summaryrefslogtreecommitdiff
path: root/Heat_Transfer_in_SI_units_by_Holman/Chapter8.ipynb
blob: 97eeda1a37ab6f35504a814e149db0aa3f12685e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 8 Radiation Heat Transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total energy absorbed = 52.75 kW\n",
      "total energy transmitted= 58.2 kW\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.1\n",
    "# transmission and absorption in a gas plate\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "T = 2000+273 \t\t\t\t# [K] furnace temperature \n",
    "L = 0.3 \t\t\t\t# [m] side length of glass plate\n",
    "t1 = 0.5 \t\t\t\t# transmissivity of glass betweenb/n lambda1 \t\t\t\t\tto lambda2\n",
    "lambda1 = 0.2 \t\t\t\t# [micro m]  \n",
    "lambda2 = 3.5 \t\t\t\t# [micro m]  \n",
    "E1 = 0.3 \t\t\t\t# emissivity of glass upto lambda2 \n",
    "E2 = 0.9 \t\t\t\t# emissivity of glass above lambda2\n",
    "t2 = 0 \t\t\t\t\t# transmissivity of glass except in the range \t\t\t\t\tof lambda1 to lambda2\n",
    "\n",
    "#Calculation\n",
    "\n",
    "sigma = 5.669*10**(-8) \t\t\t# [W/square meter K**(4)]\n",
    "A = L**(2) \t\t\t\t# [square meter] area of glass plate\n",
    "\t# calculating constants to use table 8-1(page no.-379-380)\n",
    "K1 = lambda1*T \t\t\t\t# [micro m K]\n",
    "K2 = lambda2*T \t\t\t\t# [micro m K]\n",
    "\t# from table 8-1\n",
    "Eb_0_lam1_by_sigmaT4 = 0 \n",
    "Eb_0_lam2_by_sigmaT4 = 0.85443 \n",
    "Eb = sigma*T**(4) \t\t\t# [W/square meter]\n",
    "\t# total incident radiation is \n",
    "\t# for 0.2 micro m to 3.5 micro m\n",
    "TIR = Eb*(Eb_0_lam2_by_sigmaT4-Eb_0_lam1_by_sigmaT4)*A \t# [W]\n",
    "TRT = t1*TIR \t\t\t\t# [W]\n",
    "RA1 = E1*TIR \t\t\t\t# [W] for 0<lambda<3.5 micro m\n",
    "RA2 = E2*(1-Eb_0_lam2_by_sigmaT4)*Eb*A # [W] for 3.5 micro m <lambda< infinity \n",
    "TRA = RA1+RA2 \t\t\t\t# [W]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Total energy absorbed =\",round(TRA/1000,2),\"kW\" \n",
    "print \"total energy transmitted=\",round(TRT/1000,1),\"kW\" \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "net radiant heat exchange between the two plates is 18.33 kW\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.2\n",
    "# heat transfer between black surfaces\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "L = 1  \t\t\t\t\t# [m] length of black plate\n",
    "W = 0.5  \t\t\t\t# [m] width of black plate\n",
    "T1 = 1000+273  \t\t\t\t# [K] first plate temperature\n",
    "T2 = 500+273  \t\t\t\t# [K] second plate temperature\n",
    "sigma = 5.669*10**(-8)  \t\t# [W/square meter K**(4)]\n",
    "\t\t# the ratios for use with figure 8-12(page no.-386) are\n",
    "Y_by_D = W/W  \n",
    "X_by_D = L/W  \n",
    "\t\t# so that \n",
    "F12 = 0.285  \t\t\t\t# radiation shape factor \n",
    "\t\t# the heat transfer is calculated from\n",
    "q = sigma*L*W*F12*(T1**(4)-T2**(4))  \n",
    "print \"net radiant heat exchange between the two plates is\",round(q/1000,2),\"kW\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape factor between the open ends of the cylinder is 0.0768\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.3\n",
    "# shape-factor algebra for open ends of cylinder\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "d1 = 0.1 \t\t\t\t# [m] diameter of first cylinder\n",
    "d2 = 0.2 \t\t\t\t# [m] diameter of second cylinder\n",
    "L = 0.2 \t\t\t\t# [m] length of cylinder\n",
    "\t\t# we use the nomenclature of figure 8-15(page no.-388) for this \t\tproblem and designate the open ends as surfaces 3 and 4.\n",
    "\t\t# we have \n",
    "L_by_r2 = L/(d2/2) \n",
    "r1_by_r2 = 0.5 \n",
