summaryrefslogtreecommitdiff
path: root/Heat_and_Thermodynamics_by__Brijlal_and_N._Subrahmanyam/ch8.ipynb
blob: e07c2fb6502094e1c1354d703b62d5d98d168124 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
{
 "metadata": {
  "name": "",
  "signature": "sha256:e30b9c00a7a64c549fe856050903690b0947bb9d968fe683f359ed69004ad2d0"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8  :  Transmission of Heat"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1  Page No : 462"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "l1 = 10.  # Length of the copper rod in cm\n",
      "l2 = 4.  # Length of the iron rod in cm\n",
      "K1 = 0.9  # The thermal conductivity of copper\n",
      "\n",
      "# Calculations\n",
      "K2 = (l2**2 / l1**2) * K1  # The Thermal conductivity of iron\n",
      "\n",
      "# Output\n",
      "print 'The thermal conductivity of iron is K2 = %3.3f ' % (K2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thermal conductivity of iron is K2 = 0.144 \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2  Page No : 469"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "K = 0.2  # The thermal conductivity of the plate\n",
      "d = 0.2  # The thickness of the plate in cm\n",
      "A = 20.  # The area of the plate in cm**2\n",
      "T = 100.  # The temperature difference in degree centigrade\n",
      "t = 60.  # The given time in seconds\n",
      "\n",
      "# Calculations\n",
      "# The quantity of heat that will flow through the plate in one minute in cal\n",
      "Q = (K * A * T * t) / d\n",
      "\n",
      "# Output\n",
      "print 'The quantity of heat that will flow through the plate in one minute is Q = %3.4g cal ' % (Q)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The quantity of heat that will flow through the plate in one minute is Q = 1.2e+05 cal \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3  Page No : 473"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "l = 30.  # The length of the bar in cm\n",
      "A = 5.  # The uniform area of cross section of a bar in cm**2\n",
      "ta = 200.  # The temperature maintained at the end A in degree centigrade\n",
      "tc = 0.  # The temperature maintained at the end C in degree centigrade\n",
      "Kc = 0.9  # The thermal conductivity of copper\n",
      "Ki = 0.12  # The thermal conductivity of iron\n",
      "\n",
      "# Calculations\n",
      "# The temperature after the steady state is reached in degree centigrade\n",
      "T = ((Kc * A * ta) + (Ki * A * tc)) / ((Kc + Ki) * A)\n",
      "# The rate of flow of heat along the bar when the steady state is reached\n",
      "# in cal/sec\n",
      "Q = (Kc * A * (ta - T)) / (l / 2)\n",
      "\n",
      "# Output\n",
      "print 'The rate of flow of heat along the bar when the steady state is reached is Q = %3.2f cal/s ' % (Q)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The rate of flow of heat along the bar when the steady state is reached is Q = 7.06 cal/s \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4  Page No : 477"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "d1 = 1.75  # The thickness of the wood in cm\n",
      "d2 = 3.  # The thickness of the cork in cm\n",
      "t2 = 0.  # The temperature of the inner surface of the cork in degree centigrade\n",
      "t1 = 12.  # The temperature of the outer surface of the wood in degree centigrade\n",
      "K1 = 0.0006  # The thermal conductivity of wood\n",
      "K2 = 0.00012  # The thermal conductivity of cork\n",
      "\n",
      "# Calculations\n",
      "# The temperature of the interface in degree centigrade\n",
      "T = (((K1 * t1) / d1) + ((K2 * t2) / d2)) / ((K1 / d1) + (K2 / d2))\n",
      "\n",
      "# Output\n",
      "print 'The temperature of the interface is T = %3.2f degree centigrade ' % (T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The temperature of the interface is T = 10.75 degree centigrade \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5  Page No : 483"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "x1 = 3.  # The thickness of the ice layer on the surface of a pond in cm\n",
      "x = 1.  # The increase in the thickness of the ice when the temperature is maintained at -20 degree centigrade in mm\n",
