1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
{
"metadata": {
"name": "",
"signature": "sha256:981d9d414fb3ccab1f09efa00cc14135798c564e57ce294278994d4eafe77df4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Calorimetry\n"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 49"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Input data\n",
"T = 5. # Time taken for a liquid to cool from 80 to 50 degree centigrade in minutes\n",
"t11 = 80. # The initial temperature of the liquid in degree centigrade\n",
"t12 = 50. # The final temperature of the liquid in degree centigrade\n",
"t21 = 60. # If the initial temperature of the liquid in degree centigrade\n",
"t22 = 30. # If the final temperature of the liquid in degree centigrade\n",
"ts = 20. # The temperature of the surrounding in degree centigrade\n",
"\n",
"# Calculations\n",
"# The time taken for the liquid to cool from 60 to 30 degree centigrade in\n",
"# minutes\n",
"T1 = ((math.log((t22 - ts) / (t21 - ts))) /\n",
" (math.log((t12 - ts) / (t11 - ts)))) * T\n",
"\n",
"# Output\n",
"print 'The time taken for a liquid to cool from 60 to 30 degree centigrade is t = %3.0f minutes ' % (T1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time taken for a liquid to cool from 60 to 30 degree centigrade is t = 10 minutes \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"dw = 1. # The density of water in g/cm**3\n",
"da = 0.8 # The density of alcohol in g/cm**3\n",
"t1 = 100. # The time taken for the water to cool from 50 to 40 degree centigrade in seconds\n",
"t2 = 74. # The time taken for the alcohol to cool from 50 to 40 degree centigrade in seconds\n",
"V = 1. # Let the volume of either liquid be in cm**3\n",
"\n",
"# Calculations\n",
"m = V * dw # The mass of water in g\n",
"M = V * da # The mass of alcohol in g\n",
"w = V # Water equivalent of each calorimeter in cm**3\n",
"# The specific heat of alcohol in calorie/g-K\n",
"C = ((((m + w) * t2) / (M * t1)) - (w / M))\n",
"\n",
"# Output\n",
"print 'The specific heat of alcohol is C = %3.1f calorie/g-K' % (C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The specific heat of alcohol is C = 0.6 calorie/g-K\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page No : 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Input data\n",
"t = 5. # Time taken for a body to cool from 60 to 40 degree centigrade in minutes\n",
"t11 = 60. # The initial temperature of the body in degree centigrade\n",
"t12 = 40. # The final temperature of the body in degree centigrade\n",
"ts = 10. # The temperature of the surrounding in degree centigrade\n",
"\n",
"# Calculations\n",
"# The constant value for the first case at ts\n",
"K = math.log((t12 - ts) / (t11 - ts))\n",
"# The temperature after the next 5 minutes in degree centigrade\n",
"x = ((math.exp(K)) * (t12 - ts)) + ts\n",
"\n",
"# Output\n",
"print 'The temperature after the next 5 minutes is x = %3.0f degree centigrade ' % (x)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature after the next 5 minutes is x = 28 degree centigrade \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Input data\n",
"T = 4. # Time taken for a liquid to cool from 70 to 50 degree centigrade in minutes\n",
"t11 = 70. # The initial temperature of the liquid in degree centigrade\n",
"t12 = 50. # The final temperature of the liquid in degree centigrade\n",
"t21 = 50. # If the initial temperature of the liquid in degree centigrade\n",
"t22 = 40. # If the final temperature of the liquid in degree centigrade\n",
"ts = 25. # The temperature of the surrounding in degree centigrade\n",
"\n",
"# Calculations\n",
"# The time taken for the liquid to cool from 50 to 40 degree centigrade in\n",
"# minutes\n",
"T1 = ((math.log((t22 - ts) / (t21 - ts))) /\n",
" (math.log((t12 - ts) / (t11 - ts)))) * T\n",
"\n",
"# Output\n",
"print 'The time taken for a liquid to cool from 50 to 40 degree centigrade is t = %3.3f minutes ' % (T1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time taken for a liquid to cool from 50 to 40 degree centigrade is t = 3.476 minutes \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Input data\n",
"t = 6. # Time taken for a liquid to cool from 80 to 60 degree centigrade in minutes\n",
"T = 10. # To find the temperature after the time in minutes\n",
"t11 = 80. # The initial temperature of the liquid in degree centigrade\n",
"t12 = 60. # The final temperature of the liquid in degree centigrade\n",
"ts = 30. # The temperature of the surrounding in degree centigrade\n",
"\n",
"# Calculations\n",
"# The constant value for the first case at ts\n",
"K = (math.log((t12 - ts) / (t11 - ts))) / (-t)\n",
"# The temperature after the next 10 minutes in degree centigrade\n",
"x = ((math.exp(-T * K)) * (t12 - ts)) + ts\n",
"\n",
"# Output\n",
"print 'The temperature after the next 10 minutes is x = %3.2f degree centigrade ' % (x)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature after the next 10 minutes is x = 42.80 degree centigrade \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Input data\n",
"t = 5. # The time taken for a body to cool from 80 to 64 degree centigrade in minutes\n",
"t11 = 80. # The initial temperature of the body in degree centigrade\n",
