1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
{
"metadata": {
"name": "",
"signature": "sha256:4e8467c44185deda0f287a5fb2df2f33438b3eb316ab3092c4e75cf0fe34abd0"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chatper 11 : Four Stroke Spark Ignition Engine"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 Page no : 239"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"d = 0.0625\t\t\t\t\t#Diameter in m\n",
"L = 0.09\t\t\t\t\t#Stroke in m\n",
"nv = 0.75\t\t\t\t\t#Volumetric efficiency\n",
"p = 1.03\t\t\t\t\t#Pressure at N.T.P in kg/cm**2\n",
"T = 273\t\t\t\t\t#Temperature at N.T.P in K\n",
"R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.degree C\n",
"\n",
"\t\t\t\t\t\n",
"#Calculations\n",
"Vs = ((3.14/4)*d**2*L)\t\t\t\t\t#Swept volume in cu.m\n",
"V = (nv*Vs)\t\t\t\t\t#Volume of charge at N.T.P in cu.m\n",
"w = (p*10**4*V)/(R*T)\t\t\t\t\t#Weight of the charge in kg/cycle\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'The weight of the charge is %3.6f kg/cycle'%(w)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The weight of the charge is 0.000267 kg/cycle\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 Page no : 242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"n = 9.\t\t\t\t\t#Number of cylinder\n",
"d = 0.145\t\t\t\t\t#Bore in m\n",
"l = 0.19\t\t\t\t\t#Stroke in m\n",
"r = 5.9\t\t\t\t\t#Compression ratio\n",
"bhp = 460.\t\t\t\t\t#Brake horse power in B.H.P\n",
"N = 2000.\t\t\t\t\t#Speed in r.p.m\n",
"x = 20.\t\t\t\t\t#Percentage rich in mixture\n",
"CV = 11200.\t\t\t\t\t#Calorific value in kcal/kg\n",
"pC = 85.3\t\t\t\t\t#Percentage of carbon\n",
"pH2 = 14.7\t\t\t\t\t#Percentage of Hydrogen\n",
"nv = 70.\t\t\t\t\t#Volumetric efficiency in percent\n",
"T = 15.+273\t\t\t\t\t#Temperature in K\n",
"nm = 90.\t\t\t\t\t#Mechanical efficiency in percent\n",
"wO2 = 23.3\t\t\t\t\t#Percentage of oxygen by weight in air\n",
"da = 1.29\t\t\t\t\t#Density of air in kg/m**3\n",
"mC = 12.\t\t\t\t\t#Molecular weight of carbon\n",
"mO2 = 32.\t\t\t\t\t#Molecular weight of O2\n",
"mH2 = 2.\t\t\t\t\t#Molecular weight of H2\n",
"\n",
"\t\t\t\t\t\n",
"#Calculations\n",
"hihp = ((bhp/(nm/100))*(4500./427))\t\t\t\t\t#Heat equivalent in kcal\n",
"Vs = ((3.14/4)*d**2*l*(N/2)*n)\t\t\t\t\t#Swept volume in c.m per min\n",
"cw = (Vs/da)\t\t\t\t\t#Charge weight of air per minute in kg\n",
"ma = (100/wO2)*((pC/100)*(mO2/mC)+(pH2/100)*(mO2/(2*mH2)))\t\t\t\t\t#Wt. of air required per kg of fuel in kg\n",
"mf = (cw/ma)\t\t\t\t\t#Minimum fuel inkg\n",
"ith = (hihp/(mf*(100+x)/100*CV))*100\t\t\t\t\t#Indicated thermal efficiciency in percent'\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'Indicated thermal efficiency of the engine is %3.1f percent'%(ith)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Indicated thermal efficiency of the engine is 27.1 percent\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 Page no : 244"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"n = 8.\t\t\t\t\t#Number of cylinders\n",
"d = 8.57\t\t\t\t\t#Bore in cm\n",
"l = 8.25\t\t\t\t\t#Stroke in cm\n",
"r = 7.\t\t\t\t\t#Compression ratio\n",
