1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
{
"metadata": {
"name": "",
"signature": "sha256:cba451428c3d9c574800bbc1429b7e9efcd18af4b82f735faf4ac85b4ea52c65"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter02:The 741 IC OP-AMP"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.1:Pg-80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Ex 2.1\n",
"\n",
"# data from fig of Ex2.1\n",
"VCC=5.0;#V\n",
"IS=10**-14.0;#A\n",
"RS=39*1000.0;#ohm\n",
"VBE12=0.7;#V(Assumed)\n",
"VBE11=0.7;#V(Assumed)\n",
"VEE=-5;#V\n",
"IREF=(VCC-VBE12-VBE11-VEE)/RS*10**6;#micro A\n",
"print \"Estimated input reference current , IREF(micro A)\",round(IREF,2)\n",
"VT=25*10**-3;#V(Thermal Voltage)\n",
"VBE=VT*log(IREF*10**-6/IS);#V\n",
"IREF=(VCC-VBE-VBE-VEE)/RS*10**6;#micro A\n",
"print \"More precise value of reference current , IREF(micro A)\",round(IREF,2)\n",
"#Replacing Vcc by 15 V in the original design\n",
"VCC2=15.0;#V\n",
"VEE2=-15.0;#V\n",
"IREF=(VCC2-VBE-VBE-VEE2)/RS*10**6;#micro A\n",
"VBE=VT*log(IREF*10**-6/IS);#V\n",
"R5=(VCC-VBE-VBE-VEE)/(IREF*10**-6);#ohm\n",
"R5=round(R5/1000);#kohm\n",
"print \"Value of R5(kohm) : \",R5"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Estimated input reference current , IREF(micro A) 220.51\n",
"More precise value of reference current , IREF(micro A) 225.88\n",
"Value of R5(kohm) : 12.0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.2:Pg-81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Ex 2.2\n",
"import math\n",
"# data from fig of Ex2.2\n",
"IC10=20*10**-6;#A\n",
"IREF=0.5*10**-3;#A\n",
"IS=10**-14;#A\n",
"VT=25*10**-3;#V(Thermal Voltage)\n",
"R4=VT/IC10*math.log(IREF/IC10);#ohm\n",
"print \"For Widlar current source design, the value of R4(kohm) : \",round(R4/1000,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For Widlar current source design, the value of R4(kohm) : 4.02\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.3:Pg-82"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Ex 2.3\n",
"\n",
"import math\n",
"# given data\n",
"Gm1=10.0;#mA/V\n",
"Gm1=Gm1/1000;#A/V\n",
"Cc=50.0;#pF\n",
"Cc=Cc*10**-12;#F\n",
"Rt=10**8;#ohm(Shunting resistance with Cc)\n",
" # solution\n",
"Ao=Gm1*Rt;#unitless\n",
"fp=1/(2*math.pi*Rt*Cc);#Hz\n",
"ft=Gm1/(2*math.pi*Cc)/10**6;#MHz\n",
"print \"Frequency at which gain is maximum, fp in Hz\",round(fp,1)\n",
"print \"Unit gain frequency, ft(MHz)\",round(ft,1)\n",
"#Bode plot can not be plotted with the given data in the question by using python functions. \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency at which gain is maximum, fp in Hz 31.8\n",
"Unit gain frequency, ft(MHz) 31.8\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.4:Pg-83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Ex 2.4\n",
"\n",
"import math\n",
"# given data\n",
"SR=10.0/10**-6;#V/s\n",
"Vout=10.0;#V(magnitude of output voltage)\n",
"fm=SR/(2*math.pi*Vout)/1000;#kHz\n",
"print \"Full power bandwidth(kHz)\",round(fm,1)\n",
"VT=25.0/1000;#V(Thermal voltage)\n",
"ft=SR/(2*math.pi*4*VT)/10.0**6;#MHz\n",
"print \"Unity gain bandwidth(MHz)\",round(ft,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full power bandwidth(kHz) 159.2\n",
"Unity gain bandwidth(MHz) 15.9\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.5:Pg-84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Ex 2.5\n",
"\n",
"VCC=5;#V\n",
"VEE=-5;#V\n",
"VBE=0.6;#V\n",
"VCE23=0.6;#V\n",
"VCE_sat=0.2;#V\n",
"Vo_max=VCC-VCE_sat-VBE;#V\n",
"Vo_min=VEE+VCE_sat+VBE+VCE23;#V\n",
"print \"Maximum output voltage(V)\",round(Vo_max,2)\n",
"print \"Minimum output voltage(V)\",round(Vo_min,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum output voltage(V) 4.2\n",
"Minimum output voltage(V) -3.6\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|