"t12 = 64. # The final temperature of the body in degree centigrade\n",
"t21 = 52. # The temperature of the body after 10 minutes in degree centigrade\n",
"T = 10. # The time taken for a body to cool from 80 to 52 degree centigrade in minutes\n",
"T1 = 15. # To find the temperature after the time in minutes\n",
"\n",
"# Calculations\n",
"# The temperature of the surroundings in degree centigrade\n",
"ts = ((t21 * t11) - (t12**2)) / (t11 + t21 - (2 * t12))\n",
"# The constant value for the first case at ts\n",
"K = (math.log((t21 - ts) / (t12 - ts)))\n",
"# The temperature after the next 15 minutes in degree centigrade\n",
"x = ((math.exp(K)) * (t21 - ts)) + ts\n",
"\n",
"# Output\n",
"print '(1)The temperature of the surroundings is %3.0f degree centigrade \\n (2)The temperature after the 15 minutes is %3.0f degree centigrade ' % (ts, x)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1)The temperature of the surroundings is 16 degree centigrade \n",
" (2)The temperature after the 15 minutes is 43 degree centigrade \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7 Page No : 76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"t2 = 2. # The time taken for the liquid to cool from 50 to 40 degree centigrade in minutes\n",
"t11 = 50. # The initial temperature of the liquid in degree centigrade\n",
"t12 = 40. # The final temperature of the liquid in degree centigrade\n",
"t1 = 5. # The time taken for the water to cool from 50 to 40 degree centigrade in minutes\n",
"m = 100. # The mass of water in gms\n",
"M = 85. # The mass of liquid in gms\n",
"w = 10. # Water equivalent of the vessel in gms\n",
"\n",
"# Calculations\n",
"# The specific heat of a liquid in calories/g-K\n",
"C = (((m + w) * (t2 * 60)) / (M * (t1 * 60))) - (w / M)\n",
"\n",
"# Output\n",
"print 'The specific heat of a liquid is C = %3.1f calories/g-K' % (C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The specific heat of a liquid is C = 0.4 calories/g-K\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8 Page No : 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"V = 22400. # The volume of One gram molecule of a gas at N.T.P in cm**3\n",
"p = 76. # The pressure in cm of Hg\n",
"T = 273. # The temperature in K\n",
"\n",
"# Calculations\n",
"P = p * 13.6 * 981 # The pressure in dynes/cm**2\n",
"# The universal gas constant for one gram molecule of a gas in ergs/mole-K\n",
"R = (P * V) / T\n",
"\n",
"# Output\n",
"print 'The universal gas constant for one gram molecule of a gas is R = %3.4g ergs/mole-K' % (R)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The universal gas constant for one gram molecule of a gas is R = 8.32e+07 ergs/mole-K\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page No : 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"Cp = 0.23 # Specific heat of air at constant pressure\n",
"J = 4.2 * 10**7 # The amount of energy in ergs/cal\n",
"d = 1.293 # The density of air at N.T.P in g/litre\n",
"p = 76. # The pressure in cm of Hg\n",
"T = 273. # The temperature in K\n",
"\n",
"# Calculations\n",
"P = p * 13.6 * 980 # The pressure in dynes/cm**2\n",
"V = (1000 / d) # Volume of one gram of air at N.T.P in cm**3\n",
"r = (P * V) / T # The gas constant for one gram of a gas in ergs/g-K\n",
"Cv = Cp - (r / J) # Specific heat of air at constant volume\n",
"\n",
"# Output\n",
"print 'The specific heat of air at constant volume is Cv = %3.4f ' % (Cv)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The specific heat of air at constant volume is Cv = 0.1617 \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page No : 88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"w = 4. # The Molecular weight of helium\n",
"v = 22400. # The volume of one gram molecule of a gas at N.T.P in cm**3\n",
"p = 76. # The pressure in cm of Hg\n",
"T = 273. # The temperature in K\n",
"J = 4.2 * 10**7 # The amount of energy in ergs/cal\n",
"\n",
"# Calculations\n",
"V = (v / w) # The volume of one gram of helium at N.T.P in cm**3\n",
"P = p * 13.6 * 980 # The pressure in dynes/cm**2\n",
"r = (P * V) / T # The gas constant for one gram of a gas in ergs/g-K\n",
"C = r / J # The difference in the two specific heats of one gram of helium\n",
"\n",
"# Output\n",
"print 'The difference in the two specific heats of one gram of helium is Cp-Cv = %3.4f' % (C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The difference in the two specific heats of one gram of helium is Cp-Cv = 0.4947\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page No : 94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"V = 25. # Volume of gasoline consumed by an engine in litres/hour\n",
"cv = 6. * 10**6 # The calorific value of gasoline in calories/litre\n",
"P = 35. # The output of the engine in kilowatts\n",
"\n",
"# Calculations\n",
"h = V * cv # Total heat produced by gasoline in one hour in calories\n",
"H = h / 3600 # Heat produced per second in cal/s\n",
"I = H * 4.2 # Heat produced per second in joules/s or watts\n",
"E = ((P * 1000) / I) * 100 # The efficiency in percent\n",
"\n",
"# Output\n",
"print 'The efficiency of the engine is %3.0f percent ' % (E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of the engine is 20 percent \n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|