summaryrefslogtreecommitdiff
path: root/Internal_Combustion_Engines_by_H._B._Keswani/ch23.ipynb
blob: bd824c8120e88ed5d299c9942a0ff9f6df81dbc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
{
 "metadata": {
  "name": "",
  "signature": "sha256:0f0f5140414de1792e9d5844fd5e51c3893bcfd2190a5a84bfb8220b6aa3a6fc"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 23 : Testing of Engines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.1  Page no :  340"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 4.\t\t\t\t\t#Four cylinder engine\n",
      "N = 1200.\t\t\t\t\t#Speed in r.p.m\n",
      "BHP1 = 26.3\t\t\t\t\t#Brake horse power in B.H.P\n",
      "T = 11.3\t\t\t\t\t#Average torque in kg\n",
      "CV = 10000.\t\t\t\t\t#Calorific value of the fuel in kcal/kg\n",
      "m = 270.\t\t\t\t\t#Flow rate in gm of petrol per B.H.P hour\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "BHP2 = (T*2*3.14*N)/4500\t\t\t\t\t#Average B.H.P on 3 cylinders \n",
      "IHP = BHP1-BHP2\t\t\t\t\t#Average I.H.P of one cylinder\n",
      "TIHP = (n*IHP)\t\t\t\t\t#Total I.H.P\n",
      "p = ((m/1000)*BHP1)/TIHP\t\t\t\t\t#Petrol used in kg/I.H.P hr\n",
      "nth = ((4500*60)/(427*p*CV))*100\t\t\t\t\t#Indicated Thermal efficiency in percent \n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Thermal efficiency is %3.1f percent'%(nth)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thermal efficiency is 26.3 percent\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.2  Page no :  344"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "n = 4\t\t\t\t\t#Four cylinder engine\n",
      "d = 0.1\t\t\t\t\t#Diameter of piston in m\n",
      "l = 0.15\t\t\t\t\t#Stroke in m\n",
      "RPM = 1600\t\t\t\t\t#Speed in r.p.m\n",
      "ap = (5.76*10**-4)\t\t\t\t\t#Area of positive loop of indicator diagram in sq.m\n",
      "an = (0.26*10**-4)\t\t\t\t\t#Area of negative loop of indicator diagram in sq.m\n",
      "L = 0.055\t\t\t\t\t#Length of the indicator diagram in m\n",
      "k = (3.5/10**-6)\t\t\t\t\t#Spring constant in kg/m**2 per m\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "NA = (ap-an)\t\t\t\t\t#Net area of the indicator diagram in sq.m\n",
      "h = (NA/L)\t\t\t\t\t#Average height of diagram in m\n",
      "Pm = (h*k)\t\t\t\t\t#Mean effective pressure in kg/m**2\n",
      "IHP = (Pm*l*(3.14/4)*d**2*RPM*n)/4500\t\t\t\t\t#Indicated Horse Power\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Indicated horse power of a four cylinder two stroke petrol engine is %3.1f'%(IHP)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Indicated horse power of a four cylinder two stroke petrol engine is 58.6\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.3  Page no :  348"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 6\t\t\t\t\t#Number of cylinders\n",
      "d = 0.089\t\t\t\t\t#Bore in m\n",
      "l = 0.1016\t\t\t\t\t#Stroke in m\n",
      "vc = 3.183\t\t\t\t\t#Compression ratio\n",
      "rn = 55\t\t\t\t\t#Relative efficiency in percent\n",
      "m = 0.218\t\t\t\t\t#Petrol consumption in kg/hp.hr\n",
      "Pm = (8.4/10**-4)\t\t\t\t\t#Indicated mean effective pressure in kg/m**2\n",
      "N = 2500\t\t\t\t\t#Speed in r.p.m\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "an = (1-(1/(vc-1)))*100\t\t\t\t\t#Air standard efficiency in percent\n",
      "nth = (rn*an)/100\t\t\t\t\t#Thermal efficiency in percent\n",
      "CV = ((4500*60)/(m*(nth/100)*427))\t\t\t\t\t#Calorific value in kcal/kg\n",
      "IHP = ((Pm*(3.14/4)*d**2*l*N*n)/(4500*2))\t\t\t\t\t#Indicated horse power\n",
      "p = (m*IHP)\t\t\t\t\t#Petrol consumption in kg/hour\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print '1) The calorific value of petrol is %i kcal/kg  \\\n",
      "\\n2) Corresponding petrol consumption is %3.1f kg/hour'%(CV,p)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "1) The calorific value of petrol is 9731 kcal/kg  \n",
        "2) Corresponding petrol consumption is 19.3 kg/hour\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.4  Page no :  349"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 4.\t\t\t\t\t#Number of cylinders\n",
      "d = 0.2\t\t\t\t\t#Bore in m\n",
      "l = 0.3\t\t\t\t\t#Stroke in m\n",
      "N = 300.\t\t\t\t\t#Speed in r.p.m\n",
      "af = 5.\t\t\t\t\t#Air to fuel ratio by volume. In textbook it is given as 4 which is wrong\n",
      "nv = 78.\t\t\t\t\t#Volumetric efficiency in percent\n",