      "# The increased thickness of the ice layer on the surface of a pond in cm\n",
      "x2 = x1 + (x / 10)\n",
      "T = -20  # The temperature of the surrounding air in degree centigrade\n",
      "d = 0.91  # The density of ice at 0 degree centigrade in g/cm**3\n",
      "L = 80.  # The latent heat of ice in cal/g\n",
      "K = 0.005  # The thermal conductivity of ice\n",
      "\n",
      "# Calculations\n",
      "# The time taken to increase its thickness by 1 mm in sec\n",
      "t = ((d * L) / (2 * K * (-T))) * (x2**2 - x1**2)\n",
      "t1 = t / 60  # The time taken to increase its thickness by 1 mm in min\n",
      "\n",
      "# Output\n",
      "print 'The time taken to increase its thickness by 1 mm is t = %3.2f s' % (t)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time taken to increase its thickness by 1 mm is t = 222.04 s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.6  Page No : 485"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Input data\n",
      "x1 = 10.  # The thickness of the ice layer on the surface of a pond in cm\n",
      "x = 5.  # The increase in the thickness of the ice when the temperature is maintained at -10 degree centigrade in cm\n",
      "# The increased thickness of the ice layer on the surface of a pond in cm\n",
      "x2 = x1 + (x)\n",
      "T = -10  # The temperature of the surrounding air in degree centigrade\n",
      "d = 0.90  # The density of ice at 0 degree centigrade in g/cm**3\n",
      "L = 80.  # The latent heat of ice in cal/g\n",
      "K = 0.005  # The thermal conductivity of ice\n",
      "\n",
      "# Calculations\n",
      "# The time taken to increase its thickness by 5 cm in sec\n",
      "t = ((d * L) / (2 * K * (-T))) * (x2**2 - x1**2)\n",
      "# The time taken to increase its thickness by 5 cm in hours\n",
      "t1 = t / (60. * 60)\n",
      "\n",
      "# Output\n",
      "print 'The time taken to increase its thickness by 5 cm is t = %3.0g s (or) %3.0f hours' % (t, t1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time taken to increase its thickness by 5 cm is t = 9e+04 s (or)  25 hours\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7  Page No : 490"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# input data\n",
      "# The temperature maintained on one sphere (black body radiat(or) in K\n",
      "T1 = 300.\n",
      "# The temperature maintained on another sphere (black body radiat(or) in K\n",
      "T2 = 200.\n",
      "s = 5.672 * 10**-8  # Stefans constant in M.K.S units\n",
      "\n",
      "# Calculations\n",
      "# The net rate of energy transfer between the two spheres in watts/m**2\n",
      "R = s * (T1**4 - T2**4)\n",
      "\n",
      "# output\n",
      "print 'The net rate of energy transfer between the two spheres is R = %3.2f watts/m^2' % (R)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net rate of energy transfer between the two spheres is R = 368.68 watts/m^2\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8  Page No : 495"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "# Input data\n",
      "T1 = 400.  # The given temperature of a black body in K\n",
      "T2 = 4000.  # The given temperature of a black body in K\n",
      "s = 5.672 * 10**-8  # Stefans constant in M.K.S units\n",
      "\n",
      "# Calculations\n",
      "R1 = s * T1**4  # The radiant emittance of a black body at 400 k in watts/m**2\n",
      "# The radiant emittance of a black body at 4000 k in kilo-watts/m**2\n",
      "R2 = (s * T2**4) / 1000\n",
      "\n",
      "# Output\n",
      "print 'The Radiant emittance of a black body at a temperature of ,\\n (i) 400 K  is  R = %3.0f watts/m^2 \\n (ii) 4000 K  is  R = %3.0f kilo-watts/m^2' % (R1, R2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Radiant emittance of a black body at a temperature of ,\n",
        " (i) 400 K  is  R = 1452 watts/m^2 \n",
        " (ii) 4000 K  is  R = 14520 kilo-watts/m^2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.9  Page No : 500"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Input data\n",
      "e = 0.35  # The relative emittance of tungsten\n",
      "A = 10.**-3  # The surface area of a tungsten sphere in m**2\n",