    "\t\t# so from figure 8-15 or table 8-2(page no.-389) we obtain\n",
    "F21 = 0.4126 \n",
    "F22 = 0.3286 \n",
    "\t\t# using the reciprocity relation (equation 8-18) we have\n",
    "\n",
    "#Calculation\n",
    "F12 = (d2/d1)*F21 \n",
    "\t\t# for surface 2 we have F12+F22+F23+F24 = 1.0\n",
    "\t\t# and from symmetry F23 = F24 so that\n",
    "F23 = (1-F21-F22)/2 \n",
    "F24 = F23 \n",
    "\t\t# using reciprocity again,\n",
    "import math\n",
    "\n",
    "A2 = math.pi*d2*L \t\t\t# [m**2]\n",
    "A3 = math.pi*(d2**2-d1**2)/4 \t\t# [m**2]\n",
    "F32 = A2*F23/A3 \n",
    "\t\t# we observe that F11 = F33 = F44 = 0 & for surface 3 F31+F32+F34 =1.0\n",
    "\t\t# so, if F31 can be determined, we can calculate the desired quantity \t\tF34. for surface 1 F12+F13+F14 = 1.0\n",
    "\t\t# and from symmetry F13 = F14 so that\n",
    "F13 = (1-F12)/2 \n",
    "F14 = F13 \n",
    "\t\t# using reciprocity gives\n",
    "A1 = math.pi*d1*L \t\t\t# [square meter]\n",
    "F31 = (A1/A3)*F13 \n",
    "\t\t# then \n",
    "F34 = 1-F31-F32 \n",
    "\n",
    "#Result\n",
    "print \"Shape factor between the open ends of the cylinder is\",F34 "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape factor between the top surface and the side is 0.52\n",
      "Shape factor between the side and itself is 0.398\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.4\n",
    "# shape-factor algebra for truncated cone\n",
    "\n",
    "#Variable declaration\n",
    "\n",
    "d1 = 0.1 \t\t\t# [m] diameter of top of cone\n",
    "d2 = 0.2 \t\t\t# [m] diameter of bottom of cone\n",
    "L = 0.1 \t\t\t# [m] height of cone\n",
    "\t\t#we employ figure 8-16(page no.-390) for solution of this problem and \t\ttake the nomenclature as shown, designating the top as surface 2,\n",
    "\t\t# the bottom as surface 1, and the side as surface 3. thus the desired \t\tquantities are F23 and F33. we have \n",
    "Z = L/(d2/2) \n",
    "Y = (d1/2)/L \n",
    "\t\t# thus from figure 8-16(page no.-390)  \n",
    "F12 = 0.12 \n",
    "\t\t# from reciprcity(equatin 8-18)\n",
    "\n",
    "import math\n",
    "A1 = math.pi*d2**(2)/4 \t\t# [square meter]\n",
    "A2 = math.pi*d1**(2)/4 \t\t# [square meter]\n",
    "F21 = A1*F12/A2 \n",
    "\t\t#and\n",
    "F22 = 0 \n",
    "\t\t# so that \n",
    "F23 = 1-F21 \n",
    "\t\t# for surface 3 F31+F32+F33 = 1,  so we must find F31 and F32 in order \t\tto evaluate F33. since F11 = 0 we have\n",
    "F13 = 1-F12 \n",
    "\t\t# and from reciprocity \n",
    "A3 = math.pi*((d1+d2)/2)*((d1/2-d2/2)**(2)+L**(2))**(1.0/2.0) \t# [square meter]\n",
    "\t\t# so from above equation\n",
    "F31 = A1*F13/A3 \n",
    "\t\t# a similar procedure is applies with surface 2 so that \n",
    "F32 = A2*F23/A3 \n",
    "\t\t# finally from above equation \n",
    "F33 = 1-F32-F31 \n",
    "print \"Shape factor between the top surface and the side is\",F23 \n",
    "print \"Shape factor between the side and itself is\",round(F33,3) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Value of F12 is  0.424\n",
      "Value of F13 is  0.262\n",
      "Value of F11 is  0.313\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.5\n",
    "# shape-factor algebra for cylindrical reflactor\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "d = 0.6 \t\t\t\t# [m] diameter of long half-circular cylinder\n",
    "L = 0.2 \t\t\t\t# [m] length of square rod\n",
    "\t\t# we have given figure example 8-5(page no.-397) for solution of this \t\t\tproblem and take the nomenclature as shown, \n",
    "\t\t# from symmetry we have \n",
    "F21 = 0.5 \n",
    "F23 = F21 \n",