      "CV = 2200.\t\t\t\t\t#Calorific value in kcal/cu.m at N.T.P\n",
      "bth = 23.\t\t\t\t\t#Brake thermal efficiency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "Vs = ((3.14/4)*d**2*l)\t\t\t\t\t#Swept volume in cu.m\n",
      "c = ((nv/100)*Vs)\t\t\t\t\t#Total charge per stroke in cu.m\n",
      "Vg = ((c/af)*N)\t\t\t\t\t#Volume of gas used per min in cu.m at N.T.P\n",
      "q = (CV*Vg)\t\t\t\t\t#Heat supplied in kcal/min\n",
      "BHP = ((bth/100)*q)/(4500./427)\t\t\t\t\t#Brake horse power\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'The volume of gas used per min is %3.3f cu.m at N.T.P  \\\n",
      "\\nB.H.P of engine is %3.1f'%(Vg,BHP)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volume of gas used per min is 0.441 cu.m at N.T.P  \n",
        "B.H.P of engine is 21.2\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.5  Page no :  353"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 20.\t\t\t\t\t#Bore in cm\n",
      "l = 37.5\t\t\t\t\t#Stroke in cm\n",
      "r = 6.\t\t\t\t\t#Compression ratio\n",
      "IPm = 5.\t\t\t\t\t#Indicated Mean effective pressure in kg/cm**2\n",
      "ag = 6.\t\t\t\t\t#Air to gas ratio\n",
      "CV = 3070.\t\t\t\t\t#Calorific value of gas in kcal/cu.m\n",
      "T = 75.+273\t\t\t\t\t#Temperature in K\n",
      "p = 0.975\t\t\t\t\t#Pressure in kg/cm**2\n",
      "RPM = 240.\t\t\t\t\t#Speed in r.p.m\n",
      "g = 1.4\t\t\t\t\t#Ratio of specific heats\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "Vs = (3.14/4)*d**2*l\t\t\t\t\t#Stroke Volume in cu.m\n",
      "Vg = (1/(r+1))*Vs\t\t\t\t\t#Volume of gas in cylinder in cu.m per cycle\n",
      "x = (Vg*(p/1.03)*(273/T))\t\t\t\t\t#Volume at 'Vg' cu.m at 'p' kg/cm**2 and 'T' K are equivalent in cu.m\n",
      "q = (CV*x)/10**6\t\t\t\t\t#Heat added in kcal per cycle\n",
      "IHP = (IPm*(Vs/100)*(RPM/2))/4500\t\t\t\t\t#Indicated horse power\n",
      "nth = ((IHP*4500)/(427*q*(RPM/2)))*100\t\t\t\t\t#Thermal efficiency in percent\n",
      "na = (1-(1/r**(g-1)))*100\t\t\t\t\t#Air standard efficiency in percent\n",
      "rn = (nth/na)*100\t\t\t\t\t#Relative effeciency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'The thermal efficiency is %3.1f percent  \\\n",
      "\\nThe relative efficiency is %3.1f percent  \\\n",
      "\\nIndicated horese power is %3.1f H.P'%(nth,rn,IHP)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thermal efficiency is 36.0 percent  \n",
        "The relative efficiency is 70.3 percent  \n",
        "Indicated horese power is 15.7 H.P\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.6  Page no :  356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 4\t\t\t\t\t#Number of cylinders\n",
      "d = 6.25\t\t\t\t\t#Diametre in cm\n",
      "l = 9.5\t\t\t\t\t#Stroke in cm\n",
      "t = 678\t\t\t\t\t#Torque in kg.m\n",
      "N = 3000\t\t\t\t\t#Speed in r.p.m\n",
      "Vc = 60\t\t\t\t\t#Clearance volume in c.c\n",
      "be = 0.5\t\t\t\t\t#Brake efficiency ratio based on the air standard cycle\n",
      "CV = 10000\t\t\t\t\t#Calorific value in kcal/kg\n",
      "g = 1.4\t\t\t\t\t#Ratio of specific heats\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "Vs = (3.14/4)*d**2*l\t\t\t\t\t#Stroke volume in c.c per cylinder\n",
      "r = ((Vs+Vc)/Vc)\t\t\t\t\t#Compression ratio\n",
      "na = (1-(1/r**(g-1)))\t\t\t\t\t#Air standard efficiency\n",
      "bth = (be*na)*100\t\t\t\t\t#Brake thermal efficiency in percent\n",
      "bhp = ((t/100)*2*3.14*N)/4500\t\t\t\t\t#B.H.P in H.P\n",
      "q = (bhp*(4500/427))/(bth/100)\t\t\t\t\t#Heat supplied in kcal/min\n",
      "F = (q*60)/CV\t\t\t\t\t#Fuel consumption in kg/hour\n",
      "P = (bhp*4500*2*100)/(n*Vs*N)\t\t\t\t\t#pressure in kg/cm**2\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'The fuel consumption is %3.2f kg/hour  \\\n",
      "\\nThe brake mean effective pressure is %3.2f kg/cm**2'%(F,P)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The fuel consumption is 5.95 kg/hour  \n",
        "The brake mean effective pressure is 6.47 kg/cm**2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.7  Page no :  360"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 1.\t\t\t\t\t#Number of cylinders\n",
      "t = 30.\t\t\t\t\t#Trail time in min\n",
      "m = 5.6\t\t\t\t\t#Oil consumption in l\n",
      "CV = 9980.\t\t\t\t\t#Calorific value of oil in kcal/kg\n",
      "g = 0.8\t\t\t\t\t#Specific gravity of oil \n",
