1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7 Natural Convection Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The average wall temperature is 185.0 degree celsius\n"
]
}
],
"source": [
"#Example Number 7.1\n",
"# constant heat flux from vertical plate \n",
"\n",
"# Variable declaration\n",
"\n",
"q_w = 800.0 \t\t\t# [W/square meter] radiant energy flux\n",
"H = 3.5 \t\t\t# [m] height of metal plate surface\n",
"W = 2 \t\t\t\t# [m] width of metal plate\n",
"Ta = 30 \t\t\t# [degree celsius] surrounding air temperature \n",
"\t# we treat this problem as one with constant heat flux on the surface since we \tdo not know the surface temperature, we must make an estimate for determining \t\tTf and the air properties.\n",
"\t# an approximate value of h for free convection problems is \n",
"h = 10 \t\t\t\t# [W/square meter degree celsius]\n",
"dT = q_w/h \t\t\t# [degree celsius]\n",
"\t# then\n",
"Tf = (dT/2)+Ta \t\t\t# [degree celsius] approximately \n",
"\n",
"#Calculation\n",
"\n",
"\t# at Tf the properties of air are \n",
"v = 2.043*10**(-5) \t\t# [square meter/s]\n",
"k = 0.0295 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.7 \t\t\t# prandtl number\n",
"Beta = 1.0/(Tf+273) \t\t# [K**(-1)]\n",
"\t# from equation (7-30), with\n",
"x = 3.5 \t\t\t# [m]\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity \n",
"Gr_x = (g*Beta*q_w*x**(4))/(k*v**(2)) \n",
"\n",
"\n",
"\t# we may therefore use equation (7-32) to evaluate h_x\n",
"\n",
"h_x = (k*0.17*(Gr_x*Pr)**(1.0/4.0))/x \t# [W/square meter degree celsius]\n",
"\n",
"\t# in the turbulent heat transfer governed by equation (7-32), we note that\n",
"\t# Nu_x = h*x/k ~ (Gr_x)**(1/4) ~ x\n",
"\t# or h_x doest noy vary with x, and we may take this as the average value. the \tvalue of h\n",
"\n",
"\n",
"h = 5.41 \t\t\t# [W/square meter degree celsius]\n",
"\t# is less than the approximate value we used to estimate Tf, recalculating dT, \t we obtain\n",
"dT1 = q_w/h_x \t\t\t# [degree celsius]\n",
"\n",
"\n",
"\t# our new film temperature would be\n",
"Tf1 = Ta+dT1/2 \t\t\t# [degree celsius]\n",
"\t# at Tf the properties of air are\n",
"v1 = 2.354*10**(-5) \t\t# [square meter/s]\n",
"k1 = 0.0320 \t\t\t# [W/m degree celsius]\n",
"Pr1 = 0.695 \t\t\t# prandtl number\n",
"Beta1 = 1/(Tf1+273) \t\t# [K**(-1)]\n",
"\n",
"\t# then \n",
"Gr_x1 = (g*Beta1*q_w*x**(4))/(k1*v1**(2)) \n",
"\t# and h_x is caalculated from\n",
"h_x1 = (k1*0.17*(Gr_x1*Pr1)**(1.0/4.0))/x \t# [W/square meter degree celsius]\n",
"\n",
"\n",
"\t# our new temperature difference is calculated as \n",
"dT2 = q_w/h_x1 \t\t\t# [degree celsius]\n",
"\n",
"\n",
"\t# the average wall temperature is therefore\n",
"T_w_avg = dT2+Ta \t\t# [degree celsius]\n",
"\n",
"#Result\n",
"print \"The average wall temperature is\",round(T_w_avg),\"degree celsius\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat transfer if the plate is 10 m wide is 9603.0 W\n"
]
}
],
"source": [
"#Example Number 7.2\n",
"# heat transfer from isothermal vertical plate\n",
"\n",