    "\t\t# in general, F11+F12+F13 = 1. to aid in the analysis we create the \t\t\tfictious surface 4 shown in figure example 8-5 as dashed line.\n",
    "\t\t# for this surface \n",
    "F41 = 1.0 \n",
    "\t\t# now, all radiation leaving surface 1 will arrive either at 2 or at \t\t\t3. likewise,this radiation will arrive at the imaginary surface 4, so \t\t\tthat F41 = F12+F13 say eqn a\n",
    "\t\t# from reciprocity\n",
    "#Calculation\n",
    "\n",
    "import math\n",
    "\n",
    "A1 =math.pi*d/2 \t\t\t# [square meter]\n",
    "A4 = L+2*math.sqrt(0.1**(2)+L**(2)) \t# [square meter]\n",
    "A2 = 4*L \t\t\t\t# [square meter]\n",
    "\t\t# so that \n",
    "F14 = A4*F41/A1 \t\t\t# say eqn b\n",
    "\t\t# we also have from reciprocity\n",
    "F12 = A2*F21/A1 \t\t\t# say eqn c\n",
    "\t\t# combining a,b,c, gives\n",
    "F13 = F14-F12 \n",
    "\t\t# finally\n",
    "F11 = 1-F12-F13 \n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Value of F12 is \",round(F12,3) \n",
    "print \"Value of F13 is \",round(F13,3) \n",
    "print \"Value of F11 is \",round(F11,3) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.7"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Temperature of the insulated surface is 599.4 K\n",
      "Heat lost by the surface at 1000K is 8.229 kW\n"
     ]
    }
   ],
   "source": [
    "#xample Number 8.7\n",
    "# surface in radiant balance\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "w = 0.5 \t\t\t# [m] width of plate \n",
    "L = 0.5 \t\t\t# [m] length of plate\n",
    "sigma = 5.669*10**(-8) \t\t# [W/square meter K**(4)]\n",
    "\t# from the data of the problem \n",
    "T1 = 1000 \t\t\t# [K] temperature of first surface\n",
    "T2 = 27+273 \t\t\t# [K] temperature of room\n",
    "A1 = w*L \t\t\t# [square meter] area of rectangle\n",
    "A2 = A1 \t\t\t# [square meter] area of rectangle\n",
    "E1 = 0.6 \t\t\t# emissivity of surface 1\n",
    "\t#eq(8-41) may not be used for the calculation because \tone of the heat-exchanging surfaces is not convex. The radiation \t\t\tnetwork is shown in figure example 8-7(page no.-404) where surface 3 is the \t\troom and surface 2 is the insulated surface. n\tJ2 \"floats\" in the network and is determined from the overall radiant balance.\n",
    " \n",
    "\t# from figure 8-14(page no.-387) the shape factors are \n",
    "F12 = 0.2 \n",
    "F21 = F12 \n",
    "\t# because\n",
    "F11 = 0 \n",
    "F22 = 0 \n",
    "F13 = 1-F12 \n",
    "F23 = F13 \n",
    "\t# the resistances are \n",
    "R1 = (1-E1)/(E1*A1) \n",
    "R2 = 1/(A1*F13) \n",
    "R3 = 1/(A2*F23) \n",
    "R4 = 1/(A1*F12) \n",
    "\t# we also have\n",
    "Eb1 = sigma*T1**(4) \t\t# [W/square meter]\n",
    "Eb3 = sigma*T2**(4) \t\t# [W/square meter]\n",
    "J3 = Eb3 \t\t\t# [W/square meter]\n",
    "\t# the overall ckt is a series parallel arrangement and the heat transfer is \n",
    "R_equiv = R1+(1/((1/R2)+1/(R3+R4))) \n",
    "q = (Eb1-Eb3)/R_equiv \t\t # [W]\n",
    "\t# this heat transfer can also be written as q = (Eb1-J1)/((1-E1)/(E1*A1))\n",
    "\t# inserting the values \n",
    "J1 = Eb1-q*((1-E1)/(E1*A1)) \t # [W/square meter]\n",
    "\t# the value of J2 is determined from proportioning the resistances between J1 \t\tand J3, so that \n",
    "\t# (J1-J2)/R4 = (J1-J3)/(R4+R2)\n",
    "J2 = J1-((J1-J3)/(R4+R2))*R4 \t # [W/square meter]\n",
    "Eb2 = J2\t\t\t # [W/square meter]\n",
    "\t# finally, we obtain the temperature of the insulated surface as\n",
    "T2 = (Eb2/sigma)**(1.0/4.0) \t # [K]\n",
    "\n",
    "print \"Temperature of the insulated surface is\",round(T2,1),\"K\" \n",