      "a = 8.35\t\t\t\t\t#Average area of indicator diagram in sq.cm\n",
      "l = 8.4\t\t\t\t\t#Length of the indicator diagram in cm\n",
      "is1 = 5.5\t\t\t\t\t#Indicator spring scale\n",
      "L = 147.5\t\t\t\t\t#Brake load in kg\n",
      "sp = 20.\t\t\t\t\t#Spring balance reading in kg\n",
      "d = 1.5\t\t\t\t\t#Effective brake wheel diameter in m\n",
      "N = 200.\t\t\t\t\t#Speed in r.p.m\n",
      "cyd = 30.\t\t\t\t\t#Cylinder diameter in cm\n",
      "l1 = 45.\t\t\t\t\t#Stroke in cm\n",
      "mw = 11.\t\t\t\t\t#Jacket cooling water in kg/min\n",
      "Tc = 35.+273\t\t\t\t\t#Temperature rise of cooling water in K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "mp = (a/l)*is1\t\t\t\t\t#Mean effective pressure\n",
      "ihp = ((mp*(l1/100)*(3.14/4)*cyd**2*(N/2))/4500)\t\t\t\t\t#Indicated horse power in h.p\n",
      "bhp = (L*3.14*d*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "nm = (bhp/ihp)*100\t\t\t\t\t#Mechanical efficiency in percent\n",
      "F = (m*(60/t)*g)\t\t\t\t\t#Fuel consumption in kg/hour\n",
      "Fc = (F/bhp)\t\t\t\t\t#Specific fuel consumption in kg/B.H.P/hour\n",
      "ith = ((ihp*(4500./427))/((F/60)*CV))*100\t\t\t\t\t#Indicated thermal efficiency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'a) I.H.P is %3.1f  \\\n",
      "\\nb) B.H.P is %3.1f  \\\n",
      "\\nc) Mechanical efficiency is %3.1f percent  \\\n",
      "\\nd) Specific fuel consumption is %3.2f kg/B.H.P/hour  \\\n",
      "\\ne) Indicated thermal efficiency is %3.1f percent'%(ihp,bhp,nm,Fc,ith)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) I.H.P is 38.6  \n",
        "b) B.H.P is 30.9  \n",
        "c) Mechanical efficiency is 79.9 percent  \n",
        "d) Specific fuel consumption is 0.29 kg/B.H.P/hour  \n",
        "e) Indicated thermal efficiency is 27.3 percent\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.8  Page no :  361"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 15.\t\t\t\t\t#Diameter in cm. In textbook it is given wrong as 39\n",
      "l = 45.\t\t\t\t\t#Stroke in cm\n",
      "f = 9.5\t\t\t\t\t#Total fuel used in litres\n",
      "CV = 10500.\t\t\t\t\t#Calorific value in kcal/kg\n",
      "n = 12624.\t\t\t\t\t#Total no. of revolutions\n",
      "imep = 7.24\t\t\t\t\t#Gross i.m.e.p in kg/cm**2\n",
      "pimep = 0.34\t\t\t\t\t#Pumping i.m.e.p in kg/cm**2\n",
      "L = 150.\t\t\t\t\t#Net load on brake in kg\n",
      "db = 1.78\t\t\t\t\t#Diameter of the brake wheel drum in m\n",
      "dr = 4.\t\t\t\t\t#Diameter of rope in cm\n",
      "cw = 545.\t\t\t\t\t#Cooling water circulated in litres\n",
      "Tc = 45.\t\t\t\t\t#Cooling water temperature rise in degree C\n",
      "g = 0.8\t\t\t\t\t#Specific gravity of oil\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "ihp = ((imep-pimep)*(l/100)*3.14*d**2*n)/(4500*60)\t\t\t\t\t#I.H.P in h.p\n",
      "q = (f*g*CV)/60\t\t\t\t\t#Heat supplied in kcal/min\n",
      "bhp = (L*3.14*(db+(dr/100))*n)/(4500*60)\t\t\t\t\t#B.H.P in h.p\n",
      "qbhp = (bhp*4500)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/min\n",
      "qw = (cw*Tc)/60\t\t\t\t\t#Heat lost to jacket cooling water in kcal/min\n",
      "dq = (q-(qbhp+qw))\t\t\t\t\t#Heat unaccounted in kcal/min\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Heat supplied is %3.0f kcal/min  \\\n",
      "\\nHeat equivalent of B.H.P is %3.0f kcal/min  \\\n",
      "\\nHeat lost to jacket cooling water is %3.0f kcal/min  \\\n",
      "\\nHeat unaccounted is %3.0f kcal/min'%(q,qbhp,qw,dq)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat supplied is 1330 kcal/min  \n",
        "Heat equivalent of B.H.P is 422 kcal/min  \n",
        "Heat lost to jacket cooling water is 409 kcal/min  \n",
        "Heat unaccounted is 499 kcal/min\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.9  Page no :  364"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 27.\t\t\t\t\t#Diameter in cm\n",
      "l = 45.\t\t\t\t\t#Stroke in cm\n",
      "db = 1.62\t\t\t\t\t#Effective diameter of the brake in m\n",
      "t = (38.*60+30)\t\t\t\t\t#Test duration in sec\n",
      "CV = 4650.\t\t\t\t\t#Calorific value in kcal/m**3 at N.T.P\n",
      "n = 8080.\t\t\t\t\t#Total no. of revolutions\n",
      "en = 3230.\t\t\t\t\t#Total number of explosions\n",
      "p = 5.75\t\t\t\t\t#Mean effective pressure in kg/cm**2\n",
      "V = 7.7\t\t\t\t\t#Gas used in m**3\n",
      "T = 15.+273\t\t\t\t\t#Atmospheric temperature in K\n",
