1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
|
{
"metadata": {
"name": "",
"signature": "sha256:2d895fa6539cb401c1ac187f55507dc2067d26b87e5503473e832266dbcbd295"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 : Nature of Heat"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 Page No : 159"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 480. # The velocity of a lead bullet in m/s\n",
"Sp = 0.03 # Specific heat of lead cal/g-K\n",
"\n",
"# Calculations\n",
"m = 10. # Let us assume the mass of bullet in gms\n",
"V = v * 100 # The velocity of the bullet in cm/s\n",
"W = (1. / 2) * m * (V**2) # The work done in ergs\n",
"J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
"H = W / J # The amount of heat produced in cals\n",
"H1 = H / 2 # Half of the heat energy is used to raise the temperature of the bullet in cals\n",
"t = H1 / (m * Sp) # The rise in the temperature in degree centigrade\n",
"\n",
"# Output\n",
"print 'The rise in the temperature is t = %3.2f degree centigrade ' % (t)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rise in the temperature is t = 457.14 degree centigrade \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2 Page No : 162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"t = 1. # The increase in the temperature of a piece of aluminium in degree centigrade\n",
"a = 6. * 10**23 # The number of atoms present in 27 g of aluminium in atoms\n",
"Sp = 0.22 # The specific heat of aluminium in cal/g-K\n",
"m = 27. # The amount of aluminium in g\n",
"J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
"\n",
"# Calculations\n",
"H = m * Sp * t # Heat required to raise the temperature of 27 gms of aluminium by 1 degree centigrade in cals\n",
"E = m * Sp * J # Energy gained by atoms of aluminium in ergs\n",
"E1 = E / a # Increase in energy per atom of aluminium in ergs\n",
"\n",
"# Output\n",
"print 'The increase in energy per atom of aluminium is %3.4g ergs ' % (E1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The increase in energy per atom of aluminium is 4.158e-16 ergs \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3 Page No : 168"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"h = 50. # The height from which water falls in metres\n",
"m = 100. # Let us assume the mass of the water in gms\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"J = 4.2 * 10**7 # The mechanical equivalent of heat in ergs/calorie\n",
"\n",
"# Calculations\n",
"h1 = h * 100 # The height from which water falls in cm\n",
"W = m * g * h1 # The work done in ergs\n",
"t = W / (J * m) # The rise in temperature of water in degree centigrade\n",
"\n",
"# Output\n",
"print 'The rise in temperature of water is t = %3.3f degree centigrade ' % (t)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rise in temperature of water is t = 0.117 degree centigrade \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4 Page No : 174"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 1. # The volume of oxygen at N.T.P in cm**3\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"r = 4.62 * 10**4 # The R.M.S velocity of oxygen molecules at 0 degree centigrade in cm/s\n",
"m = 52.8 * 10**-24 # Mass of one molecule of oxygen in g\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"\n",
"# Calculations\n",
"P = 76. * g * d # The pressure in dynes/cm**2\n",
"n = ((3 * P) / (m * r**2)) # Number of molecules in 1 cc of oxygen at N.T.P\n",
"\n",
"# Output\n",
"print 'The number of molecules in 1 c.c of oxygen at N.T.P is n = %3.4g ' % (n)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of molecules in 1 c.c of oxygen at N.T.P is n = 2.696e+19 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5 Page No : 177"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"t = -100 # The given temperature in degree centigrade\n",
"\n",
"# Calculations\n",
"T1 = t + 273 # The given temperature in K\n",
"m1 = 1. # number of hydrogen molecules\n",
"m2 = 16. # number of oxygen molecules\n",
"m = m2 / m1 # Number of oxygen molecules to the hydrogen molecules\n",
"T2 = (T1 * m) - 273 # The temperature in degree centigrade\n",
"\n",
"# Output\n",
"print 'The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = %3.0f degree centigrade ' % (T2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature at which the oxygen molecules have the same root mean square velocity as that of hydrogen molecules is T2 = 2495 degree centigrade \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6 Page No : 180"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"t = 27. # The given temperature in degree centigrade\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"m1 = 16. # number of oxygen molecules\n",
"D = 0.000089 # The density of hydrogen at N.T.P in g/cc\n",
"T = 273. # The temperature at N.T.P in K\n",
"\n",
"# Calculations\n",
"P = 76. * g * d # The pressure in dynes/cm**2\n",
"p = m1 * D # The density of oxygen at N.T.P in g/cc\n",
