summaryrefslogtreecommitdiff
path: root/Heat_Transfer_in_SI_units_by_Holman/Chapter9.ipynb
blob: 977f0e4b16b1b29a98bf40842dd95308a6c105fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 9 Condensation and Boiling Heat Transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 9.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Value of reynolds no. is 49.7 so the laminar assumption was correct\n",
      "The heat transfer is 2368.0 w\n",
      "Total mass flow condensate is 3.78 kg/h\n"
     ]
    }
   ],
   "source": [
    "#Example Number 9.1\n",
    "# condensation on vertical plate\n",
    "\n",
    "#Variable declaration\n",
    "\n",
    "\t# we have to check the reynolds no. to that film is laminar or turbulent\n",
    "Tf = (100+98)/2 \t\t\t# [degree celsius]\n",
    "Tw = 98 \t\t\t\t# [degree celsius]\n",
    "RHOf=960 \t\t\t\t# [kg/cubic meter] \n",
    "MUf=2.82*10**(-4) \t\t\t# [kg/m s]\n",
    "Kf=0.68 \t\t\t\t# [W/m degree celsius]\n",
    "g=9.81 \t\t\t\t\t# [m/s**(2)]\n",
    "L=0.3 \t\t\t\t\t# [m]\n",
    "\t# RHOf(RHOf-RHOv)~RHOf**(2)\n",
    "\t# let us assume laminar film condensate \n",
    "Tsat=100 \t\t\t\t# [degree celsius]\n",
    "Tg=100 \t\t\t\t\t# [degree celsius]\n",
    "Hfg=2255*10**(3) \t\t\t# [J/kg]\n",
    "\n",
    "#Calculation\n",
    "\n",
    "hbar=0.943*((RHOf**(2)*g*Hfg*Kf**(3)/(L*MUf*(Tg-Tw)))**(0.25)) \t# [W/sq m deg celsius]\n",
    "h=hbar \t\t\t\t\t# [W/square meter degree celsius]\n",
    "\t# checking reynolds no. with equation(9-17)\n",
    "Ref=4*h*L*(Tsat-Tw)/(Hfg*MUf) \n",
    "\n",
    "print \"Value of reynolds no. is\",round(Ref,1),\"so the laminar assumption was correct\" \n",
    "\t# the heat transfer is now calculated from \n",
    "A=0.3*0.3 \t\t\t\t# [square meter]\n",
    "q=hbar*A*(Tsat-Tw) \t\t\t# [W]\n",
    "mdot=q/Hfg \t\t\t\t# [kg/h]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"The heat transfer is\",round(q),\"w\" \n",
    "mdot=mdot*3600 \t\t\t\t# [kg/h]\n",
    "print \"Total mass flow condensate is\",round(mdot,2),\"kg/h\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 9.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total surface area is 3.99 square meter/m\n",
      "Heat transfer is 100.1 kW/m\n",
      "Total mass flow of condensate is 159.8 kg/h\n"
     ]
    }
   ],
   "source": [
    "#Example Number 9.2\n",
    "# condensation on tube tank\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\t# the condensate properties are obtained from previous example\n",
    "\t# replacing L by n*d\n",
    "Tw=98 \t\t\t\t# [degree celsius]\n",
    "RHOf=960 \t\t\t# [kg/cubic meter] \n",
    "MUf=2.82*10**(-4) \t\t# [kg/m s]\n",
    "Kf=0.68 \t\t\t# [W/m degree celsius]\n",
    "g=9.81 \t\t\t\t# [m/s^(2)]\n",
    "Tsat=100 \t\t\t# [degree celsius]\n",
    "Tg=100 \t\t\t\t# [degree celsius]\n",
    "Hfg=2255*10**(3) \t\t# [J/kg]\n",
    "d=0.0127 \t\t\t# [m]\n",
    "n=10 \n",
    "\n",
    "#Calculation\n",
    "\n",
    "hbar=0.725*((RHOf**(2)*g*Hfg*Kf**(3)/(n*d*MUf*(Tg-Tw)))**(0.25)) # [W/sq m deg C]\n",
    "\t# total surface area is \n",
    "n=100 \n",
    "Al=n*22*d/7 \t\t\t# [square meter]\n",
    "print \"Total surface area is\",round(Al,2),\"square meter/m\" \n",
    "\t# so the heat transfer is \n",
    "Ql=hbar*Al*(Tg-Tw)\t\t # [W]\n",
    "\n",
    "#Result  \n",
    "\n",
    "print \"Heat transfer is\",round(Ql/1000,2),\"kW/m\" \n",
    "\t# total mass flow of condensate is then \n",
    "mdotl=Ql/Hfg \t\t\t# [kg/h]\n",
    "mdotl=mdotl*3600\t\t# [kg/h]\n",
    "print \"Total mass flow of condensate is\",round(mdotl,1),\"kg/h\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 9.4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Heat transfer in a 1.0 m length of tube is 2810.0 W/m\n"
     ]
    }
   ],
   "source": [
    "#Example Number 9.4\n",
    "# Flow boiling\n",