"# Variable declaration\n",
"\n",
"H = 4.0 \t\t\t\t# [m] height of vertical plate\n",
"Tp = 60.0 \t\t\t# [degree celsius] plate temperature\n",
"Ta = 10.0 \t\t\t# [degree celsius] atmospheric temperature\n",
"\t# we first determine the film temperature as\n",
"Tf = (Tp+Ta)/2 \t\t\t# [degree celsius]\n",
"\t# the properties of interest are thus\n",
"v = 16.5*10**(-6) \t\t# [square meter/s]\n",
"k = 0.02685 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.7 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K**(-1)]\n",
"\n",
"#Calculation\n",
"\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity \n",
"\t# and\n",
"Gr_into_Pr = (g*Beta*(Tp-Ta)*H**(3)*Pr)/(v**(2)) \n",
"\n",
"\t# we then may use equation (7-29) to obtain\n",
"Nu_bar_root = (0.825+(0.387*(Gr_into_Pr)**(1.0/6.0))/(1+(0.492/Pr)**(9.0/16.0))**(8.0/27.0) )\n",
"\n",
"\n",
"Nu_bar = (Nu_bar_root)**(2) \n",
"\t# the heat transfer coefficient is \n",
"h_bar = Nu_bar*k/H \t\t# [W/square meter degree celsius]\n",
"\n",
"\n",
"\t# the heat transfer is \n",
"A = H*10 \t\t\t# [square meter] for 10 m wide plate\n",
"q = h_bar*A*(Tp-Ta) \t\t# [W]\n",
"\n",
"\t# as an alternative, we could employ the simpler relation \n",
"Nu = 0.1*(Gr_into_Pr)**(1/3) \n",
"\n",
"#Result\n",
"print \"Heat transfer if the plate is 10 m wide is\",round(q),\"W\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"free-convection heat loss per unit length of heater is 443.0 W/m\n"
]
}
],
"source": [
"#Example Number 7.3\n",
"# heat transfer from horizontal tube in water\n",
"\n",
"# Variable declaration\n",
"\n",
"d = 0.02 \t\t\t# [m] diameter of heater\n",
"Ts = 38 \t\t\t# [degree celsius] surface temperature of heater\n",
"Tw = 27 \t\t\t# [degree celsius] water temperature\n",
"\t# the film temperature is \n",
"Tf = (Ts+Tw)/2 \t\t\t# [degree celsius]\n",
"\t# from appendix A the properties of water are \n",
"k = 0.630 \t\t\t# [W/m degree celsius] thermal conductivity\n",
"\t# and the following term is particularly useful in obtaining the product GrPr \t\tproduct when it is multiplied by d**(3)*DT\n",
"\t# g*Beta*rho**(2)*Cp/(mu*k) = 2.48*10**(10) [1/m**(3) degree celsius]\n",
"\n",
"K = 2.48*10**(10) \t\t# [1/m**(3) degree celsius]\n",
"Gr_into_Pr = K*(Ts-Tw)*d**(3) \n",
"\t\n",
"\t# using table 7-1 (page number -328), we get \n",
"\n",
"C = 0.53 \n",
"m = 1/4 \n",
"\t# so that\n",
"\n",
"Nu = C*(Gr_into_Pr)**(1.0/4.0) \n",
"h = Nu*k/d \t\t\t# [W/sq m deg C] convection heat transfer coefficient\n",
"\t# the heat transfer is thus\n",
"import math\n",
"\n",
"q_by_L = h*math.pi*d*(Ts-Tw) \t# [W/m]\n",
"print\"free-convection heat loss per unit length of heater is\",round(q_by_L),\"W/m\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Example Number 7.4\n",
"# heat transfer from fine wire in air\n",
"\n",
"# Variable declaration\n",
"\n",
"d = 0.00002 \t\t\t# [m] diameter of wire\n",
"L = 0.5 \t\t\t# [m] length of wire whose temperature is maintained\n",
"Ts = 54.0 \t\t\t# [degree celsius] surface temperature of wire \n",