"N = 4000.\t\t\t\t\t#Speed in r.p.m\n",
"la = 53.35\t\t\t\t\t#Length of the arm in cm\n",
"t = 10.\t\t\t\t\t#Test duration in min\n",
"br = 40.8\t\t\t\t\t#Beam reading in kg\n",
"gas = 0.455\t\t\t\t\t#gasoline in kg. In textbook, it is given wrong as 4.55\n",
"CV = 11400.\t\t\t\t\t#Calorific value in kcal/kg\n",
"Ta = 21.+273\t\t\t\t\t#Temperature of air in K\n",
"pa = 1.027\t\t\t\t\t#Pressure of air in kg/cm**2\n",
"wa = 5.44\t\t\t\t\t#Rate of air in kg/min\n",
"J = 427.\t\t\t\t\t#Mechanical equivalent of heat in kg.m/kcal\n",
"R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n",
"\n",
"\t\t\t\t\t\n",
"#Calculations\n",
"bhp = (2*3.14*N*br*la)/(4500*100)\t\t\t\t\t#Brake horse power in B.H.P\n",
"pb = (bhp*4500)/((n/2)*(l/100)*(3.14/4)*d**2*N)\t\t\t\t\t#Brake mean effective pressure in kg/cm**2\n",
"bsfc = (gas*60)/bhp\t\t\t\t\t#Brake specific fuel consumption in kg/b.h.p.hr\n",
"bsac = ((wa*60)/bhp)\t\t\t\t\t#Brake specific fuel consumption in kg/b.h.p.hr\n",
"nb = ((bhp*4500)/(J*gas*CV))*100\t\t\t\t\t#Brake thermal efficiency in percent\n",
"Vd = ((3.14/4)*d**2*l)\t\t\t\t\t#Piston print lacement in c.c/cycle\n",
"Pd = (Vd/10**6)*(N/2)*n\t\t\t\t\t#Piston print lacement in m**3/min\n",
"Va = ((wa*R*Ta)/(pa*10**4))\t\t\t\t\t#Volume of air used in m**3/min\n",
"nv = (Va/Pd)*100\t\t\t\t\t#Volumetric efficiency in percent\n",
"af = (wa/gas)\t\t\t\t\t#Air fel ratio\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'a) the B.H.P delivered s %3.0f h.p \\\n",
"\\nb) the b.m.e.p is %3.1f kg/cm**2 \\\n",
"\\nc) the b.s.f.c is %3.3f kg/b.h.p.hr \\\n",
"\\nd) the brake specific air consumption is %3.3f kg/b.h.p.hr \\\n",
"\\ne) the brake thermal efficiency is %3.1f percent \\\n",
"\\nf) the volumetric efficiency is %3.0f percent \\\n",
"\\ng) the air fuel ratio is %3.2f'%(bhp,pb,bsfc,bsac,nb,nv,af)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) the B.H.P delivered s 122 h.p \n",
"b) the b.m.e.p is 7.2 kg/cm**2 \n",
"c) the b.s.f.c is 0.225 kg/b.h.p.hr \n",
"d) the brake specific air consumption is 2.686 kg/b.h.p.hr \n",
"e) the brake thermal efficiency is 24.7 percent \n",
"f) the volumetric efficiency is 60 percent \n",
"g) the air fuel ratio is 11.96\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 Page no : 246"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"n = 4.\t\t\t\t\t#Number of cylinders\n",
"N = 2000.\t\t\t\t\t#Speed in r.p.m\n",
"m = 13.15\t\t\t\t\t#Mass of fuel in kg/hour\n",
"Vd = 655.5\t\t\t\t\t#Displacement volume in c.c\n",
"da = 1.2\t\t\t\t\t#Density of air in kg/m**3\n",
"d = 12.7\t\t\t\t\t#Manometer depression in cm\n",
"\t\t\t\t\t#Qa = 0.231*math.sqrt(ha); Qa is the flow rate in cu.m/min and ha is the pressure difference in metres\n",
"\n",
"\t\t\t\t\t\n",
"#Calculations\n",
"Qa = (0.231*math.sqrt(((d*1000)/da)/100))\t\t\t\t\t#Flow rate in cu.m/min\n",
"Wa = (Qa*da)\t\t\t\t\t#Weight of air in kg/min\n",
"Va = (Qa*(2/N)*(1/n))*10**6\t\t\t\t\t#Volume of air drawn in per cycle per cylinder in c.c\n",
"nv = (Va/Vd)*100\t\t\t\t\t#Volumetric efficiency in percent\n",