"C = ((3 * P) / (p))**(1. / 2) # The RMS velocity of oxygen molecule in cm/s\n",
"T1 = t + T # The given temperature in K\n",
"# The RMS velocity of the molecules at 27 degree centigrade in cm/s\n",
"C1 = C * (T1 / T)**(1. / 2)\n",
"\n",
"# Output\n",
"print 'The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = %3.4g cm/s ' % (C1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = 4.843e+04 cm/s \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.7 Page No : 186"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"m = 3.2 # Mass of oxygen in gms\n",
"t = 27. # The given temperature in degree centigrade\n",
"p = 76. # The pressure in cm of Hg\n",
"R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"\n",
"# Calculations\n",
"P = p * g * d # The given pressure in dynes/cm**2\n",
"T = t + 273 # The given temperature in K\n",
"V = (T * R) / P # Volume per g mol of oxygen in cc per g mol\n",
"m1 = 32. # Molecular weight of Oxygen\n",
"V1 = V * (m / m1) # Volume of 3.2 g of oxygen in cc\n",
"\n",
"# Output\n",
"print 'The Volume occupied by 3.2 gms of Oxygen is V = %3.0f cc ' % (V1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Volume occupied by 3.2 gms of Oxygen is V = 2461 cc \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.9 Page No : 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 1. # The volume of an Ideal gas at N.T.P in m**3\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"p = 76. # The pressure in cm of Hg\n",
"R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"N = 6.023 * 10**23 # The Avogadro number\n",
"T = 273. # The temperature at N.T.P in K\n",
"\n",
"# Calculations\n",
"P = p * g * d # The given pressure in dynes/cm**2\n",
"x = (P * N * 10**6) / (R * T) # Number of molecules in one cubic metre volume\n",
"\n",
"# Output\n",
"print 'The number of molecules in one cubic metre of an ideal gas at N.T.P is x = %3.4g ' % (x)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of molecules in one cubic metre of an ideal gas at N.T.P is x = 2.689e+25 \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.10 Page No : 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 1. # The volume of an ideal gas in litre\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"p = 76. # The pressure in cm of Hg\n",
"R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"N = 6.023 * 10**23 # The Avogadro number\n",
"T = 273. # The temperature at N.T.P in K\n",
"t = 136.5 # The given temperature in degree centigrade\n",
"p1 = 3. # The given atmospheric pressure in atm pressure\n",
"\n",
"# Calculations\n",
"T1 = T + t # The given temperature in K\n",
"P = p * g * d # The given pressure in dynes/cm**2\n",
"x = (p1 * P * N * 10**3) / (R * T1) # Number of molecules in one litre volume\n",
"\n",
"# Output\n",
"print 'The number of molecules in one litre of an ideal gas volume is x = %3.4g ' % (x)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of molecules in one litre of an ideal gas volume is x = 5.378e+22 \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.11 Page No : 203"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 1. # The volume of a gas in cc\n",
"d = 13.6 # The density of mercury in g/cm**3\n",
"p2 = 10.**-7 # The pressure in cm of Hg\n",
"g = 980. # Gravitational constant in gms/s**2\n",
"p1 = 76. # The pressure in cm of Hg\n",
"R = 8.31 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"N = 6.023 * 10**23 # The Avogadro number\n",
"T = 273. # The temperature at N.T.P in K\n",
"n1 = 2.7 * 10**19 # The number of molecules per cc of gas at N.T.P\n",
"t2 = 0. # The given temperature in degree centigrade\n",
"t3 = 39. # The given temperature in degree centigrade\n",
"\n",
"# Calculations\n",
"P1 = p1 * g * d # The given pressure in dynes/cm**2\n",
"P2 = p2 * g * d # The given pressure in dynes/cm**2\n",
"# The number of molecules per cc of the gas at 0 degree centigrade\n",
"n2 = n1 * (P2 / P1)\n",
"T2 = t2 + 273 # The given temperature in K\n",
"T3 = t3 + 273 # The given temperature in K\n",
"# The number of molecules per cc of the gas at 398 degree centigrade\n",
"n3 = n2 * (T2 / T3)\n",
"\n",
"# Output\n",
"print 'The number of molecules per cc of the gas , \\n (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = %3.4g \\n (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = %3.4g' % (n2, n3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of molecules per cc of the gas , \n",
" (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = 3.553e+10 \n",
" (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = 3.109e+10\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.12 Page No : 208"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 300. # The given temperature in K\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"\n",
"# Calculations\n",
"# The total random kinetic energy per gram -molecule of oxygen in joules\n",