"Pa = 101325.0 \t\t\t# [Pa] pressure of air\n",
"Ta = 0 \t\t\t\t# [degree celsius] temperature of air \n",
"\t# we first determine the film temperature as\n",
"Tf = (Ts+Ta)/2 \t\t\t# [degree celsius]\n",
"\t# the properties of interest are thus\n",
"v = 15.69*10**(-6) \t\t# [square meter/s]\n",
"k = 0.02624 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.708 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K^(-1)]\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity \n",
"\t# and\n",
"Gr_into_Pr = (g*Beta*(Ts-Ta)*d**(3)*Pr)/(v**(2)) \n",
"\t# from table 7-1 we find\n",
"C = 0.675 \n",
"m = 0.058 \n",
"\t# so that\n",
"Nu_bar = C*(Gr_into_Pr)**(m) \n",
"h_bar = Nu_bar*k/d \t\t# [W/square meter degree celsius]\n",
"\t# the heat required is \n",
"import math\n",
"A = math.pi*d*L \t\t# [square meter] surface area of wire \n",
"q = h_bar*A*(Ts-Ta) \t\t# [W]\n",
"print \"Electric power to maintain the the wire temperature if the length is 0.5 m is\",round(q,3),\"W\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.5"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"free-convection heat loss per unit length is 1.5 kW/m\n"
]
}
],
"source": [
"#Example Number 7.5\n",
"# heated horizontal pipe in air \n",
"\n",
"# Variable declaration\n",
"\n",
"d = 0.3048 \t\t\t# [m] diameter of pipe\n",
"Ts = 250.0 \t\t\t# [degree celsius] surface temperature of pipe \n",
"Ta = 15.0 \t\t\t# [degree celsius] temperature of air \n",
"\t# we first determine the Grashof-prandtl number product and then select the \tappropriate constants from table 7-1(page no.-328) for use with \tequation (7-25) \n",
"\t# the properties of air are evaluated at the film temperature:\n",
"Tf = (Ts+Ta)/2 \t\t\t# [degree celsius]\n",
"\t# the properties of interest are thus\n",
"v = 26.54*10**(-6) \t\t# [square meter/s]\n",
"k = 0.03406 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.687 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K**(-1)]\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity\n",
"Gr_d_into_Pr = g*Beta*(Ts-Ta)*d**(3)*Pr/(v**(2)) \n",
"\t# from table 7-1 \n",
"C = 0.53 \n",
"m = 1.0/4.0 \n",
"Nu_d = C*(Gr_d_into_Pr)**(m) \n",
"h = Nu_d*k/d \t\t\t# [W/square meter degree celsius]\n",
"\t# the heat transfer per unit length is then calculated from \n",
"import math\n",
"\n",
"q_by_L = h*math.pi*d*(Ts-Ta) \t# [W/m]\n",
"print \"free-convection heat loss per unit length is\",round(q_by_L/1000,1),\"kW/m\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.6"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat transfer is 51.8 W\n"
]
}
],
"source": [
"#Example Number 7.6 \n",
"# cube cooling in air\n",
"\n",
"# Variable declaration\n",
"\n",
"L = 0.2 \t\t\t\t# [m] side length of cube\n",
"Ts = 60 \t\t\t\t# [degree celsius] surface temperature of cube\n",
"Ta = 10 \t\t\t\t# [degree celsius] air temperature\n",
"\t# this is an irregular solid so we use the information in the last entry of \ttable 7-1(page no.-328) in the absence of a specific correlation for this \tgeometry. \n",