      "pg = 135.\t\t\t\t\t#pressure of gas in mm of water above atmospheric pressure\n",
      "hb = 750.\t\t\t\t\t#Height of barometer in mm of Hg\n",
      "L = 92.\t\t\t\t\t#Net load on brake in kg\n",
      "w = 183.\t\t\t\t\t#Weigh of jacket cooling water in kg\n",
      "Tc = 47.\t\t\t\t\t#Cooling water temperature rise in degree C\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "ihp = (p*(l/100)*(3.14/4)*d**2*en)/(4500*(t/60))\t\t\t\t\t#I.H.P in h.p\n",
      "bhp = (L*3.14*db*n)/(4500*(t/60))\t\t\t\t\t#B.H.P in h.p\n",
      "pa = (hb+(pg/13))\t\t\t\t\t#Pressure of gas supplied in mm of Hg\n",
      "Vg = (V*(273/T)*(pa/760))\t\t\t\t\t#Volume of gas used at N.T.P in m**3\n",
      "q = (Vg*CV)/(t/60)\t\t\t\t\t#Heat supplied per minute in kcal\n",
      "qbhp = (bhp*4500)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/min\n",
      "qc = (w/(t/60))*Tc\t\t\t\t\t#Heat lost to jacket cooling water in kcal/min\n",
      "qra = (q-(qbhp+qc))\t\t\t\t\t#Heat lost to exhaust, etc in kcal/min\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Heat supplied is %3.1f kcal/min  \\\n",
      "\\nHeat equivalent of B.H.P is %3.0f kcal/min  \\\n",
      "\\nHeat lost to jacket cooling water is %3.1f kcal/min  \\\n",
      "\\nHeat lost to exhaust radiation etc. is %3.1f kcal/min'%(q,qbhp,qc,qra)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat supplied is 882.0 kcal/min  \n",
        "Heat equivalent of B.H.P is 230 kcal/min  \n",
        "Heat lost to jacket cooling water is 223.4 kcal/min  \n",
        "Heat lost to exhaust radiation etc. is 428.6 kcal/min\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.10  Page no :  366"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 25.\t\t\t\t\t#Bore in cm\n",
      "l = 50.\t\t\t\t\t#Stroke in cm\n",
      "N = 240.\t\t\t\t\t#Speed in r.p.m\n",
      "n = 100.\t\t\t\t\t#Number of times fires per minute\n",
      "qc = 0.3\t\t\t\t\t#Quantity of coal gas used in cu.m per minute\n",
      "h = 100.\t\t\t\t\t#Head in mm of water\n",
      "bp = 1.03\t\t\t\t\t#Barometric pressure in kg/cm**2\n",
      "T = 15.+273\t\t\t\t\t#Temperature in K\n",
      "ma = 2.82\t\t\t\t\t#Mass of air used in kg per minute\n",
      "R = 29.45\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "gp = (bp+(100/13.6)*(bp/76))\t\t\t\t\t#Gas pressure in kg/cm**2\n",
      "Vc = (qc*(gp/bp)*(273/T))\t\t\t\t\t#Volume of coal gas at N.T.P in cu.m per minute\n",
      "Vce = (Vc/n)\t\t\t\t\t#Volume of coal gas per explosion in cu.m at N.T.P\n",
      "va = (ma*R*273)/(bp*10**4)\t\t\t\t\t#Volume of air taken in at N.T.P in cu.m per min\n",
      "V = ((va-(((N/2)-n)*Vce))/(N/2))\t\t\t\t\t#Volume in cu.m\n",
      "tV = (V+Vce)\t\t\t\t\t#Total volume of charge in cu.m at N.T.P\n",
      "Vs = ((3.14/4)*(d**2*l)*10**-6)\t\t\t\t\t#Swept volume in cu.m\n",
      "nv = (tV/Vs)*100\t\t\t\t\t#Volumetric efficiency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'a) the charge of air per working cycle as measured at N.T.P is %3.5f cu.m  \\\n",
      "\\nb) the volumetric efficiency is %3.1f percent'%(tV,nv)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) the charge of air per working cycle as measured at N.T.P is 0.02094 cu.m  \n",
        "b) the volumetric efficiency is 85.4 percent\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.11  Page no :  368"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 18.\t\t\t\t\t#Diameter in cm\n",
      "l = 24.\t\t\t\t\t#Stroke in cm\n",
      "t = 30.\t\t\t\t\t#Duration of trail in min\n",
      "r = 9000.\t\t\t\t\t#Total number of revolutins\n",
      "e = 4445.\t\t\t\t\t#Total number of explosions\n",
      "mep = 5.85\t\t\t\t\t#Mean effective pressure in kg/cm**2\n",
      "Nl = 40.\t\t\t\t\t#Net load on brake wheel in kg\n",
      "ed = 1.\t\t\t\t\t#Effective diameter of brake wheel in meter\n",
      "tg = 2.3\t\t\t\t\t#Total gas used at N.T.P in m**3\n",
      "CV = 4600.\t\t\t\t\t#Calorific value of gas in kcal/m**3 at N.T.P\n",
      "ta = 36.\t\t\t\t\t#Total air used in m**3\n",
      "pa = 720.\t\t\t\t\t#Pressure of air in mm of Hg\n",
      "Ta = 18.+273\t\t\t\t\t#Temperature of air in K\n",
      "da = 1.293\t\t\t\t\t#Density of air at N.T.P in kg/m**3\n",
      "Te = 350.+273\t\t\t\t\t#Temperature of exhaust gases in K\n",
      "Tr = 18.+273\t\t\t\t\t#Room temperature in K\n",
      "Cp = 0.24\t\t\t\t\t#Specific heat of exhaust gases in kJ/kg.K\n",