    "print \"Heat lost by the surface at 1000K is\",round(q/1000,3),\"kW\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.8"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Net radiant exchange is 798.0 W\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.8 \n",
    "# open hemisphere in large room\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "d = 0.3 \t\t\t# [m] diameter of hemisphere\n",
    "T1 = 500+273 \t\t\t# [degree celsius] temperature of hemisphere\n",
    "T2 = 30+273 \t\t\t# [degree celsius] temperature of enclosure \n",
    "E = 0.4 \t\t\t# surface emissivity of hemisphere\n",
    "sigma = 5.669*10**(-8) \t\t# [W/square meter K**(4)] constant\n",
    "\t\n",
    "\t# in the given figure example 8-8(page no.-407) we take the inside of the \t\tsphere as surface 1 and the enclosure as surface 2.\n",
    "\t# we also create an imaginary surface 3 covering the opening.\n",
    "\t# then the heat transfer is given by\n",
    "#Calculation\n",
    "Eb1 = sigma*T1**(4) \t\t# [W/square meter]\n",
    "Eb2 = sigma*T2**(4) \t\t# [W/square meter]\n",
    "\n",
    "import math\n",
    "A1 = 2*math.pi*(d/2)**(2) \t# [square meter] area of surface 1\n",
    "\t# calculating the surface resistance \n",
    "R1 = (1-E)/(E*A1)  \n",
    "\t# since A2 tends to 0 so R2 also tends to 0\n",
    "R2 = 0  \n",
    "\t# recognize that all of the radiation leaving surface 1 which \twill \teventually arrive at enclosure 2 will also hit the imaginary   surface \t\t\t3(F12=F13). we also recognize that A1*F13 = A3*F31. but \n",
    "F31 = 1.0 \n",
    "A3 = math.pi*(d/2)**(2) \t# [square meter]\n",
    "F13 = (A3/A1)*F31 \n",
    "F12 = F13  \n",
    "\t# then calculating space resistance \n",
    "R3 = 1/(A1*F12) \n",
    "\t# we can claculate heat transfer by inserting the quantities in eq (8-40):\n",
    "q = (Eb1-Eb2)/(R1+R2+R3) \t# [W]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Net radiant exchange is\",round(q),\"W\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.9"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For emissivity of 0.2 the value of effective emissivity is 0.467\n",
      " For emissivity of 0.5 the value of effective emissivity is  0.738\n",
      "For emissivity of 0.8 the value of effective emissivity is  0.907\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.9\n",
    "# effective emissivity of finned surface\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\t# for unit depth in the z-dimension we have \n",
    "A1 = 10 \t\t\t# [square meter]\n",
    "A2 = 5 \t\t\t\t# [square meter]\n",
    "A3 = 60 \t\t\t# [square meter]\n",
    "\t# the apparent emissivity of the open cavity area A1 is given by \tequation(8-47) as \n",
    "\t# Ea1 = E*A3/[A1+E*(A3-A1)]\n",
    "\t# for const surface emissivity the emitted energy from the total area A1+A2 is\n",
    "\t# e1 = Ea1*A1+E*A2*Eb\n",
    "\t# and the energy emitted per unit area for that total area is \n",
    "\t# e_t = [(Ea1*A1+E*A2)/(A1+A2)]*Eb\n",
    "\t# the coeff of Eb is the effective emissivity, E_eff of the combination of the \tsurface and open cavity. inserting \n",
    "\t# above equations gives the following values\n",
    "\n",
    "\n",
    "\n",
    "#Calculation & Results\n",
    "\n",
    "\t# for E = 0.2\n",
    "\n",
    "E = 0.2 \n",
    "Ea1 = E*A3/(A1+E*(A3-A1)) \n",
    "E_eff = ((Ea1*A1+E*A2)/(A1+A2)) \n",
    "\n",
    "print \"For emissivity of 0.2 the value of effective emissivity is\",round(E_eff,3) \n",
    "\n",
    "\t# for E = 0.5\n",
    "\n",
    "E = 0.5 \n",
    "Ea1 = E*A3/(A1+E*(A3-A1)) \n",
    "E_eff = ((Ea1*A1+E*A2)/(A1+A2))\n",
    " \n",
    "print \" For emissivity of 0.5 the value of effective emissivity is \",round(E_eff,3) \n",