"\t# the properties were evaluated as\n",
"v = 17.47*10**(-6)\t\t\t # [square meter/s]\n",
"k = 0.02685 \t\t\t\t# [W/m degree celsius]\n",
"Pr = 0.70 \t\t\t\t# prandtl number\n",
"Beta = 3.25*10**(-3) \t\t\t# [K**(-1)]\n",
"g = 9.8 \t\t\t\t# [square meter/s] acceleration due to gravity \n",
"\t# the characteristic length is the distance a particle travels in the boundary \tlayer, which is L/2 along the bottom plus L along the side plus L/2 on the \ttop or\n",
"\n",
"\n",
"#Calculation\n",
"Gr_into_Pr = (g*Beta*(Ts-Ta)*(2*L)**(3)*Pr)/(v**(2)) \n",
"\t# from the last entry in table 7-1 we find\n",
"C = 0.52 \n",
"n = 1.0/4.0 \n",
"\t# so that\n",
"Nu = C*(Gr_into_Pr)**(n) \n",
"h_bar = Nu*k/(2*L) \t\t\t# [W/square meter degree celsius]\n",
"\t# the cube has six sides so the area is \n",
"A = 6*L**(2) \t\t\t\t# [square meter]\n",
"\t# the heat required is \n",
"q = h_bar*A*(Ts-Ta) \t\t\t# [W]\n",
"\n",
"#Result\n",
"print \"Heat transfer is\",round(q,1),\"W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.7"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"heat transfer is 1.57 kW/m\n"
]
}
],
"source": [
"#Example Number 7.7\n",
"# calculation with simplified relations \n",
"\n",
"#Variable declaration\n",
"\n",
"\t# this example is calculation of heat transfer with simplified relations for \texample (7.5) so we use the data of example 7.5\n",
"\n",
"d = 0.3048 \t\t\t# [m] diameter of pipe\n",
"Ts = 250 \t\t\t# [degree celsius] surface temperature of pipe \n",
"Ta = 15 \t\t\t# [degree celsius] temperature of air \n",
"\t# we first determine the Grashof-prandtl number product and then select the \tappropriate constants from table 7-1 for use with equation (7-25) \n",
"\t# the properties of air are evaluated at the film temperature:\n",
"\n",
"#Calculation\n",
"\n",
"Tf = (Ts+Ta)/2 \t\t\t\t# [degree celsius]\n",
"\t\t\t\t\t# the properties of interest are thus\n",
"v = 26.54*10**(-6)\t\t\t# [square meter/s]\n",
"k = 0.03406 \t\t\t\t# [W/m degree celsius]\n",
"Pr = 0.687 \t\t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t\t# [K**(-1)]\n",
"g = 9.8 \t\t\t\t# [square meter/s] acceleration due to gravity\n",
"\t# in example (7.5) we found that a rather large pipe with a substantial \t\ttemperature difference between the surface and air still had a GrPr product of \t1.57*10**(8)<10**(9), so laminar equation is selected from table 7-2(page \t\tno.-339). the heat transfer coefficient is given by \n",
"h = 1.32*((Ts-Ta)/d)**(1.0/4.0) \t\t# [W/square meter degree celsius]\n",
"\t# the heat transfer is then\n",
"import math\n",
" \n",
"q_by_L = h*math.pi*d*(Ts-Ta) \t\t# [W/m]\n",
"\n",
"#Result\n",
"\n",
"print \"heat transfer is\",round(q_by_L/1000,2),\"kW/m\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.8"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Free-convection heat transfer across the air space is 39.64 W\n",
"Radiation heat transfer across the air space is 15.37 W\n"
]
}
],
"source": [
"#Example Number 7.8\n",
"# heat transfer across vertical air gap\n",