"E = ((3. / 2) * (R * T)) / 10**7\n",
"\n",
"# Output\n",
"print 'The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules' % (E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = 3735 joules\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.13 Page No : 213"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 300. # The given temperature in K\n",
"k = 1.38 * 10**-16 # Boltzmann constant in erg/molecule-deg\n",
"\n",
"# Calculations\n",
"E = (3. / 2) * k * T # The average Kinetic energy of a molecule in ergs\n",
"\n",
"# Output\n",
"print 'The Average Kinetic energy of a molecule of a gas at 300 K is K.E = %3.4g ergs ' % (E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Average Kinetic energy of a molecule of a gas at 300 K is K.E = 6.21e-14 ergs \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.14 Page No : 220"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"R = 8.32 # Universal gas constant in joules/mole-K\n",
"t = 727. # The given temperature in degree centigrade\n",
"N = 6.06 * 10**23 # The Avogadro number\n",
"\n",
"# Calculations\n",
"T = 273. + t # The given temperature in K\n",
"k = R / N # Boltzmann constant in joules/mol-K\n",
"E = (3. / 2) * k * T # Mean translational kinetic energy per molecule in joules\n",
"\n",
"# Output\n",
"print 'The mean translational kinetic energy per molecule is K.E = %3.4g joule ' % (E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean translational kinetic energy per molecule is K.E = 2.059e-20 joule \n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.15 Page No : 224"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 300. # The given temperature in K\n",
"M = 28. # Molecular weight of nitrogen in g\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"\n",
"# Calculations\n",
"E = (3. / 2) * R * T # The total random kinetic energy of nitrogen in ergs\n",
"# The total random kinetic energy of one gram of nitrogen at 300 K in joule\n",
"E1 = E / (M * 10**7)\n",
"\n",
"# Output\n",
"print 'The total random kinetic energy of one gram of nitrogen at 300 K is K.E = %3.1f joule ' % (E1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total random kinetic energy of one gram of nitrogen at 300 K is K.E = 133.4 joule \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.16 Page No : 228"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 200. # The given temperature in K\n",
"m = 2. # Given mass of Helium in g\n",
"M = 4. # Molecular weight of helium in g\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"\n",
"# Calculations\n",
"# The energy for 2 g of helium in joules\n",
"E = (m * (3. / 2) * (R * T) / (M)) / 10**7\n",
"\n",
"# Output\n",
"print 'The total random kinetic energy of 2 g of helium at 200 K is K.E = %3.0f joules' % (E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total random kinetic energy of 2 g of helium at 200 K is K.E = 1245 joules\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.17 Page No : 233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 300. # The given temperature in K\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"M = 221. # The molecular weight of mercury\n",
"\n",
"# Calculations\n",
"# The root mean square velocity of a molecule of mercury vapour at 300 K\n",
"# in cm/s\n",
"C = ((3 * R * T) / (M))**(1. / 2)\n",
"\n",
"# Output\n",
"print 'The root mean square velocity of a molecule of mercury vapour at 300 K is C = %3.4g cm/s ' % (C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The root mean square velocity of a molecule of mercury vapour at 300 K is C = 1.839e+04 cm/s \n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.18 Page No : 239"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"T = 300. # The given temperature in K\n",
"M = 32. # Molecular weight of oxygen\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"\n",
"# Calculations\n",
"# Total random kinetic energy of 1 g molecule of oxygen in ergs\n",
"E = (3. / 2) * R * T\n",
"# The required speed of one gram molecule of oxygen in cm/s\n",
"v = ((E) * (2 / M))**(1. / 2)\n",
"\n",
"# Output\n",
"print 'The required speed of one gram molecule of oxygen is v = %3.2g cm/s ' % (v)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required speed of one gram molecule of oxygen is v = 4.8e+04 cm/s \n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.19 Page No : 242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"v = 8. # The speed of the earths first satellite in km/s\n",
"R = 8.3 * 10**7 # The Universal gas constant in ergs/g mol-K\n",
"M = 2. # Molecular weight of hydrogen\n",
"\n",
"# Calculations\n",
"V = v * 10**5 # The speed of the earths first satellite in cm/s\n",
"T = (M * V**2) / (3 * R) # The temperature at which it becomes equal in K\n",
"\n",
"# Output\n",
