1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 01 : Energy Band in Solid"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2, Page No 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"\n",
"d=0.001 #distance between parallel plate in m\n",
"V=1000.0 #applied voltage\n",
"q=1.6*(10**-19) #charge on an electron\n",
"m = 9.1*(10**-31) #mass of electron in kg\n",
"#Time taken by electron to reach other side of parallel plate capacitor\n",
"E=V/d #Electric Field in V/m\n",
"#Formulae : s = u*t + (a*t^2)/2\n",
"\n",
"#Calculations\n",
"a = (q*E)/m #acceleration on electron in m/s^2\n",
"t = (2*d/a)**0.5 #time taken to reach the other side of plate\n",
"print(\"Time taken to reach other side = %.2f sec \" %t)\n",
"\n",
"#Magnitude of force exerted on electron\n",
"print('Since the potential is constant the force will be constant between the paltes of capacitor')\n",
"F=q*E #force\n",
"print(\"Force on electron = %.2f N \" %F)\n",
"#Velocity of electron at the other plate\n",
"#Formulae: v = u + a*t\n",
"v = a*t #velocity at the end of other plate\n",
"\n",
"#Results\n",
"print(\"V = %.2f m/sec \" %V)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time taken to reach other side = 0.00 sec \n",
"Since the potential is constant the force will be constant between the paltes of capacitor\n",
"Force on electron = 0.00 N \n",
"V = 1000.00 m/sec \n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|