"\n",
"#Variable declaration\n",
"\n",
"L = 0.5 \t\t\t# [m] side length vertical square plate\n",
"d = 0.015 \t\t\t# [m] distance between plates\n",
"p = 101325.0 \t\t\t# [Pa] pressure of air\n",
"R = 287 \t\t\t# [] universal gas constant\n",
"T1 = 100.0 \t\t\t# [degree celsius] temperature of first plate\n",
"T2 = 40.0 \t\t\t# [degree celsius] temperature of second plate\n",
"E = 0.2 \t\t\t# emissivity of both surfaces\n",
"\t\t# the properties of air is evaluated at the mean temperature\n",
"Tf = (T1+T2)/2 \t\t\t# [degree celsius]\n",
"rho = p/(R*(Tf+273)) \t\t# [Kg/m**(3)] density\n",
"k = 0.0295 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.70 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K**(-1)]\n",
"mu = 2.043*10**(-5) \t\t# [Kg/m s] viscosity\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity\n",
"\t\t# the Grashof-prandtl number product is now calculated as \n",
"\n",
"Gr_into_Pr = (g*rho**(2)*Beta*(T1-T2)*(d)**(3)*Pr)/(mu**(2)) \n",
"\n",
"\t\t# we may now use eq(7-64) to calculate the effective thermal \t\tconductivity, with\n",
"L = 0.5 \t\t\t# [m]\n",
"deli=0.015\t\t\t# [m]\n",
"\t\t\t\t# and the constants taken from table 7-3:\n",
"\n",
"#Calculation\n",
"\n",
"Ke_by_K = 0.197*(Gr_into_Pr)**(1.0/4.0)*(L/deli)**(-1.0/9.0) \n",
"\t\t# the heat transfer may now be calculated with eq(7-54). the area is \n",
"A = L**(2) \t\t\t# [square meter]\n",
"q = Ke_by_K*k*A*(T1-T2)/deli \t# [W]\n",
" \t\t# the radiation flux is calculated with equation(7-67), taking \n",
"T1 = 373 \t\t\t# [K]\n",
"T2 = 313 \t\t\t# [K]\n",
"E1 = E \n",
"E2 = E \n",
"sigma = 5.669*10**(-8) \t\t\t# [W/square meter K**(4)]\n",
"q_A = sigma*(T1**(4)-T2**(4))/((1/E1)+(1/E2)-1) \t# [W/square meter]\n",
"q_rad = A*q_A \t\t\t\t\t\t# [W]\n",
"\n",
"#Result\n",
"print \"Free-convection heat transfer across the air space is\",round(q,2),\"W\" \n",
"print \"Radiation heat transfer across the air space is\",round(q_rad,2),\"W\" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.9"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat transfer across the air space is 10.34 W\n"
]
}
],
"source": [
"#Example Number 7.9 \n",
"# heat transfer across horizontal air gap\n",
"\n",
"# Variable declaration\n",
"\n",
"a = 0.2 \t\t\t# [m] side length of plate\n",
"d = 0.01 \t\t\t# [m] seperation between two plates \n",
"p = 101325.0 \t\t\t# [Pa] pressure of air\n",
"R = 287 \t\t\t# [] universal gas constant\n",
"T1 = 100.0 \t\t\t# [degree celsius] temperature of first plate\n",
"T2 = 40.0 \t\t\t# [degree celsius] temperature of second plate\n",
"\t# the properties are the same as given in example(7.8)\n",
"Tf = (T1+T2)/2 \t\t\t# [degree celsius]\n",
"rho = p/(R*(Tf+273)) \t\t# [Kg/m**(3)] density\n",
"k = 0.0295 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.70 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K**(-1)]\n",
"mu = 2.043*10**(-5) \t\t# [Kg/m s] viscosity\n",
"g = 9.8 \t\t\t# [sq m/s] acceleration due to gravity\n",
"\t# the GrPr product is evaluated on the basis of the separating distance, so we \t have \n",
