGFHJw699+CGMGgVTp8IDD2ggXaSllDyUPPzenj1w7bXQuzc884zZ\ntSUip+bVA+YiZ8L558Pq1dCpk7mw4glTiUTEQ5Q8xOcFB8Nzz5m7E15yCZSUWB2RSPunbitpV958\n0xxI79/fXJl35EjtUihyIo15KHlIM2przbWxFi6Eykq47TZzUL17d6sjE/EOGvMQaUbHjua+ICUl\n8Oqr5rIm/fvDb38LGzdaHZ1I+6DkIe3awIHw7LPmFrd9+kBWFqSnm0nl2DGroxPxXeq2Er9SW2sm\njoULzTuz1KUl/kjdViJu6tjRvCvrvffUpSXSGkoe4rea69K64gp1aYm0hLqtRH5QW2tue/vEE2aX\n1u23m11a3bpZHZlI21K3lUgb6tgRxo0zu7ReeQU+/hj69YObb4ZNm6yOTsS7KHmINGPQIHPW+pYt\n5rpZw4aZXVr/+AfU1VkdnYj11G0l0gJHj/54l9auXWaX1k03qUtLfJO6rUTOkKAgs0vr/ffNvUQq\nKtSlJf5NyUPETQ1dWps3Q2QkZGbCL35h7myoLi3xF+q2Emmlo0fNAfaFC2H3bnVpifdTt5WIFwgK\ngvHjobQUXn7Z7Mbq1w+mTTO7t0TaI48mj6KiIuLi4oiJiSE3N7fJ6w6Hgy5dumC327Hb7Tz44ION\nXq+rq8NutzNixAhPhinSZpKTYfFic+Z6eDhcfbW6tKR98li3VU1NDVFRUZSUlBAWFkZqaioFBQXY\n7XZXGYfDwfz583njjTeavcb8+fMpLy/n+++/b7aMuq3E2x3fpbVnz49dWuedZ3Vk4s+8utuqrKyM\n2NhYwsPDCQwMJDs7m8LCwiblTvYBnE4nb7/9NlOnTlWCEJ91fJfWSy/Bhg3w85/DLbeYkxBFfJXH\nkofT6SQyMtJ1HBERgfOEDaZtNhulpaXExcVx5ZVXsmHDBtdrM2bMYO7cuQQEaFhG2oeUFHj+ebNL\nq1cvuOoquPJKeP11dWmJ7/HYBp02m+20ZQYOHIjT6SQ4OJhVq1YxatQoPv/8cwoLCwkNDcVut+Nw\nOE55jZycHNfz9PR00tPTWxe4iIedfz788Y9w773mnJFHHoHp09WlJZ7jcDhO+1vqLo+Nebz77rvk\n5uby1ltvATB37lyOHj3K/ffff9JzLr74YhwOB0888QTPP/88gYGBHDlyhIMHD/LrX/+axYsXNw5e\nYx7STnzwgbkg41tvmUvG33knxMZaHZW0V169h/mRI0eIiorivffeIzQ0lCFDhpCfn09SUpKrzL59\n++jRowcA5eXljBw5ki+//LJRV9W///1v5s2bx5tvvtk0eCUPaWf27IH8fPjb38zkceed8KtfQYcO\nVkcm7YlXD5gHBweTl5dHZmYmCQkJjB49mqSkJPLz88nPzwdg6dKlxMXFERcXx80338yLL77Y7BhH\nS7rARNqD88+HmTPhiy/gxhvh4YfNzar+/Gc4cMDq6ER+pBnmIl6urMzs0iosVJeWtA2vbnmISNu4\n5BJ44QXzLq0LLoCMDPPxxhu6S0uso5aHiI85etRcBmXhQvj6a7jjDpgyBbp2tToy8RVqeYj4oaAg\nmDDB7M5auhQ+/BB+9jO49Vb45BOroxN/oeQh4sMaurQ++QTCwsxJh1ddBW++qS4t8Sx1W4m0IzU1\n5sTDBQtg3z64/nqIjoYLLzQfXbpYHaF4A6+e53EmKHmInFxZmbn0ydat8N//mo+zzjKTSP/+PyaU\nhsc551gdsZwpSh5KHiItZhjmJMSGRHL8Y9s2M3kcn0waEkz//tC5s9XRS1tS8lDyEGkThgG7djWf\nWD7/3LyT68SWyoUXmptenXWW1dGLu5Q8lDxEPK6+HpzOxt1fDY/t26F795MnluBgq6P3L4YB334L\ne/f++Pjqq6bHa9cqeSh5iFiorg4qK39MJscnmB07zDvAmhtj+fnPoVMnq6P3DXV15s0Pp0oGDc+/\n/hpCQiA01Kz7hseJx5dequSh5CHipY4dgy+/bNxSaUguX35pzpY/sbXSv785ZyUoyOroPaumxvzR\nP1UiaDjev9/sNjxVMmg4Dg1tWWtP3VZKHiI+qbbWXPyxuTEWpxMiIprvCuvbFwI9tgtR61RVtSwZ\n7N0Lhw5Bz56nTwZhYdCjR9t/ZiUPJQ+RdufoUbPLq7nEsns3REY2n1j69GnbpetPHD84XWIwjNMn\ngoZH165g5SapSh5KHiJ+pabGvPurucH7vXvNlsmJtxpfeKGZcDp0aDx+cLpk0NLxg4bjzp3BV3aP\nUPJQ8hCRHxw5Ys5XaW7wft8+cx7LgQNtP37gi5Q8lDxEpAWqq+HgQc+MH/giJQ8lDxERt2lJdhER\nsYTHk0dRURFxcXHExMSQm5vb5HWHw0GXLl2w2+3Y7XYefPBBACorKxk6dChxcXFcfPHFPProo54O\nVUREWsrwoCNHjhh9+/Y1nE6nUVtbawwaNMj48MMPG5VZvXq1MWLEiCbn7tmzx9i0aZNhGIbx/fff\nGxdeeKHx0UcfNSrj4fB9yurVq60OwWuoLn6kuviR6uJHbfHb6dGWR1lZGbGxsYSHhxMYGEh2djaF\nhYXNJbAmfwsLC2PAgAEAdO7cmfj4eHbt2uXJcH2aw+GwOgSvobr4keriR6qLtuXR5OF0OomMjHQd\nR0RE4HQ6G5Wx2WyUlpYSFxfHlVdeyYYNG5pcZ8eOHaxbt47LLrvMk+GKiEgLefSmNVsLZswMHDgQ\np9NJcHAwq1atYtSoUWzfvt31elVVFWPHjmXBggWco91qRES8Q+t7z05uzZo1xvDhw13Hjz76qPHg\ngw+e8pyLLrrI2L17t2EYhnH06FHj6quvNubPn99s2X79+hmAHnrooYcebjz69evX6t93j7Y8kpOT\nqaioYOfOnYSGhrJ8+XLy8/Mbldm3bx89evQAoLy8nKqqKkJDQzEMg5tuuomYmBhmzJjR7PW3bt3q\nyfBFROQkPJo8goODycvLIzMzk/r6eiZOnEhSUpIrgUybNo2lS5dSUFAAQFBQEEuXLiUgIICSkhJe\neOEF4uPjsdvtADz88MMMGzbMkyGLiEgL+PQMcxERsYbXzjA/3eTC559/nvj4eOLi4hg0aBDl5eUt\nPtfXtKYu+vbt62q9paSknMmwPeJ0dfH6668THx9PQkICcXFxFBUVtfhcX9OauvC370WDdevWERgY\nyCuvvOL2ub6iNXXh1vei1aMmHtCSyYVlZWXGwYMHDcMwjJUrVxqJiYktPteXtKYuDMMw+vbta3zz\nzTdnNGZPaUldVFVVuZ5v3LjR6N27d4vP9SWtqQvD8L/vhWEYxrFjx4wrrrjCGD58uLFixQq3zvUV\nrakLw3Dve+GVLY+WTC5MSUlx3bp76aWXsnPnzhaf60taUxcNjHbSM9mSujj77LNdz6uqqrjgggta\nfK4vaU1dNPCn7wXAE088wZgxY+jZs6fb5/qK1tRFg5Z+L7wyebRkcuHx8vPzGTly5E8619u1pi7A\nnGtz1VVXER8fz1/+8hePxuppLa2L1157jejoaLKysli4cKFb5/qKn1IXCxYscP3d374XO3fu5PXX\nX+fWW28FfpyD5o/fi5PVRcPzln4vvHJl+5ZMLmzgcDj4+9//znvvvef2ub6gNXUBsHbtWkJDQ/n6\n668ZNmwYUVFRZGRkeCJUj2tpXYwaNYpRo0bx7rvvMnHiRDZv3uzhyM68n1IXkyZNYsuWLYD/fS+m\nT5/OI4884lqKvOFf1/74e3GyugD3vhdemTwiIiKorKx0HVdWVjbKpg02btzI1KlTKSoq4rzzznPr\nXF/RmroACA0NBaBnz56MGTOGdevW+eyPhLv/by+//HKOHTvGV199RWRkpF9+Lxo01MXevXsJCwvz\nu+9FeXk548aNA8y5ZStXrqRjx45++Xtxsrq45ppr3PtetH6Ipu0dPnzY6NOnj+F0Oo2jR48agwYN\nMsrLyxuV+eKLL4x+/foZpaWlbp/rS1pTF4cOHTIOHTpkGIY5eDp06FDj9ddfP2Oxt7WW1MX27dtd\nz8vLy42IiAijvr7eL78XJ6sLf/xeHG/y5MnGK6+88pPO9XatqQt3vxde2fJoyeTC2bNnc+DAAVe/\nXceOHfnggw9Oeq6vak1d7Nmzh2uvvRabzUZ1dTXjxo3jmmuusfLjtEpL6mLZsmUsWbIEgJCQEJYt\nW4bNZvPL78XJ6sIfvxfunuurWlMX7n4vNElQRETc5pV3W4mIiHdT8hAREbcpeYiIiNuUPERExG1K\nHiIi4jYlDxERcZuSh4iIuE3JQ0RE3KbkIdKG1q1bR0JCAjU1NRw6dIgBAwbwySefWB2WSJvTDHOR\nNvbAAw9w5MgRDh8+TGRkJPfcc4/VIYm0OSUPkTZWW1vLoEGDCAkJobS0tN0t+y0C6rYSaXP79u3j\n0KFDVFVVcfjwYavDEfEItTxE2tg111zDb37zGz7//HN2797NE088YXVIIm3OK5dkF/FVixcvplOn\nTowbN476+nqGDBmCw+EgPT3d6tBE2pRaHiIi4jaNeYiIiNuUPERExG1KHiIi4jYlDxERcZuSh4iI\nuE3JQ0RE3KbkISIiblPyEBERt/1/DZ660K/RnHYAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x1c46110>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "composition of distillate = 0.520000\n",
