1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4 Unsteady State Conduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hV/A/k is: 0.0024 which is less than 0.1,So by eq 4.5\n",
"hA/pcV is 0.000334448160535 per second\n",
"Time is 5818.0 seconds\n"
]
}
],
"source": [
"#Example 4.1\n",
"# Calculate the time required for ball to attain a temperature of 150 deg C.\n",
"\n",
"#variables:\n",
"\n",
"c=460.0 \t# kJ/kg\n",
"k=35.0 \t#W/m\n",
"d=0.05 \t# diameter in meter\n",
"r=d/2 \t\t# radius in meter\n",
"h=10.0 \t#convection heat transfer coeff in W/sq meter\n",
"T=150.0 \t#Temperature in deg C\n",
"p=7800 \t#Density in kg/cubic meter\n",
"Ti=100.0 \t# T,infinity ..in celsius\n",
"To=450.0 \t# in Celsius\n",
"\n",
"#CALCULATION\n",
"\n",
"import math \n",
"A=(4*math.pi) * (r**2) \t\t\t #Arear in sq meter\n",
"V=(A*r/3) \t\t\t\t # Volume in cubic meters\n",
"c1=(h*(V/A))/k \t \t\t #it is less than 0.1 So,\n",
"print \"hV/A/k is:\",round(c1,4),\"which is less than 0.1,So by eq 4.5\"\n",
"c2=((h*A)/(p*c*V)) \t\t # assumed variable for easiness\n",
"\n",
"#RESULTS\n",
"\n",
"print \"hA/pcV is\",c2,\"per second\"\n",
"t=(-1/c2)*(math.log((T-Ti)/(To-Ti))) \n",
"print \"Time is\",round(t),\"seconds\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.2"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature at depth of 0 .025 m after 30 s for case 1 is 118.5 degree celsius \n",
"Temperature at depth of 0 . 0 2 5 m after 30 second for case 2 is 79.3 degree celsius\n",
"Surface temperature after 30 second is: 199.4 degree celsius \n"
]
}
],
"source": [
"#Example 4.2\n",
"#Calculate the temperature at a depth of 2.5 cm after 0.5 min for both cases\n",
"import math\n",
"\n",
"#variable declaration\n",
"\n",
"k = 45 \t\t\t\t# [W/m per deg C ] thermal conductivity of steel block\n",
"alpha = 1.4*10**( -5) ; \t# [ square meter / s ] constant\n",
"Tb = 35 \t\t\t# [ degree celsius ] block temperature\n",
"x = 0.025 \t\t\t# [m] depth at which temperature is calculated\n",
"t = 30 \t\t\t\t# [s]time after which temperature is to be calculated\n",
"To = 250 \t\t\t# [ degree celsius]\n",
"\n",
"\n",
"#CALCULATION & rESULT\n",
"\n",
"er=(x/(2*math.sqrt(alpha*t)))\t \t # error function short form\n",
"T_x_t = (To +(Tb -To)*( math.erf(er))) \n",
"\t\t\t\t\t # for the constant heat flux case B we \t\t\t\t\t\t make use of eq4.13 a\n",
"\t\t\t # since qo/A is given\n",
"\n",
"print \"Temperature at depth of 0 .025 m after 30 s for case 1 is\",round(T_x_t,1),\" degree celsius \"\n",
"q_by_A = 3.2*10**(5) ; \t\t\t\t# [W/ s qua r e meter ]\n",
"\n",
"T_x_t1 =(Tb +(2* q_by_A*math.sqrt(alpha*t/math.pi)*math.exp(-(x**2)/(4*alpha *t))/k) -(q_by_A *x*(1 - math.erf(er))/k)) \t\t# [ degree celsius ]\n",
"\n",
"print \"Temperature at depth of 0 . 0 2 5 m after 30 second for case 2 is\",round(T_x_t1,1),\"degree celsius\" \n",
"\t\t\t\t# for the constant heat flux case the surface \t\t\t\t temperature after 30 s would be evaluated with x= 0 \t\t\t\t in equation(4.13 a )\n",
"x = 0 \t\t\t\t\t\t\t\t# [m] at the surface\n",
"\n",
"T_x_o = Tb +(2* q_by_A *math.sqrt(alpha*t/math.pi) * math.exp (-(x **2)/(4*alpha*t))/k) -(q_by_A*x*(1 -math.erf (er))/k) \t\t# [degree celsius]\n",
"\n",
"print \"Surface temperature after 30 second is:\",round(T_x_o,1) ,\"degree celsius \" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.3"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ASSUMPTION: Negligible radiation effects\n",
"At x=0\n",
"At x=2mm ie 0.002 m\n",
"0.002\n",
"T =: 513.0 Celsius\n"
]
}
],
"source": [
"#Example 4.3\n",
"#Estimate the temperature at the surface and at a depth of 2 mm after 2 sec\n",
" \t\t\t#Qo/A=10^7 J/sq meter\n",
"import math \t \t# import math file\n",
"\n",
"#variable declaration\n",
"\n",
"c1=10 \t\t# =Qo/A laser pulse in MJ/sq meter\n",
"c1=(c1*10**6) \t\t# convert in joule from MJ\n",
"p=7800 \t\t\t# Density in kg/cubic meter\n",
"c=460\t\t\t#J/kg\n",
"a=(0.44*(10**(-5))) \t# sq m/sec\n",
"t=2 \t\t\t# time in seconds\n",
"Ti=40.0 \t\t# initial temp in deg C\n",
"\n",