    "\n",
    "\t# for E = 0.8\n",
    "\n",
    "E = 0.8 \n",
    "Ea1 = E*A3/(A1+E*(A3-A1)) \n",
    "E_eff = ((Ea1*A1+E*A2)/(A1+A2)) \n",
    "\n",
    "print \"For emissivity of 0.8 the value of effective emissivity is \",round(E_eff,3) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Heat tranfer is reduced by 93.2 percent\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.10\n",
    "# heat transfer reduction with parallel plate shield\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "E1 = 0.3 \t\t\t# emissivity of first plane\n",
    "E2 = 0.8 \t\t\t# emissivity of second plane\n",
    "E3 = 0.04 \t\t\t# emissivity of shield\n",
    "\n",
    "#Calculation\n",
    "sigma = 5.669*10**(-8) \t\t# [W/square meter K**(4)]\n",
    "\t\t# the heat transfer without the shield is given by \n",
    "\t\t# q_by_A = sigma*(T1**4-T2**4)/((1/E1)+(1/E2)-1) = \t\t0.279*sigma*(T1**4-T2**4)\n",
    "\t\t# T1 is temp of 1st plane & T2 is temperature of second plane\n",
    "\t\t# the radiation network for the problem with the shield in place is \t\t\tshown in figure (8-32) (page no.-410). \n",
    "\t\t# the resistances are \n",
    "R1 = (1-E1)/E1 \n",
    "R2 = (1-E2)/E2 \n",
    "R3 = (1-E3)/E3 \n",
    "\t\t# the total resistance with the shield is \n",
    "R = R1+R2+R3 \n",
    "\t\t# and the heat transfer is \n",
    "\t\t# q_by_A = sigma*(T1**4-T2**4)/R = 0.01902*sigma*(T1**4-T2**4)\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Heat tranfer is reduced by\",round((((0.279-0.01902)/0.279)*100),1),\"percent\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.11"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Temperature of the outer cylinder is 716.0 K\n",
      "Total heat lost by inner cylinder is 2826.0 W\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.11\n",
    "# open cylindrical shield in large room\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "\t# two concentric cylinders of example(8.3) have \n",
    "T1 = 1000 \t\t\t# [K] \n",
    "E1 = 0.8 \n",
    "E2 = 0.2 \n",
    "T3 = 300 \t\t\t# [K] room temperature \n",
    "sigma = 5.669*10**(-8) \t\t# [W/square meter K**(4)]\n",
    "\t# refer to figure example 8-11(page no.-413) for radiation network\n",
    "\t# the room is designed as surface 3 and J3 = Eb3, because the room is very \t\tlarge,(i.e.its surface is very small) \n",
    "\t# in this problem we must consider the inside and outside of surface 2 and \t\tthus have subscripts i and o to designate the respective quantities. \n",
    "\t# the shape factor can be obtained from example 8-3 as\n",
    "F12 = 0.8253 \n",
    "F13 = 0.1747 \n",
    "F23i = 0.2588 \n",
    "F23o = 1.0 \n",
    "\t# also\n",
    "\n",
    "#Calculations\n",
    "import math\n",
    "A1 = math.pi*0.1*0.2 \t\t# [square meter] area of first cylinder\n",
    "A2 = math.pi*0.2*0.2 \t\t# [square meter] area of second cylinder\n",
    "Eb1 = sigma*T1**4 \t\t# [W/square meter]\n",
    "Eb3 = sigma*T3**4 \t\t# [W/square meter]\n",
    "\t# the resistances may be calculated as \n",
    "R1 = (1-E1)/(E1*A1) \n",
    "R2 = (1-E2)/(E2*A2) \n",
    "R3 = 1/(A1*F12) \n",
    "R4 = 1/(A2*F23i) \n",
    "R5 = 1/(A2*F23o) \n",
    "R6 = 1/(A1*F13) \n",
    "\t# the network could be solved as a series-parallel circuit to obtain the heat \t\ttransfer, butwe will need the radiosities anyway, so we setup three nodal\t\tequations to solve for J1,J2i, and J2o.\n",
    "\t# we sum the currents into each node and set them equal to zero:\n",
    "\t# node J1: (Eb1-J1)/R1+(Eb3-J3)/R6+(J2i-J1)/R3 = 0\n",
    "\t# node J2i: (J1-J2i)/R3+(Eb3-J2i)/R4+(J2o-J2i)/(2*R2) = 0\n",
    "\t# node J2o: (Eb3-J2o)/R5+(J2i-J2o)/(2*R2) = 0\n",