        "composition of residue = 0.220000\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.15 page number 249\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "x=0.4;\n",
      "y=0.8;\n",
      "x_D=y;\n",
      "x_W=0.135;   #bottom concentration\n",
      "\n",
      "D=(100*x-100*x_W)/(y-x_W);     #distillate amount\n",
      "print \"amount of distillate =%f moles/h\"%(D)\n",
      "\n",
      "alpha=6;   #relative volatility\n",
      "x_R=y/(y+(alpha*(1-y)));    #liquid leaving partial condensor\n",
      "print \"liquid leaving partial condenser = %f\"%(x_R)\n",
      "\n",
      "y1=(1./3)*y+(2./3)*x;\n",
      "x1=y1/(y1+(alpha*(1-y1)));\n",
      "y_W = (1./3)*x_D+(2./3)*x1;\n",
      "x_W=y_W/(y_W+(alpha*(1-y_W)));\n",
      "D=(100*(x-x_W))/(y-x_W);\n",
      "\n",
      "print \"amount of distillate = %f moles/h\"%(D)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "amount of distillate =39.849624 moles/h\n",
        "liquid leaving partial condenser = 0.400000\n",
        "amount of distillate = 43.636364 moles/h\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.16 page number 264\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "x=0.01;    #% of nicotine\n",
      "X0 = x/(1-x);\n",
      "w=150.    #weight of nicotine water solution\n",
      "\n",
      "A0=w*(1-X0);\n",
      "B0=250.;    #kg keroscene\n",
      "X1 = A0*X0/(A0+B0*0.798);\n",
      "print \"final concentration of nicotine = %f\"%(X1)\n",
      "\n",
      "c=A0*(X0-X1);\n",
      "print \"amount of nicotine removed = %f kg\"%(c)\n",
      "\n",
      "percentage = (c*100)/(A0*x);\n",
      "print \"percentage recovery = %f percent\"%(percentage)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "final concentration of nicotine = 0.004310\n",
        "amount of nicotine removed = 0.859863 kg\n",
        "percentage recovery = 57.909174 percent\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.17 page number 264\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "x=0.01   #mole fraction of nicotine\n",
      "yN = 0.0006;   #mole fraction in solvent\n",
      "xN = 0.001;     #final mole fraction in water\n",
      "\n",
      "X0=x/(1.-x);    #in kg nicotine/kg water\n",
      "YN =yN/(1.-yN);   #in kg nicotine/kg keroscene\n",
      "XN = xN/(1.-xN);\n",
      "A0=100.*(1.-X0);    #kgwater/h\n",
      "B0=150.*(1.-YN);   #in kg kerosene/h\n",
      "\n",
      "Y1=((A0*(X0-XN))/B0)+YN;    #in kg nicotine/kg kerosene\n",
      "print \"Y1 = %f kg nicotine/kg kerosene\"%(Y1)\n",