"print 'The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = %3.4g K' % (T)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature at which the r.m.s velocity of a hydrogen molecule will be equal to the speed of earths first satellite is T = 5141 K\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.20 Page No : 248"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"t1 = 0. # The given temperature in degree centigrade\n",
"\n",
"# Calculations\n",
"T1 = t1 + 273 # The given temperature in K\n",
"# The temperature at which the r.m.s velocity of a gas be half its value\n",
"# at 0 degree centigrade in K\n",
"T2 = (1. / 2)**2 * T1\n",
"T21 = T2 - 273 # The required temperature in degree centigrade\n",
"\n",
"# Output\n",
"print 'The required temperature is T2 = %3.2f K (or) %3.2f degree centigrade ' % (T2, T21)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required temperature is T2 = 68.25 K (or) -204.75 degree centigrade \n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.21 Page No : 252"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Input data\n",
"n = 1.66 * 10**-4 # The viscosity of the gas in dynes/cm**2\n",
"C = 4.5 * 10**4 # The R.M.S velocity of the molecules in cm/s\n",
"d = 1.25 * 10**-3 # The density of the gas in g/cc\n",
"N = 6.023 * 10**23 # The Avogadro number\n",
"V = 22400. # The volume of a gas at N.T.P in cc\n",
"pi = 3.142 # The mathematical constant of pi\n",
"\n",
"# Calculations\n",
"L = (3 * n) / (d * C) # The mean free path of the molecules of the gas in cm\n",
"F = (C / L) # The frequency collision in per sec\n",
"n = N / V # Number of molecules per cc\n",
"# Molecular diameter of the gas molecules in cm\n",
"D = 1. / ((1.414 * pi * n * L)**(1. / 2))\n",
"\n",
"# Output\n",
"print '(1)The mean free path of the molecules of the gas is %3.0g cm \\n (2)The frequency of collision is N = %3.0g /sec \\n (3)Molecular diameter of the gas molecules is d = %3.0g cm ' % (L, F, D)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1)The mean free path of the molecules of the gas is 9e-06 cm \n",
" (2)The frequency of collision is N = 5e+09 /sec \n",
" (3)Molecular diameter of the gas molecules is d = 3e-08 cm \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.22 Page No : 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"n = 2.25 * 10**-4 # The viscosity of the gas in dynes/cm**2\n",
"C = 4.5 * 10**4 # The RMS velocity of the molecules in cm/s\n",
"d = 10.**-3 # The density of the gas in g/cc\n",
"\n",
"# Calculations\n",
"L = (3 * n) / (d * C) # The mean free path of the molecules in cm\n",
"\n",
"# Output\n",
"print 'The mean free path of the molecules is %3g cm ' % (L)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean free path of the molecules is 1.5e-05 cm \n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.23 Page No : 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Input data\n",
"d = 2. * 10**-8 # The molecular diameter in cm\n",
"n = 3. * 10**19 # The number of molecules per cc\n",
"pi = 3.14 # Mathematical constant of pi\n",
"\n",
"# Calculations\n",
"L = 1. / ((pi * (d)**2 * n)) # The mean free path of a gas molecule in cm\n",
"\n",
"# Output\n",
"print 'The mean free path of a gas molecule is %3.0g cm ' % (L)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean free path of a gas molecule is 3e-05 cm \n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.24 Page No : 265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Input data\n",
"p = 760. # The given pressure in mm of Hg\n",
"T = 273. # The temperature of the chamber in K\n",
"V = 22400. # The volume of the gas at N.T.P in cc\n",
"p1 = 10.**-6 # The pressure in the chamber in mm of mercury pressure\n",
"N = 6.023 * 10**23 # The Avogadro number\n",
"d = 2. * 10**-8 # Molecular diameter in cm\n",
"pi = 3.14 # Mathematical constant of pi\n",
"\n",
"# Calculations\n",
"# The number of molecules per cm**3 in the chamber in molecules/cm**3\n",
"n = (N * p1) / (V * p)\n",
"# The mean free path of the gas molecules in the chamber in cm\n",
"L = 1. / (pi * (d)**2 * n)\n",
"\n",
"# Output\n",
"print 'The mean free path of gas molecules in a chamber is %3.4g cm ' % (L)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mean free path of gas molecules in a chamber is 2.25e+04 cm \n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.25 Page No : 270"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Input data\n",
"Tc = 132. # The given temperature in K\n",
"Pc = 37.2 # The given pressure in atms\n",
"R = 82.07 # Universal gas constant in cm**3 atoms K**-1\n",
"\n",
"# Calculations\n",
"# Vander Waals constant in atoms cm**6\n",
"a = (27. / 64) * ((R)**2 * (Tc)**2) / Pc\n",
"b = ((R * Tc) / (8 * Pc)) # Vander Waals constant in cm**3\n",
"\n",
"# Output\n",
"print 'The Van der Waals constants are , \\n (1) a = %3.4g atoms cm^6 \\n (2) b = %3.2f cm^3 ' % (a, b)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Van der Waals constants are , \n",
" (1) a = 1.331e+06 atoms cm^6 \n",
" (2) b = 36.40 cm^3 \n"
]
}
],
"prompt_number": 24
}
],
"metadata": {}
}
]
}
|