    "# Variable declaration\n",
    "\n",
    "p =0.5066\t\t\t# [MPa] pressure of water \n",
    "d = 0.0254 \t\t\t# [m] diameter of tube \n",
    "Tw = 10.0 \t\t\t# [degree celsius]\n",
    "\t\t\t\t# for calculation we use equation (9-45), noting that \n",
    "dT = 10.0 \t\t\t# [degree celsius]\n",
    "\t\t\t\t# the heat transfer coefficient is calculated as \n",
    "\n",
    "import math\n",
    "h = 2.54*Tw**(3)*math.exp(p/1.551) \t# [W/square meter degree celsius]\n",
    "\n",
    "\t\t# the surface area for a 1-m length of tube is \n",
    "L = 1 \t\t\t\t# [m]\n",
    "import math\n",
    "A = math.pi*d*L \t\t# [square meter]\n",
    "\n",
    "\t\t# so the heat transfer is \n",
    "q = h*A*dT \t\t\t# [W/m]\n",
    "print \"Heat transfer in a 1.0 m length of tube is\",round(q),\"W/m\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 9.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Heat flux obtained is 22.8 kW/square meter\n",
      "If the pan operates as a pressure cooker at 0.17 MPa the increase in heat flux is 23.0 percent\n"
     ]
    }
   ],
   "source": [
    "#Example Number 9.5\n",
    "# water boiling in a pan \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "p = 0.101\t\t\t\t# [MPa] pressure of water \n",
    "dT_x = 8 \t\t\t\t# [degree celsius]\n",
    "p1 = 0.17 \t\t\t\t# [MPa] given operating pressure\n",
    "\t# we will use the simplified relation of table 9-13(page no.-506) for the \t\testimates.we do not know the value of q_by_A and so must choose one of the two \trelation for a horizontal surface from the table\n",
    "\t# we anticipate nucleate boiling, so choose\n",
    "h = 5.56*dT_x**(3) \t\t\t# [W/square meter degree celsius]\n",
    "\t\t\t\t\t# and the heat flux is \n",
    "q_by_A = h*dT_x \t\t\t# [W/square meter]\n",
    "\t# for operation as a pressure cooker we obtain the value of h from \t\tequation(9-44)\n",
    "\n",
    "#Calculation\n",
    "\n",
    "hp = h*(p1/p)**(0.4) \t\t\t# [W/square meter degree celsius]\n",
    "\t# the corresponding heat flux is \n",
    "q_by_A1 = hp*dT_x \t\t\t# [W/square meter]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Heat flux obtained is\",round(q_by_A/1000,1),\"kW/square meter\" \n",
    "per_inc = 100*(q_by_A1-q_by_A)/q_by_A \n",
    "\n",
    "print \"If the pan operates as a pressure cooker at 0.17 MPa the increase in heat flux is\",round(per_inc),\"percent\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 9.6"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Thus the heat transfers  14.0 times the heat of a pure copper rod with a substantial temperature gradient\n"
     ]
    }
   ],
   "source": [
    "#Example Number 9.6\n",
    "# heat-flux comparisons \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "Tw = 200.0 \t\t\t\t# [degree celsius] water temperature \n",
    "L = 0.08 \t\t\t\t# [m] length of solid copper bar\n",
    "dT = 100.0 \t\t\t\t# [degree C] temp differential in copper bar\n",
    "\t#using the data of table 9-4(page no.-508)\n",
    "\t# the heat flux per unit area is expressed as q_by_A = -k*del_T/dx\n",
    "\t# from table A-2(page no.-) the thermal conductivity of copper is \n",
    "k = 374.0 \t\t\t\t# [W/m degree celsius]\n",
    "\n",
    "#Calculation\n",
    "\n",
    "q_by_A = -k*(-dT)/L \t\t\t# [W/square meter]\n",
    "\n",
    "\t# from table 9-4(page no.-508) the typical axial heat flux for a water heat \t\tflux for a water heat pipe is \n",
    "q_by_A_axial = 0.67 \t\t\t# [kW/csquare meter]\n",
    "q_by_A = q_by_A/(1000*10**(4.0)) \t# [kW/csquare meter]\n",
    "time=q_by_A_axial/q_by_A\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Thus the heat transfers \",round(time),\"times the heat of a pure copper rod with a substantial temperature gradient\" "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}