"af = (Wa/(m/60))\t\t\t\t\t#Air fuel ratio\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'a) the weight of air drawn is %3.3f kg/min \\\n",
"\\nb) volumetric efficiency taking air into account is %3.1f percent \\\n",
"\\nc) the air-fuel ratio is %i'%(Wa,nv,af)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) the weight of air drawn is 2.852 kg/min \n",
"b) volumetric efficiency taking air into account is 90.6 percent \n",
"c) the air-fuel ratio is 13\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 Page no : 248"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"d = 10.\t\t\t\t\t#Diameter in cm\n",
"l = 15.\t\t\t\t\t#Stroke in cm\n",
"r = 6.\t\t\t\t\t#Compression ratio\n",
"ihp = 20.\t\t\t\t\t#Indicated horse power in h.p\n",
"N = 1000.\t\t\t\t\t#Speed in r.p.m\n",
"n = 4.\t\t\t\t\t#Number of cylinders\n",
"nt = 30.\t\t\t\t\t#Thermal efficiency in percent\n",
"CV = 10000.\t\t\t\t\t#Calorific value in kca/kg\n",
"g = 1.4\t\t\t\t\t#Ratio of specific heats\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"Vs = ((3.14/4)*d**2*l)\t\t\t\t\t#Swept volume in c.c\n",
"Vc = (Vs/(r-1))\t\t\t\t\t#Clearance volume in c.c\n",
"na = (1-(1/r)**(g-1))*100\t\t\t\t\t#Air standard efficiency in percent\n",
"pm = ((ihp*4500)/((l/100)*(3.14/4)*(d/100)**2*(N/2)*n))\t\t\t\t\t#Pressure in kg/cm**2\n",
"pc = (ihp*4500*60)/(427*(nt/100)*CV)\t\t\t\t\t#Petrol consumption in kg/hr\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'Clearance volume is %3.1f c.c \\\n",
"\\nThe air standard efficiency is %3.1f percent \\\n",
"\\nPetrol consumption is %3.2f kg/hr'%(Vc,na,pc)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Clearance volume is 235.5 c.c \n",
"The air standard efficiency is 51.2 percent \n",
"Petrol consumption is 4.22 kg/hr\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6 Page no : 253"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\t\t\t\t\n",
"#Input data\n",
"n = 6.\t\t\t\t\t#Number of cylinders\n",
"P = 62.\t\t\t\t\t#Power in HP\n",
"N = 3000.\t\t\t\t\t#Speed in r.p.m\n",
"nv = 85.\t\t\t\t\t#Volumetric efficiency in percent\n",
"nt = 25.\t\t\t\t\t#Thermal efficiency in percent\n",
"CV = 10500.\t\t\t\t\t#Calorific value in kcal/kg\n",
"af = 15.\t\t\t\t\t#Air fuel ratio\n",
"T = 273.\t\t\t\t\t#standard atmosphere temperature in K\n",
"p = 1.03\t\t\t\t\t#standard atmosphere pressure in kg/cm**2\n",
"R = 29.27\t\t\t\t\t#Characteristic gas constant in kg.m/kg.K\n",
"J = 427.\t\t\t\t\t#Mechanical equivalent of heat in kg.m/kcal\n",
"\n",
"\t\t\t\t\t\n",
"#Calculations\n",
"q = (P*4500)/(J*(nt/100))\t\t\t\t\t#Heat supplied in kcal/min\n",
"F = (q/CV)\t\t\t\t\t#Fuel supplied per minute in kg\n",
"Fc = (F/N)*(2/n)\t\t\t\t\t#Fuel supplied per cycle per cylinder in kg\n",
"wt = (af*Fc)\t\t\t\t\t#Weight of air supplied per cycle in kg\n",
"d = ((((wt)*R*T)/(p*10**4*(3.14/4)*(nv/100)))**(1./3))*100\t\t\t\t\t#Diameter in cm\n",
"\n",
"\t\t\t\t\t\n",
"#Output\n",
"print 'Cylinder bore = stroke = %3.2f cm'%(d)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cylinder bore = stroke = 7.84 cm\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|