      "twc = 81.5\t\t\t\t\t#Total weight of cylinder jacket cooling water in kg\n",
      "dT = 33.\t\t\t\t\t#Rise in temperature of jacket cooling water in degree C\n",
      "R = 29.45\t\t\t\t\t#Characteristic gas constant in kg.m/kg.degree C\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "ihp = (mep*(l/100)*(3.14/4)*d**2*(e/t))/4500\t\t\t\t\t#Indicated horse power in h.p\n",
      "bhp = (Nl*3.14*r*ed)/(4500*t)\t\t\t\t\t#Brake horse power in h.p\n",
      "qs = (tg/t)*CV\t\t\t\t\t#Heat supplied at N.T.P in kcal\n",
      "qbhp = (bhp*4500)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/min\n",
      "ql = (twc/t)*dT\t\t\t\t\t#Heat lost to cylinder jacket cooling water in kcal/min\n",
      "VA = (ta*(273/Ta)*(pa/760))\t\t\t\t\t#Volume of air used at N.T.P in m**3\n",
      "WA = (VA*da)/t\t\t\t\t\t#Weight of air used per min in kg\n",
      "WG = (1.03*tg*10**4)/(R*273)\t\t\t\t\t#Weight of gas in kg\n",
      "Wg = (WG/t)\t\t\t\t\t#Weight of gas per minute in kg\n",
      "We = (WA+Wg)\t\t\t\t\t#Total weight of exhaust gases in kg\n",
      "qle = (We*(Te-Tr)*Cp)\t\t\t\t\t#Heat lost of exhaust gases in kcal/min\n",
      "qra = (qs-(qbhp+ql+qle))\t\t\t\t\t#Heat lost by radiation in kcal/min\n",
      "nm = (bhp/ihp)*100\t\t\t\t\t#Mechanical efficiency in percent\n",
      "ith = ((ihp*4500)/(427*qs))*100\t\t\t\t\t#Indicated thermal efficiency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print '         HEAT BALANCE SHEET          ------------------  \\\n",
      "\\nHeat supplied per minute is %3.1f kcal/min  \\\n",
      "\\nHeat expenditure               kcal per minute  \\\n",
      "\\n1.Heat equivalent of B.H.P is          %3.1f  \\\n",
      "\\n2.Heat lost to jacket cooling water is %3.1f  \\\n",
      "\\n3.Heat lost in exhaust gases is        %3.1f  \\\n",
      "\\n4.Heat lost by radiation, etc, is     %3.1f \\\n",
      "\\n--------                                       %3.1f                                      --------'%(qs,qbhp,ql,qle,qra,qs)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "         HEAT BALANCE SHEET          ------------------  \n",
        "Heat supplied per minute is 352.7 kcal/min  \n",
        "Heat expenditure               kcal per minute  \n",
        "1.Heat equivalent of B.H.P is          88.2  \n",
        "2.Heat lost to jacket cooling water is 89.7  \n",
        "3.Heat lost in exhaust gases is        117.7  \n",
        "4.Heat lost by radiation, etc, is     57.1 \n",
        "--------                                       352.7                                      --------\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.12  Page no :  372"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "gu = 0.135\t\t\t\t\t#Gas used in m**3/min at N.T.P\n",
      "CV = 3990\t\t\t\t\t#Calorific value of gas in kcal/m**3 at N.T.P\n",
      "dg = 0.64\t\t\t\t\t#Density of gas in kg/m**3 at N.T.P\n",
      "au = 1.52\t\t\t\t\t#Air used in kg/min\n",
      "C = 0.24\t\t\t\t\t#Specific heat of exhaust gases in kJ/kg.K\n",
      "Te = 397+273\t\t\t\t\t#Temperature of exhaust gases in K\n",
      "Tr = 17+273\t\t\t\t\t#Room temperature in K\n",
      "cw = 6\t\t\t\t\t#Cooling water per minute in kg\n",
      "rT = 27.5\t\t\t\t\t#Rise in temperature in degree C\n",
      "ihp = 12.3\t\t\t\t\t#Indicated horse power in h.p\n",
      "bhp = 10.2\t\t\t\t\t#Brake horse power in h.p\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "qs = (gu*CV*60)\t\t\t\t\t#Heat supplied in kcal/hour\n",
      "qbhp = ((bhp*4500*60)/427)\t\t\t\t\t#Heat equivalent of B.H.P in kcal/hr\n",
      "ql = (cw*60*rT)\t\t\t\t\t#Heat lost in jacket cooling water in kcal/hr\n",
      "mg = (gu*dg)\t\t\t\t\t#Mass of gas used per minute in kg\n",
      "me = (mg+au)\t\t\t\t\t#Mass of exhaust gases per minute in kg\n",
      "qe = (me*C*(Te-Tr)*60)\t\t\t\t\t#Heat carried away by exhaust gases in kcal/hour\n",
      "qun = (qs-(qbhp+ql+qe))\t\t\t\t\t#Heat unaccounted in kcal/hour\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Heat supplied is %3.0f kcal/hour  \\\n",
      "\\nHeat equivalent of B.H.P is %3.0f kcal/hr  \\\n",
      "\\nHeat lost in jacket cooling water is %3.0f kcal/hr  \\\n",
      "\\nHeat carried away by exhaust gases is %3.0f kcal/hour  \\\n",
      "\\nHeat unaccounted is %3.0f kcal/hour'%(qs,qbhp,ql,qe,qun)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat supplied is 32319 kcal/hour  \n",