    "\t# these equations can be solved by matrix method and the solution is \n",
    "J1 = 49732 \t\t\t# [W/square meter]\n",
    "J2i = 26444 \t\t\t# [W/square meter]\n",
    "J2o = 3346 \t\t\t# [W/square meter]\n",
    "\t# the heat transfer is then calculated from\n",
    "q = (Eb1-J1)/((1-E1)/(E1*A1)) \t# [W]\n",
    "\t# from the network we see that\n",
    "Eb2 = (J2i+J2o)/2\t\t # [W/square meter]\n",
    "\t# and \n",
    "T2 = (Eb2/sigma)**(1.0/4.0) \t# [K]\n",
    "\t# if the outer cylinder had not been in place acting as a \"shield\" the heat \t\tloss from cylinder 1 could have been calculated from equation(8-43a) as \n",
    "q1 = E1*A1*(Eb1-Eb3)\t\t # [W]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Temperature of the outer cylinder is\",round(T2),\"K\" \n",
    "print \"Total heat lost by inner cylinder is\",round(q1),\"W\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.12"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Heat-transfer rate between the two planes is 5621.0 W/square meter\n",
      "Temperature of the gas is 592.4 K\n",
      "Ratio of heat-transfer with presence of gas to without presence of gas is 0.97\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.12\n",
    "# network for gas radiation between parallel plates\n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "T1 = 800 \t\t\t\t# [K] temperature of first plate \n",
    "E1 = 0.3 \t\t\t\t# emissivity\n",
    "T2 = 400 \t\t\t\t# [K] temperature of second plate\n",
    "E2 = 0.7 \t\t\t\t# emissivity\n",
    "Eg = 0.2 \t\t\t\t# emissivity of gray gas\n",
    "tg = 0.8 \t\t\t\t# transmissivity of gray gas \n",
    "sigma = 5.669*10**(-8) \t\t\t# [W/square meter K**(4)]\n",
    "\t# the network shown in figure 8-39(page no.-419) applies to this problem. all \t\tthe shape factors are unity for large planes and the various resistors can be \t\tcomputed on a unit area basis as \n",
    "\n",
    "#Calculation\n",
    "F12 = 1 \n",
    "F1g = 1 \n",
    "F2g = F1g \n",
    "R1 = (1-E1)/E1 \n",
    "R2 = (1-E2)/E2 \n",
    "R3 = 1/(F12*(1-Eg)) \n",
    "R4 = 1/(F1g*Eg) \n",
    "R5 = 1/(F2g*Eg) \n",
    "Eb1 = sigma*T1**(4) \t\t\t# [W/square meter]\n",
    "Eb2 = sigma*T2**(4) \t\t\t# [W/square meter]\n",
    "\n",
    "\t# the equivalent resistance of the center \"triangle\" is \n",
    "\n",
    "R = 1/((1/R3)+(1/(R4+R5))) \n",
    "\n",
    "\t# the total heat transfer is then \n",
    "\n",
    "q_by_A = (Eb1-Eb2)/(R1+R2+R) \t\t# [W/square meter]\n",
    "\n",
    "\t# heat transfer would be given by equation (8-42):\n",
    "\n",
    "q_by_A1 = (Eb1-Eb2)/((1/E1)+(1/E2)-1) \t# [W/square meter]\n",
    "\n",
    "\t# the radiosities may be computed from q_by_A = (Eb1-J1)*(E1/(1-E1)) = \t(J2-Eb2)*(E2/(1-E2))\n",
    "\n",
    "J1 = Eb1-q_by_A*((1-E1)/E1) \t\t# [W/square meter]\n",
    "J2 = Eb2+q_by_A*((1-E2)/E2) \t\t# [W/square meter]\n",
    "\n",
    "\t# for the network Ebg is just the mean of these values\n",
    "\n",
    "Ebg = (J1+J2)/2 \t\t\t# [W/square meter]\n",
    "\n",
    "\t# so that the temperature of the gas is\n",
    "Tg = (Ebg/sigma)**(1.0/4.0) \t\t# [K]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Heat-transfer rate between the two planes is\",round(q_by_A),\"W/square meter\" \n",
    "print \"Temperature of the gas is\",round(Tg,1),\"K\" \n",
    "print \"Ratio of heat-transfer with presence of gas to without presence of gas is\",round(q_by_A/q_by_A1,2) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.13"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Apparent emissivity of covered opening is  0.6269\n",
