1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 07 : Integrated Circuit Fabrication and Characteristic"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, Page No 215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"\n",
"print('At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed')\n",
"q = 1.6*(10**-19) #Charge of electron\n",
"yn=1300.0 #mobility of silicon\n",
"p = 0.5 #resistivity in ohm=cm\n",
"y=2.2\n",
"\n",
"#Calculations\n",
"t=2.0*3600 #in sec.\n",
"xi = 2.7*(10**-4) #Junction Depth in cm.\n",
"n = 1/(p*yn*q) #Concentration of doped silicon wafer\n",
"print(\"The concentration n = %.2f cm^-3 x 10^16\" %(n/10**16))\n",
"print('The junction is formed when N = n')\n",
"\n",
"#y = xi/(2*(D*t)^0.5)\n",
"D=((xi)**2/((2*y)**2*t)) #Diffusion Constant\n",
"\n",
"#Results\n",
"print(\"The value of Diffusion Constant for Boron = %.2f cm^2/sec X 10^-13\" %(D*10**13))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"At distance equal to x=xi at which N = concentration n of doped silicon wafers , the net impurity density is zero. Thus xi is the distance at which junction is formed\n",
"The concentration n = 0.96 cm^-3 x 10^16\n",
"The junction is formed when N = n\n",
"The value of Diffusion Constant for Boron = 5.23 cm^2/sec X 10^-13\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, Page No 215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"d=5.2*10**-13 #from previous example\n",
"depth=1.7*10**-4\n",
"t=2*3600.0\n",
"c=2.5*10**17 # boron concentration cm^3\n",
"\n",
"#Calculations\n",
"y = depth/(2*(math.sqrt(d*t)))\n",
"q=(c*(math.sqrt(math.pi*4*10**-13*3420)))/(math.exp(-((depth**2)/(4*4*10**-13*3420))))\n",
"\n",
"\n",
"#Results\n",
"print(\"The value of Y is = %.2f \" %(y))\n",
"print(\"The value of Q is = %.2f cm2 X 10^15 \" %(q/10**15))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of Y is = 1.39 \n",
"The value of Q is = 3.22 cm2 X 10^15 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3, Page No 222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"y=100.0*10**-4 #mm\n",
"h=500.0 #cm^2/V-s\n",
"p=10.0**16 #boron of concentration\n",
"\n",
"\n",
"#Calculations\n",
"Rs=1.0/(1.6*10**-19*h*p*y)\n",
"\n",
"#Results\n",
"print(\"The value of Rs sheet resistance is = %.2f ohm/sqare\" %(Rs))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of Rs sheet resistance is = 125.00 ohm/sqare\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4, Page No 223"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"Rs=100.0 #ohm/square\n",
"l=50.0 #mm\n",
"w=10 #mm\n",
"\n",
"\n",
"#Calculations\n",
"R=Rs*(l/w)\n",
"\n",
"#Results\n",
"print(\"The resistance of defused resistor is = %.2f ohm\" %(R))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resistance of defused resistor is = 500.00 ohm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5, Page No 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"A=100*10**-8 #mm^2\n",
"q=1.6*10**-19\n",
"Nd=10**16 #donor concentration /cm^3\n",
"e=11.9*8.85*10**-14\n",
"Vj=0.82 #v\n",
"\n",
"\n",
"#Calculations\n",
"C=A*math.sqrt((q*Nd*e)/(2*Vj))\n",
"\n",
"#Results\n",
"print(\"The capacitance is = %.f fF\" %(C*10**15))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance is = 32 fF\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6, Page No 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"A=100*10*10**-8 #mm^2\n",
"q=1.6*10**-19\n",
"e=11.9*8.85*10**-14\n",
"Vj=0.98 #v\n",
"Mn=1300.0\n",
"pn=0.01\n",
"\n",
"\n",
"\n",
"#Calculations\n",
"Nd=1/(q*Mn*pn) #donor concentration /cm^3\n",
"C=A*math.sqrt((q*Nd*e)/(2*Vj))\n",
"\n",
"#Results\n",
"print(\"The capacitance is = %.f pF\" %(C*10**12))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance is = 2 pF\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7, Page No 226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"e=3.9*8.85*10**-14\n",
"d=20*10**-8\n",
"\n",
"\n",
"#Calculations\n",
"C=(e/d)*(10**9/10**8)\n",
"\n",
"#Results\n",
"print(\"The capacitance per unit area is = %.2f fF/mM^2\" %(C*10**6))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance per unit area is = 17.26 fF/mM^2\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|