        "Heat equivalent of B.H.P is 6450 kcal/hr  \n",
        "Heat lost in jacket cooling water is 9900 kcal/hr  \n",
        "Heat carried away by exhaust gases is 8790 kcal/hour  \n",
        "Heat unaccounted is 7179 kcal/hour\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.13  Page no :  372"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "n = 4.\t\t\t\t\t#Number of cylinders\n",
      "r = 1.\t\t\t\t\t#Radius in metre\n",
      "N = 1400.\t\t\t\t\t#Speed in r.p.m\n",
      "bl = 14.5\t\t\t\t\t#Net brake load in kg\n",
      "P = [9.8,10.1,10.3,10]\t\t\t\t\t#Loads on the brake in kg\n",
      "d = 9.\t\t\t\t\t#Bore in cm\n",
      "l = 12.\t\t\t\t\t#Stroke in cm\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "bhp = (bl*2*3.14*r*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "bhp1 = (P[0]*2*3.14*r*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "bhp2 = (P[1]*2*3.14*r*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "bhp3 = (P[2]*2*3.14*r*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "bhp4 = (P[3]*2*3.14*r*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "ihp1 = bhp-bhp1\t\t\t\t\t#Indicated horse power in h.p\n",
      "ihp2 = bhp-bhp2\t\t\t\t\t#Indicated horse power in h.p\n",
      "ihp3 = bhp-bhp3\t\t\t\t\t#Indicated horse power in h.p\n",
      "ihp4 = bhp-bhp4\t\t\t\t\t#Indicated horse power in h.p\n",
      "ihp = (ihp1+ihp2+ihp3+ihp4)\t\t\t\t\t#Indicated horse power in h.p\n",
      "nm = (bhp/ihp)*100\t\t\t\t\t#Mechanical efficiency in percent\n",
      "pm = ((4500*bhp)/((l/100)*(3.14/4)*d**2*(N/2)))\t\t\t\t\t#Brake mean effective pressure in kg/cm**2\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'I.H.P is %3.1f h.p  \\\n",
      "\\nMechanical efficiency is %3.1f percent  \\\n",
      "\\nBrake mean effective pressure is %3.0f kg/cm**2'%(ihp,nm,pm)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "I.H.P is 34.8 h.p  \n",
        "Mechanical efficiency is 81.5 percent  \n",
        "Brake mean effective pressure is  24 kg/cm**2\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.14  Page no :  374"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "N = 350\t\t\t\t\t#Speed in r.p.m\n",
      "L = 60\t\t\t\t\t#Net brake load in kg\n",
      "mep = 2.75\t\t\t\t\t#Mean effective pressure in kg/cm**2\n",
      "oc = 4.25\t\t\t\t\t#Oil consumption in kg/hour\n",
      "jcw = 490\t\t\t\t\t#Jacket cooling water in kg/hour\n",
      "Tw = [20+273,45+273]\t\t\t\t\t#Temperature of jacket water at inlet and outlet in K\n",
      "au = 31.5\t\t\t\t\t#Air used per kg of oil in kg\n",
      "Ta = 20+273\t\t\t\t\t#Temperature of air in the test room in K\n",
      "Te = 390+273\t\t\t\t\t#Temperature of exhaust gases in K\n",
      "d = 22\t\t\t\t\t#Cylinder diameter in cm\n",
      "l = 28\t\t\t\t\t#Stroke in cm\n",
      "bd = 1\t\t\t\t\t#Effective brake diameter in m\n",
      "CV = 10500\t\t\t\t\t#Calorific value of oil in kcal/kg\n",
      "pH2 = 15\t\t\t\t\t#Proportion of hydrogen in fuel oil in percent\n",
      "C = 0.24\t\t\t\t\t#Mean specific heat of dry exhaust gases\n",
      "Cs = 9.5\t\t\t\t\t#Specific heat of steam in kJ/kg.K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "ibp = (mep*(l/100)*(3.14/4)*d**2*N)/4500\t\t\t\t\t#Indicated brake power in h.p\n",
      "bhp = (L*3.14*N*bd)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "qs = (oc*CV)/60\t\t\t\t\t#Heat supplied per minute in kcal\n",
      "qbhp = (bhp*4500)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/min\n",
      "pqbhp = (qbhp/qs)*100\t\t\t\t\t#Percenatge of  heat\n",
      "ql = (jcw/60)*(Tw[1]-Tw[0])\t\t\t\t\t#Heat lost to cooling water in kcal/min\n",
      "pql = (ql/qs)*100\t\t\t\t\t#Percenatge of  heat\n",
      "wH2O = (9*(pH2/100)*(oc/60))\t\t\t\t\t#Weight of H2O produced per kg of fuel burnt in kg/min\n",
      "twe = (oc*(au+1))/60\t\t\t\t\t#Total weight of wet exhaust gases per minute in kg\n",
      "twd = (twe-wH2O)\t\t\t\t\t#Weight of dry exhaust gases per minute in kg\n",
      "qle = (twd*C*(Te-Ta))\t\t\t\t\t#Heat lost to dry exhaust gases/min in kcal\n",
      "pqle = (qle/qs)*100\t\t\t\t\t#Percenatge of  heat\n",
      "qx = (100+538.9+0.5*(Te-373))\t\t\t\t\t#Heat in kcal/kg\n",
      "qst = (wH2O*qx)\t\t\t\t\t#Heat to steam in kcal/min\n",
      "pqst = (qst/qs)*100\t\t\t\t\t#Percenatge of  heat\n",
      "qra = (qs-(qbhp+ql+qle+qst))\t\t\t\t\t#Heat lost by radiation in kcal/min\n",