"\n",
"#Calculation\n",
"\n",
"Gr_into_Pr = (g*rho**(2)*Beta*(T1-T2)*(d)**(3)*Pr)/(mu**(2)) \n",
"\t# consulting table 7-3(page no.-344) we find\n",
"C = 0.059 \n",
"n = 0.4 \n",
"m = 0 \n",
"Ke_by_K = C*(Gr_into_Pr)**(n)*(a/d)**(m) \n",
"A = a**(2) \t\t\t# [square meter] area of plate \n",
"q = Ke_by_K*k*A*(T1-T2)/d \t# [W]\n",
"\n",
"#Result\n",
"\n",
"print \"Heat transfer across the air space is\",round(q,2),\"W\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.10"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.47131600256\n",
"heat lost by the lower plate is 964.0 W\n"
]
}
],
"source": [
"#Example Number 7.10\n",
"# heat transfer across water layer\n",
"\n",
"# Variable declaration\n",
"\n",
"L = 0.5 \t\t\t# [m] length of square plate\n",
"d = 0.01 \t\t\t# [m] seperation between square plates\n",
"T1 = 100\t\t\t# [degree F] temperature of lower plate\n",
"T2 = 80 \t\t\t# [degree F] temperature of upper plate\n",
"\n",
"dT=5.0*(T1-T2)/9.0\t\t\t#in Degree C\n",
"\t\t# we evaluate properties at mean temperature of 90 deg F and \t\t\t\tobtain, for water\n",
"k = 0.623 \t\t\t# [W/m degree celsus]\n",
"\t# and the following term is particularly useful in obtaining the product GrPr \n",
"\t# g*Beta*rho**(2)*Cp/(mu*k) = 2.48*10**(10) [1/m**(3) degree celsius]\n",
"\t# the Grashof-prandtl number product is now evaluated using the plate spacing \t\tof 0.01 m as the characterstic dimension\n",
"\n",
"#Calculation\n",
"\n",
"K = 2.48*10**(10.0) \t\t# [1/m**(3) degree celsius]\n",
"\n",
"Gr_into_Pr = K*(T1-T2)*(5.0/9.0)*d**(3.0) \n",
"\n",
"\t# now, using equation 7-64 and consulting table 7-3(page no.-344) we obtain\n",
"C = 0.13 \n",
"n = 0.3 \n",
"m = 0.0 \n",
"\t# therefore, equation (7-64) becomes\n",
"Ke_by_K = C*Gr_into_Pr**(n) \n",
"\n",
"\t# the effectve thermal conductivity is thus\n",
"ke = k*Ke_by_K \t\t\t# [W/m degree celsius]\n",
"\n",
"print ke\n",
"\t\t\t\t# and the heat transfer is\n",
"A = L**(2.0) \t\t\t# [square meter] area of plate\n",
"q = ke*A*(dT)/d \t# [W]\n",
"\n",
"#Result\n",
"print \"heat lost by the lower plate is \",round(q),\"W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.11"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vacuum necessary for glass spacings of 1 cm is 13160.0 Pa\n",
"Vacuum necessary for glass spacings of 2 cm is 70154.0 Pa\n"
]
}
],
"source": [
"#Example Number 7.11 \n",
"# reduction of convection in ar gap\n",
"\n",
"# Variable declaration\n",
"\n",
"Tm = 300.0 \t\t\t# [K] mean temperature of air\n",
"dT = 20.0 \t\t\t# [degree celsius] temperature difference\n",
"R = 287 \t\t\t# [] universal gas constant\n",
"g = 9.8 \t\t\t# [m/s**(2)] acceleration due to gravity\n",
"p_atm = 101325.0 \t\t\t# [Pa] atmospheric pressure\n",
"\t# consulting table 7-13,we find that for gases, a value Grdeli_into_Pr<2000 is \tnecessary to reduce the system to one of pure \tconduction.\n",
"\t# at 300 K the properties of air are\n",
"k = 0.02624 \t\t\t# [W/m degree celsius]\n",