      "T1 = 300.  # The temperature of the walls in K\n",
      "T2 = 3000.  # The temperature to be maintained by the sphere in K\n",
      "s = 5.672 * 10**-8  # Stefans constant in M.K.S units\n",
      "\n",
      "# Calculations\n",
      "# The power input required to maintain the sphere at 3000 K in watts\n",
      "R = s * A * e * (T2**4 - T1**4)\n",
      "\n",
      "# Output\n",
      "print 'The power input required to maintain the sphere at 3000 K is R = %3.0f watts' % (R)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power input required to maintain the sphere at 3000 K is R = 1608 watts\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.10  Page No : 507"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Input data\n",
      "e = 0.1  # The relative emittance of an aluminium foil\n",
      "T1 = 300.  # The temperature of one sphere in K\n",
      "T2 = 200.  # The temperature of another sphere in K\n",
      "s = 5.672 * 10**-8  # Stefans constant in M.K.S units\n",
      "\n",
      "# Calculations\n",
      "# The temperature of the foil after the steady state is reached in K\n",
      "x = (((T1**4 + T2**4) / 2)**(1. / 4))\n",
      "# The rate of energy transfer between one of the spheres and foil in watts/m**2\n",
      "R = e * s * (T1**4 - x**4)\n",
      "\n",
      "# Output\n",
      "print '1)The temperature of the foil after the steady state reached is x = %3.1f K  \\\n",
      "\\n2)The rate of energy transfer between the sphere and the foil is R = %3.1f watts/m^2' % (x, R)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "1)The temperature of the foil after the steady state reached is x = 263.9 K  \n",
        "2)The rate of energy transfer between the sphere and the foil is R = 18.4 watts/m^2\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.11  Page No : 513"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Input data\n",
      "A = 5. * 10**-5  # The surface area of the filament in m**2\n",
      "e = 0.85  # The relative emittance of the filament\n",
      "s = 5.672 * 10**-8  # Stefans constant in M.K.S units\n",
      "t = 60.  # The time in seconds\n",
      "T = 2000.  # The temperature of the filament of an incandescent lamp in K\n",
      "\n",
      "# Calculations\n",
      "E = A * e * s * t * (T**4)  # The energy radiated from the filament in joules\n",
      "\n",
      "# Output\n",
      "print 'The energy radiated from the filament is E = %3.0f joules ' % (E)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy radiated from the filament is E = 2314 joules \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.12  Page No : 520"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Input data\n",
      "E = 1.53 * 10**5  # The energy radiated from an iron furnace in calories per hour\n",
      "A = 10.**-4  # The cross section area of an iron furnace in m**2\n",
      "e = 0.8  # The relative emittance of the furnace\n",
      "t = 3600.  # The time in seconds\n",
      "s = 1.36 * 10**-8  # Stefans constant in cal/m**2-s-K**4\n",
      "\n",
      "# Calculations\n",
      "T = ((E) / (A * e * s * t))**(1. / 4)  # The temperature of the furnace in K\n",
      "\n",
      "# Output\n",
      "print 'The temperature of the furnace is T = %3.0f K ' % (T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The temperature of the furnace is T = 2500 K \n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.13  Page No : 524"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Input data\n",
      "S = 2.3  # Solar constant in cal/cm**2/minute\n",
      "r = 7. * 10**10  # The radius of the sun in cm\n",
      "R = 1.5 * 10**13  # The distance between the sun and the earth in cm\n",
      "s = 1.37 * 10**-12  # Stefans constant in cal/cm**2/s\n",
      "\n",
      "# Calculations\n",
      "E = (S / 60) * (R / r)**(2)  # The energy radiated from the sun in cal/s\n",
      "T = (E / s)**(1. / 4)  # The black body temperature of the sun in K\n",
      "\n",
      "# Output\n",
      "print 'The black body temperature of the sun is T = %3.0f K ' % (T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The black body temperature of the sun is T = 5987 K \n"
       ]
      }
     ],
     "prompt_number": 14
    }
   ],
   "metadata": {}
  }
 ]
}