      "\n",
      "number_of_stages = 8.4;\n",
      "print \"numnber of stages = %f\"%(number_of_stages)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Y1 = 0.006609 kg nicotine/kg kerosene\n",
        "numnber of stages = 8.400000\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.18 page number 274\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "P = 101.3    #in kPa\n",
      "pA = 3.74    #in kPa\n",
      "p_AS = 7.415  #in kPa\n",
      "\n",
      "H = (18.02/28.97)*(pA/(P-pA));\n",
      "print \"humidity = %f kg H2O/kg air\"%(H)\n",
      "\n",
      "Hs = (18.02/28.97)*(p_AS/(P-p_AS));\n",
      "print \"Saturated humidity = %f kg H2O/kg air\"%(Hs)\n",
      "\n",
      "humidity = 100*(H/Hs);\n",
      "print \"percentage humidity = %f percent\"%(humidity)\n",
      "\n",
      "relative_humidity = 100*(pA/p_AS);\n",
      "print \"percentage relative humidity = %f percent\"%(relative_humidity)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "humidity = 0.023845 kg H2O/kg air\n",
        "Saturated humidity = 0.049127 kg H2O/kg air\n",
        "percentage humidity = 48.538334 percent\n",
        "percentage relative humidity = 50.438301 percent\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.19 page number 264\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from numpy import *\n",
      "\n",
      "S=425.6   #in kg/h\n",
      "X1 = 0.035   #in kgwater/kg dry solid\n",
      "t_s1=25.   #in degree C\n",
      "X2 = 0.017   #in kg H2O/kg dry air\n",
      "t_s2=60.   #in degree C\n",
      "H2 = 0.0175    #in kg H2O/kg dry air\n",
      "t_G2 = 84.2   #in degree C\n",
      "t_G1= 32.8   #in degree C\n",
      "C_pS = 1.465   #in kJ/kg dry solid\n",
      "C_pA = 4.187   #in kg/ kg H2O K\n",
      "\n",
      "H_G2=(1.005+1.88*H2)*(t_G2-0)+H2*2501;\n",
      "H_S1 = C_pS*(t_s1-0)+X1*C_pA*(t_s1-0);    #in kJ/kg\n",
      "H_S2 = C_pS*(t_s2-0)+X2*C_pA*(t_s2-0);   #in kJ/kg\n",
      "Q=9300.;  #in kJ/h\n",
      "\n",
      "print \"Latent heat of water at 0C HG2 = %f kJ/kg dryair\"%(H_G2)\n",
      "print \"Enthalpy of entering solid HS1 = %f kJ/kg dryair\"%(H_S1)\n",
      "print \"Enthalpy of exit solid HS2 = %f kJ/kg dryair\"%(H_S2)\n",
      "\n",
      "A = array([[0.0175, -1],[98.194, -2562.664]]);\n",
      "b = array([[-14.17248],[29745.398]]);\n",
      "x = linalg.solve(A,b)\n",
      "G = x[0]\n",
      "H1 = x[1]/G;\n",
      "print \"Air flow rate G = %f kg dryair/hr\"%(G)\n",