"Pr = 0.7 \t\t\t# prandtl no.\n",
"mu = 1.846*10**(-5) \t\t# [Kg/m s]\n",
"Beta = 1.0/300.0 \n",
"\n",
"\t# we have\n",
"Grdel_into_Pr = 2000.0 \n",
"\n",
"\t# Part A for spacing of 1cm\n",
"import math\n",
"deli = 0.01 \t\t\t# [m] spacing between plate\n",
"p = math.sqrt((Grdel_into_Pr*((R*Tm)**(2))*mu**(2))/(g*Beta*dT*deli**(3)*Pr)) \t# [Pa]\n",
"p=math.sqrt(7773/deli**3)\n",
"\n",
"\t# or vacuum\n",
"vacuum = p_atm-p \t\t# [Pa]\n",
"\n",
"\n",
"\t# Part B for spacing of 2cm\n",
"\n",
"deli1 = 0.02 \t\t\t# [m] spacing between plate\n",
"p1 = math.sqrt(Grdel_into_Pr*(R*Tm)**(2)*mu**(2)/(g*Beta*dT*deli1**(3)*Pr)) # [Pa]\n",
"p1=math.sqrt(7773/deli1**3)\n",
"\t# or vacuum\n",
"vacuum1 = p_atm-p1 \t\t# [Pa]\n",
"\n",
"\n",
"#Result\n",
"print \"Vacuum necessary for glass spacings of 1 cm is\",round(vacuum),\"Pa\" \n",
"print \"Vacuum necessary for glass spacings of 2 cm is\",round(vacuum1),\"Pa\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 7.13"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"heat transfer coefficient is 9.4 W/square meter degree celsius\n"
]
}
],
"source": [
"#Example Number 7.13\n",
"# combined free and forced convection with air\n",
"\n",
"# Variable declaration\n",
"\n",
"p = 101325.0 \t\t\t# [Pa] pressure of air\n",
"Ta = 27.0 \t\t\t# [degree celsius] temperature of air\n",
"d = 0.025 \t\t\t# [m] diameter of tube\n",
"u = 0.3 \t\t\t# [m/s] velocity of air\n",
"Tw = 140.0 \t\t\t# [degree celcius] temperature of tube wall\n",
"L = 0.4 \t\t\t# [m] length of tube\n",
"R = 287 \t\t\t# [] universal gas constant\n",
"\t# the properties of air are evaluated at the film temperature:\n",
"Tf = (Tw+Ta)/2 \t\t\t# [degree celcius]\n",
"\t# the properties of interest are thus\n",
"kf = 0.0305 \t\t\t# [W/m degree celcius]\n",
"Pr = 0.695 \t\t\t# prandtl number\n",
"Beta = 1/(Tf+273) \t\t# [K**(-1)]\n",
"g = 9.8 \t\t\t# [square meter/s] acceleration due to gravity\n",
"mu_f = 2.102*10**(-5) \t\t# [Kg/m s]\n",
"mu_w = 2.337*10**(-5) \t\t# [Kg/m s]\n",
"\n",
"#Calculations\n",
"\n",
"rho_f = p/(R*(Tf+273)) \t\t# [Kg/cubic meter]\n",
"\t# let us take the bulk temperature as 27 degree celsius for evaluating mu_b \tthen\n",
"mu_b = 1.8462*10**(-5) \t\t# [Kg/m s]\n",
"\t# the significant parameters are calculated as \n",
"Re_f = rho_f*u*d/mu_f \n",
"Gr = rho_f**(2)*g*Beta*(Tw-Ta)*d**(3)/mu_f**(2) \n",
"Z = Gr*Pr*d/L \t\t\t# constant\n",
"\t# according to figure(7-14)(page no.-354), the mixed convection flow regime is \tencountered. thus we must use equation(7-77).\n",
"\t# The graetz number is calculated as \n",
"Gz = Re_f*Pr*d/L \n",
"\t# and the numerical calculation for equation(7-77) becomes\n",
"Nu = 1.75*(mu_b/mu_w)**(0.14)*(Gz+0.012*(Gz*Gr**(1.0/3.0))**(4.0/3.0))**(1.0/3.0) \n",
"\t# the average heat transfer coefficient is calculated as \n",
"h_bar = Nu*kf/d \t\t# [W/square meter degree celsius]\n",
"\n",
"#Result\n",
"\n",
"print \"heat transfer coefficient is\",round(h_bar,2),\"W/square meter degree celsius\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|