      "pqra = (qra/qs)*100\t\t\t\t\t#Percenatge of  heat\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print '         HEAT BALANCE SHEET          ------------------  \\\n",
      "\\nHeat supplied per minute is        %3.0f kcal/min  100 percent  \\\n",
      "\\nHeat expenditure                  kcal per minute      percent  \\\n",
      "\\n1.Heat equivalent of B.H.P is              %3.1f      %3.1f  \\\n",
      "\\n2.Heat lost to cooling water is            %3.0f        %3.1f  \\\n",
      "\\n3.Heat lost to dry exhaust gases is        %3.1f      %3.1f \\\n",
      "\\n4.Heat lost of steam in exhaust gases is  %3.0f         %3.1f \\\n",
      "\\n5.Heat lost by radiation, etc., is         %3.0f        %3.1f \\\n",
      "\\n ---------- Total                         %3.0f        %3.0f  ------------------'\\\n",
      "%(qs,qbhp,pqbhp,ql,pql,qle,pqle,qst,pqst,qra,pqra,qs,(pqbhp+pql+pqle+pqst+pqra))\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "         HEAT BALANCE SHEET          ------------------  \n",
        "Heat supplied per minute is        744 kcal/min  100 percent  \n",
        "Heat expenditure                  kcal per minute      percent  \n",
        "1.Heat equivalent of B.H.P is              154.4      20.8  \n",
        "2.Heat lost to cooling water is            200        26.9  \n",
        "3.Heat lost to dry exhaust gases is        204.4      27.5 \n",
        "4.Heat lost of steam in exhaust gases is    0         0.0 \n",
        "5.Heat lost by radiation, etc., is         185        24.9 \n",
        " ---------- Total                         744        100  ------------------\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.15  Page no :  376"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "d = 20\t\t\t\t\t#Diameter in cm\n",
      "l = 40\t\t\t\t\t#Stroke in cm\n",
      "mep = 5.95\t\t\t\t\t#Mean effective pressure in kg/cm**2\n",
      "bt = 41.5\t\t\t\t\t#Brake torque in kg.m\n",
      "N = 250\t\t\t\t\t#Speed in r.p.m\n",
      "oc = 4.2\t\t\t\t\t#Oil consumption in kg per hour\n",
      "CV = 11300\t\t\t\t\t#Calorific value of fuel in kcal/kg\n",
      "jcw = 4.5\t\t\t\t\t#Jacket cooling water in kg/min\n",
      "rT = 45\t\t\t\t\t#Rise in temperature in degree C\n",
      "au = 31\t\t\t\t\t#Air used in kg\n",
      "Te = 420\t\t\t\t\t#Temperature of exhaust gases in degree C\n",
      "Tr = 20\t\t\t\t\t#Room temperature in degree C\n",
      "Cm = 0.24\t\t\t\t\t#Mean specific heat of exhaust gases in kJ/kg.K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "ihp = (mep*(l/100)*(3.14/4)*d**2*(N/2))/4500\t\t\t\t\t#Indicated horse power in h.p\n",
      "bhp = (bt*2*3.14*N)/4500\t\t\t\t\t#Brake horse power in h.p\n",
      "q = (oc*CV)\t\t\t\t\t#Heat supplied in kcal/hour\n",
      "qbhp = (bhp*4500*60)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/hour\n",
      "qfhp = ((ihp-bhp)*4500*60)/427\t\t\t\t\t#Heat equivalent F.H.P in kcal/hour\n",
      "qc = (jcw*rT*60)\t\t\t\t\t#Heat lost in cooling water in kcal/hour\n",
      "qe = (oc*32*Cm*(Te-Tr))\t\t\t\t\t#Heat lost in exhaust gases in kcal/hour\n",
      "hu = (q-(qbhp+qfhp+qc+qe))\t\t\t\t\t#Heat unaccounted in kcal/hour\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Indicated horse power is %3.1f h.p  \\\n",
      "\\nBrake horse power is %3.2f h.p  \\\n",
      "\\nHeat supplied is %3.0f kcal/hour  \\\n",
      "\\nHeat equivalent of B.H.P is %3.0f kcal/hour  \\\n",
      "\\nHeat equivalent of F.H.P is %3.0f kcal/hour  \\\n",
      "\\nHeat lost in cooling water is %3.0f kcal/hour  \\\n",
      "\\nHeat lost in exhaust gases is %3.0f kcal/hour  \\\n",
      "\\nHeat unaccounted is %3.0f kcal/hour'%(ihp,bhp,q,qbhp,qfhp,qc,qe,hu)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Indicated horse power is 0.0 h.p  \n",
        "Brake horse power is 14.48 h.p  \n",
        "Heat supplied is 47460 kcal/hour  \n",
        "Heat equivalent of B.H.P is 9155 kcal/hour  \n",
        "Heat equivalent of F.H.P is -9155 kcal/hour  \n",
        "Heat lost in cooling water is 12150 kcal/hour  \n",
        "Heat lost in exhaust gases is 12902 kcal/hour  \n",
        "Heat unaccounted is 22408 kcal/hour\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.16  Page no :  381"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "ihp = 45.\t\t\t\t\t#Indicated horse power in h.p\n",
      "bhp = 37.\t\t\t\t\t#Brake horse power in h.p\n",