      "print \"Humidity H1 = %f kg dryair/hr\"%(H1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Latent heat of water at 0C HG2 = 131.158680 kJ/kg dryair\n",
        "Enthalpy of entering solid HS1 = 40.288625 kJ/kg dryair\n",
        "Enthalpy of exit solid HS2 = 92.170740 kJ/kg dryair\n",
        "Air flow rate G = 1238.387008 kg dryair/hr\n",
        "Humidity H1 = 0.028944 kg dryair/hr\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.20 page number 291\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from numpy import *\n",
      "M_Na2CO3 = 106\n",
      "M_10H2O = 180.2\n",
      "M_Na2CO3_10H2O = 286.2;\n",
      "w_Na2CO3 = 5000.   #in kg\n",
      "water = 0.05   #% of water evaporated\n",
      "\n",
      "W = water*w_Na2CO3;\n",
      "\n",
      "A = array([[0.8230, 0.6296],[0.1769, 0.3703]])\n",
      "b = array([[3500],[1250]])\n",
      "x = linalg.solve(A,b);\n",
      "L = x[0]\n",
      "C = x[1];\n",
      "\n",
      "print \"L = %f kg solution\"%(L)\n",
      "print \"C = %f kg of Na2CO3.10H2O crystals\"%(C)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "L = 2632.372855 kg solution\n",
        "C = 2118.102193 kg of Na2CO3.10H2O crystals\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "example 6.21 page number 291\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "from numpy import *\n",
      "A = array([[0.7380, 0.5117],[0.2619, 0.4882]])\n",
      "b = array([[1400],[600]])\n",
      "\n",
      "x = linalg.solve(A,b)\n",
      "L = x[0]\n",
      "C = x[1];\n",
      "print \"L = %f kg solution\"%(L)\n",
      "print \"C = %f kg of MgSO4.7H2O crystals\"%(C)\n",
      "\n",
      "F = 2000   #in kg/h\n",
      "cv = 2.93   #in kJ/kg K\n",
      "H1 = F*cv*(330-293);\n",
      "print \"enthalpy of feed = %f kJ\"%(H1)\n",
      "\n",
      "wt = 246.49   #molar mass MgSO4.7H2O\n",
      "heat_soln = -13.31*10**3;   #in kJ/kg mol\n",
      "heat = heat_soln/wt;\n",
      "heat_crystallization = abs(heat);\n",
      "H2 = heat_crystallization*C;   #total heat\n",
      "q = -H1-H2;\n",
      "print \"heat absorbed = %f kJthus heat shall be removed\"%(q)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "L = 1663.710339 kg solution\n",
        "C = 336.489681 kg of MgSO4.7H2O crystals\n",
        "enthalpy of feed = 216820.000000 kJ\n",
        "heat absorbed = -234989.814805 kJthus heat shall be removed\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}