      "If there were no cover present, the value of Ea(apparent emissivity) would be  0.8571\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.13\n",
    "# cavity with transparent cover \n",
    "\n",
    "#Variable declaration\n",
    "\n",
    "E1 = 0.5 \t\t\t# emissivity of rectangular cavity\n",
    "t2 = 0.5 \t\t\t# transmissivity\n",
    "rho2 = 0.1 \t\t\t# reflectivity\n",
    "E2 = 0.4 \t\t\t# emissivity\n",
    "\t# from example 8-9 we have\n",
    "\t# per unit depth in the z direction we have \n",
    "\n",
    "#Calculation\n",
    "A1 = 60\n",
    "A2 = 10.0 \n",
    "\t# we may evaluate K from equation(8-96a)\n",
    "K = E1/(t2+(E2/2))\n",
    "\n",
    "\n",
    "\t# the value of Ea is then computed from equation (8-96) as \n",
    "Ea = (t2+(E2/2))*K/((A2/A1)*(1-E1)+K) \n",
    "print \"Apparent emissivity of covered opening is \",round(Ea,4) \n",
    "\t# when no cover present, the value of Ea would be given by eq (8-47) as\n",
    "Ea1 = E1*A1/(A2+E1*(A1-A2)) \n",
    "\n",
    "#Result\n",
    "print \"If there were no cover present, the value of Ea(apparent emissivity) would be \",round(Ea1,4) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.14"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Radiation lost through the quartz window to a room temperature of 30 degree celsius is 112171.0 W/square meter\n",
      "With no windows at all, the heat transfer would be 148397.0 W/square meter\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.14\n",
    "# Transmitting and reflecting system for furnace opening\n",
    "\n",
    "# Variable declaration\n",
    "\t\n",
    "T1 = 1000+273 \t\t\t# [K] temperature of furnace\n",
    "lamda = 4.0 \t\t\t# [micro meter]\n",
    "\t\t#for  0 < lamda < 4 micro meter\n",
    "t1 = 0.9 \n",
    "E1 = 0.1 \n",
    "rho1 = 0 \n",
    "\t\t#for  4 micro meter < lamda < infinity  \n",
    "t2 = 0 \n",
    "E2 = 0.8 \n",
    "rho2 = 0.2 \n",
    "sigma = 5.669*10**(-8) \t\t# [W/square meter K**(4)]\n",
    "T3 = 30+273\t\t \t# [K] room temperature\n",
    "\t\t# because the room is large it may be treated as a blackbody.\n",
    "\t\t# analyze the problem by calculating the heat transfer for each \t\t\twavelength band and then adding them together to obtain the total. the \t\tnetwork for each band is a modification of figure 8-57 \n",
    "A1 = 1.0 \t\t\t# [square meter]\n",
    "A2 = 1.0 \t\t\t# [square meter]\n",
    "A3 = 1.0 \t\t\t# [square meter]\n",
    "F12 = 1.0 \n",
    "F13 = 1.0 \n",
    "F32 = 1.0 \n",
    "\t\t# the total emissive powers are \n",
    "\n",
    "#Calculation\n",
    "\n",
    "Eb1 = sigma*T1**(4) \t\t# [W/square meter]\n",
    "Eb3 = sigma*T3**(4) \t\t# [W/square meter]\n",
    "\t\t# to determine the fraction of radiation in each wavelength band\n",
    "lamba_into_T1 = lamda*T1 \t# [micro meter K]\n",
    "lamba_into_T3 = lamda*T3 \t# [micro meter K]\n",
    "\t\t# consulting table 8-1, we find \n",
    "Eb1_0_to_4 = 0.6450*Eb1 \t# [W/square meter]\n",
    "Eb3_0_to_4 = 0.00235*Eb3 \t# [W/square meter]\n",
    "Eb1_4_to_inf = (1-0.6450)*Eb1 \t# [W/square meter]\n",
    "Eb3_4_to_inf = (1-0.00235)*Eb3 \t# [W/square meter]\n",
    "\t\t#  apply these numbers to the network for the two wavelengths bands, \t\t\twith unit areas.\n",
    "\n",
    "\t\t# 0 < lamda < 4 micro meter band:\n",
    "R1 = 1/(F13*t1) \n",
    "R2 = 1/(F32*(1-t1)) \n",
    "R3 = 1/(F12*(1-t1)) \n",
    "R4 = rho1/(E1*(1-t1)) \n",
    "\t\t# the net heat transfer from the network is then \n",
    "R_equiv_1 = 1/(1/R1+1/(R2+R3+R4)) \n",
    "q1 = (Eb1_0_to_4-Eb3_0_to_4)/R_equiv_1 # [W/square meter]\n",
    "\n",
    "\t\t# 4 micro meter < lamda < infinity band:\n",
    "R2 = 1/(F32*(1-t2)) \n",