      "fu = 8.4\t\t\t\t\t#Fuel used in kg/hour\n",
      "CV = 10000.\t\t\t\t\t#Calorific value in kcal/kg\n",
      "Tc = [15.,70.]\t\t\t\t\t#Inlet and outlet temperatures of cylinders in degree C\n",
      "cj = 7.\t\t\t\t\t#Rate of flow of cylinder jacket in kg/min\n",
      "Tw = [15.,55.]\t\t\t\t\t#Inlet and outlet temperatures of water in degree C\n",
      "rw = 12.5\t\t\t\t\t#Rate of water flow in kg per minute\n",
      "Te = 82.\t\t\t\t\t#Final temperature of exhaust gases in degree C\n",
      "Tr = 17.\t\t\t\t\t#Room temperature in degree C\n",
      "af = 20.\t\t\t\t\t#Air fuel ratio\n",
      "Cm = 0.24\t\t\t\t\t#Mean specific heat of exhaust gases in kJ/kg.K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "q = (fu/60)*CV\t\t\t\t\t#Heat supplied in kcal/min\n",
      "qbhp = (bhp*4500)/427\t\t\t\t\t#Heat equivalent of B.H.P in kcal/min\n",
      "ql = (cj*(Tc[1]-Tc[0]))\t\t\t\t\t#Heat lost to cylinder jacket cooling water in kcal/min\n",
      "qe = (rw*(Tw[1]-Tw[0]))\t\t\t\t\t#Heat lost by exhaust gases in kcal/min\n",
      "qee = (Te-Tr)*Cm*(af+1)*fu/60\t\t\t\t\t#Heat of exhaust gas in kcal/min\n",
      "te = (qe+qee)\t\t\t\t\t#Total heat lost to exhaust gases in kcal/min\n",
      "hra = (q-(qbhp+ql+te))\t\t\t\t\t#Heat lost to radiation in kcal/min\n",
      "ith = ((ihp*4500)/(427*q))*100\t\t\t\t\t#Indicated thermal efficiency in percent\n",
      "bth = ((bhp*4500)/(427*q))*100\t\t\t\t\t#Brake thermal efficiency in percent\n",
      "nm = (bhp/ihp)*100\t\t\t\t\t#Mechanical efficiency in percent\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Heat supplied is %3.0f kcal/min  \\\n",
      "\\nHeat equivalent of B.H.P is %3.0f kcal/min  \\\n",
      "\\nHeat lost to cylinder jacket cooling water is %3.0f kcal/min  \\\n",
      "\\nTotal heat lost to exhaust gases is %3.1f kcal/min  \\\n",
      "\\nHeat lost to radiation is %3.1f kcal/min  \\\n",
      "\\nIndicated thermal efficiency is %3.1f percent  \\\n",
      "\\nBrake thermal efficiency is %3.1f percent  \\\n",
      "\\nMechanical efficiency is %3.1f percent'%(q,qbhp,ql,te,hra,ith,bth,nm)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat supplied is 1400 kcal/min  \n",
        "Heat equivalent of B.H.P is 390 kcal/min  \n",
        "Heat lost to cylinder jacket cooling water is 385 kcal/min  \n",
        "Total heat lost to exhaust gases is 545.9 kcal/min  \n",
        "Heat lost to radiation is 79.2 kcal/min  \n",
        "Indicated thermal efficiency is 33.9 percent  \n",
        "Brake thermal efficiency is 27.9 percent  \n",
        "Mechanical efficiency is 82.2 percent\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 23.17  Page no :  382"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\t\t\t\t\t\n",
      "#Input data\n",
      "Vs = 0.0015\t\t\t\t\t#Stroke volume in cu.m\n",
      "rc = 5.5\t\t\t\t\t#Volume compression ratio\n",
      "p2 = 8.\t\t\t\t\t#Pressure at the end of compression stroke in kg/cm**2\n",
      "T2 = 350.+273\t\t\t\t\t#Temperature at the end of compression stroke in K\n",
      "p3 = 25.\t\t\t\t\t#Pressure in kg/cm**2\n",
      "x = (1./30)\t\t\t\t\t#Fraction of dismath.tance travelled by piston\n",
      "pa = 1./16\t\t\t\t\t#Petrol air mixture ratio\n",
      "R = 29.45\t\t\t\t\t#Characteristic gas constant in kg.m/kg degree C\n",
      "CV = 10000.\t\t\t\t\t#Calorific value of fuel in kcal per kg\n",
      "Cv = 0.23\t\t\t\t\t#Specific heat in kJ/kg.K\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Calculations\n",
      "V2 = (Vs*10**6)/(rc-1)\t\t\t\t\t#Volume in c.c\n",
      "V3 = (Vs*10**6)*x+V2\t\t\t\t\t#Volume in c.c\n",
      "T3 = (T2*p3*V3)/(p2*V2)\t\t\t\t\t#Temperature in K\n",
      "W = ((p3+p2)/2)*(V3-V2)\t\t\t\t\t#Workdone in kg.cm\n",
      "mM = ((p2*V2)/(T2*R*100))\t\t\t\t\t#Mass of mixture present in kg\n",
      "dE = (mM*Cv*(T3-T2))\t\t\t\t\t#Change in energy in kcal\n",
      "q = (dE+(W/(427*100)))\t\t\t\t\t#Heat in kcal\n",
      "qc = (1/(1+(1/pa)))*mM*CV \t\t\t\t\t#Heat in kcal\n",
      "ql = (qc-q)/mM\t\t\t\t\t#Heat lost in kcal per kg of charge\n",
      "\n",
      "\t\t\t\t\t\n",
      "#Output\n",
      "print 'Heat lost per kg of charge during explosion is %3.0f kcal'%(ql)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat lost per kg of charge during explosion is 203 kcal\n"
       ]
      }
     ],
     "prompt_number": 28
    }
   ],
   "metadata": {}
  }
 ]
}