    "R3 = 1/(F12*(1-t2)) \n",
    "R4 = rho2/(E2*(1-t2)) \n",
    "\t\t# the net heat transfer from the network is then \n",
    "\t\t# R1 is infinity\n",
    "R_equiv_2 = R2+R3+R4*2 \n",
    "q2 = (Eb1_4_to_inf-Eb3_4_to_inf)/R_equiv_2 # [W/square meter]\n",
    "\n",
    "\t\t# the total heat loss is then \n",
    "q_total = q1+q2 \t\t\t# [W/square meter]\n",
    "\t\t# with no windows at all, the heat transfer would have been the \t\t\tdifference in blackbody emissive powers,\n",
    "Q = Eb1-Eb3 \t\t\t\t# [W/square meter]\n",
    "\n",
    "#Result\n",
    "\n",
    "print \"Radiation lost through the quartz window to a room temperature of 30 degree celsius is\",round(q_total),\"W/square meter\" \n",
    "\n",
    "print \"With no windows at all, the heat transfer would be\",round(Q),\"W/square meter\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.20"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Radiation equilibrium temperature for the plate exposed to solar flux if the surface is coated with :\n",
      "White paint is 39.5 degree celsius\n",
      "Flat black lacquer is 104.8 degree celsius\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.20\n",
    "# solar-environment equilibrium  temperatures \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "q_by_A_sun = 700 \t\t\t# [W/m**(2)] solar flux\n",
    "T_surr = 25+273 \t\t\t# [K] surrounding temperature\n",
    "sigma = 5.669*10**(-8) \t\t\t# [W/square meter K**(4)]\n",
    "\t# at radiation equilibrium the netenergy absorbed from sun must equal the \tlong-wavelength radiation exchange with the surroundings,or\n",
    "\t# (q_by_A_sun)*alpha_sun = alpha_low_temp*sigma*(T**4-T_surr**4)         (a)\n",
    "\n",
    "\t# case (a) for white paint\n",
    "\n",
    "\t# for white paint we obtain from table 8-4\n",
    "\n",
    "#Calculation\n",
    "\n",
    "alpha_sun = 0.12 \n",
    "alpha_low_temp = 0.9 \n",
    "\t# so that equation (a) becomes\n",
    "T = ((q_by_A_sun)*alpha_sun/(alpha_low_temp*sigma)+T_surr**(4))**(1.0/4.0)\t # [K]\n",
    "\n",
    "\n",
    "#Result\n",
    "\n",
    "print\"Radiation equilibrium temperature for the plate exposed to solar flux if the surface is coated with :\"\n",
    "print \"White paint is\",round(T-273,1),\"degree celsius\" \n",
    "\n",
    "\t# case (b) for flat black lacquer we obtain\n",
    "\n",
    "alpha_sun = 0.96 \n",
    "alpha_low_temp = 0.95 \n",
    "\t# so that equation (a) becomes\n",
    "T = ((q_by_A_sun)*alpha_sun/(alpha_low_temp*sigma)+T_surr**(4))**(1.0/4.0) \t# [K]\n",
    "\n",
    "print \"Flat black lacquer is\",round(T-273,1),\"degree celsius\" "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exa 8.23"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "the true air temperature is 28.6 degree celsius\n"
     ]
    }
   ],
   "source": [
    "#Example Number 8.23\n",
    "# temperature measurement error caused by radiation \n",
    "\n",
    "# Variable declaration\n",
    "\n",
    "E = 0.9 \t\t\t\t# emissivity of mercury-in-glass thermometer \n",
    "Tt = 20+273 \t\t\t\t# [K] temperature indicated by thermometer \n",
    "Ts = 5+273 \t\t\t\t# [K] temperature of walls\n",
    "sigma = 5.669*10**(-8) \t\t\t# [W/square meter K^(4)]\n",
    "h = 8.3 \t\t\t\t# [W/sq m] heat transfer coefficient for \t\t\t\t\tthermometer\n",
    "\t# we employ equation(8-113) for the solution: h*(Tinf-Tt) =sigma*E*(Tt^4-Ts^4)\n",
    "\t# inserting the values in above equation \n",
    "\n",
    "Tinf = sigma*E*(Tt**4-Ts**4)/h+Tt \t# [K]\n",
    "print\"the true air temperature is\",round(Tinf-273,1),\"degree celsius\" "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}