"print \"ASSUMPTION: Negligible radiation effects\"\n",
"#From eqq 4.13,:\n",
"print \"At x=0\"\n",
"\n",
"#calculation\n",
"To=Ti+(c1/(p*c*math.sqrt((math.pi)*a*t)))\n",
"print \"At x=2mm ie 0.002 m\"\n",
"x=0.002\n",
"print x\n",
"T=(Ti+(c1/(p*c*math.sqrt((math.pi)*a*t)))*(math.exp(-(x**2)/(4*a*t))))\n",
"\n",
"#RESULTS\n",
"print \"T =:\", round(T),\"Celsius\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.5"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The iteration are listed below\n",
" h*math.sqrt(alpha*t)/k x/(2*sqrt(alpha*t)) (T_x_t-Ts)/(Te-Ts)\n",
"1000 0.708 0.069 0.41\n",
"3000 1.226 0.04 0.61\n",
"4000 1.415 0.035 0.68\n",
"Consequently the time required is approximately 3000 second\n"
]
}
],
"source": [
"#Example 4.5:Sudden exposure of semi-infinite solid slab to convection\n",
"# Calculate time req for the temp to reach 120 deg C at depth of 4 cm\n",
"\n",
"#VARIABLE DECLARATION\n",
"\n",
"alpha = 8.4*10**(-5) \t\t# [square meter/s] constant\n",
"Ts = 200\t\t # [degree celsius] initial temperature of of slab\n",
"Te = 70\t\t\t\t# [degree celsius] environment temperature \n",
"k = 215 \t\t\t# [W/m deg C] heat transfer coefficient of slab\n",
"h = 525 \t\t\t# [W/sq m degree celsius] heat transfer coefficient \n",
"x = 0.04\t\t\t# [m] depth at which temperature is calculated\n",
"T_x_t = 120 \t\t\t# [degree celsius] temperature at depth 0.04 m\n",
"\n",
"\t# using eq 4-15 or figure (4-5) for solution of this problem\n",
"\t# by using figure it is easier to calculate it involves iterative method to \tsolve because time appeares in both the variables \n",
"\n",
"\t# h*sqrt(alpha*t)/k and x/(2*sqrt(alpha*t))\n",
"K = (T_x_t-Ts)/(Te-Ts) \n",
"\t# Seek the values of t such that the above value of K is equal to the value of \tK which comes out from graph\n",
"\n",
"# values of t and obtain other readings\n",
"\n",
"#CALCULATION & RESULT\n",
"\n",
"print \"The iteration are listed below\"\n",
"\t# at t = 1000s\n",
"import math\n",
"t = 1000 # [s] time\n",
"A = h*math.sqrt(alpha*t)/k \n",
"B = x/(2*math.sqrt(alpha*t)) \n",
"\n",
"print \" h*math.sqrt(alpha*t)/k x/(2*sqrt(alpha*t)) (T_x_t-Ts)/(Te-Ts)\"\n",
"\n",
"print t,\" \",round(A,3),\" \",round(B,3),\" \",\"0.41\"\n",
"\n",
"t = 3000 \t\t\t# [s] time\n",
"A = h*math.sqrt(alpha*t)/k \n",
"B = x/(2*math.sqrt(alpha*t)) \n",
"\n",
"print t,\" \",round(A,3),\" \",round(B,3),\" \",\"0.61\"\n",
"\n",
"t = 4000 \t\t\t# [s] time\n",
"A = h*math.sqrt(alpha*t)/k \n",
"B = x/(2*math.sqrt(alpha*t)) \n",
" \n",
"print t,\" \",round(A,3),\" \",round(B,3),\" \",\"0.68\"\n",
"print \"Consequently the time required is approximately 3000 second\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.6"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature at a depth of 1.25 cm from one of faces after 1 min of exposure of plate to the environment is 147.7 degree celsius\n",
"Energy removed per unit area from the plate in this time is 6475950.0 J/square meter\n"
]
}
],
"source": [
"#Example 4.6-aluminium plate suddenly exposed to convection\n",
"#Calculate Energy removed /Area from the plate at this time\n",
"\n",
"#VARIABLE DECLARATION\n",
"alpha = 8.4*10**(-5) \t\t\t# [square meter/s] constant\n",
"Ts = 200 \t\t\t\t# [deg celsius] initial temperature of plate\n",
"Te = 70 \t\t\t\t# [degree celsius] environment temperature \n",
"k = 215 \t\t\t\t# [W/m deg C] heat transfer coeff of plate\n",
"h = 525 \t\t\t\t#[W/sq m deg C] heat transfer coefficient \n",
"x = 0.0125 \t\t\t\t#[m] depth at which temperature is calculated\n",
"t = 60\t\t\t\t\t#[s]time after which temperature is calculated\n",
"L = 0.025 \t\t\t\t# [m] thickness of plate\n",
"\n",
"#CALCULATION\n",
"\n",
"theta_i = Ts-Te\t\t\t\t # [degree celsius]\n",
"\n",
"\t\t\t# then \n",
"Z = alpha*t/L**2 \n",
"X = k/(h*L) \n",
"x_by_L = x/L \n",
"\t\n",
"\t\t\t# from figure 4-7(page no.-144-145)\n",
"\n",
"theta_o_by_theta_i = 0.61 \n",
"theta_o = theta_o_by_theta_i*theta_i # [degree celsius]\n",
"\t\t\t# from figure 4-10(page no.-149) at x/L = 0.5,\n",
"theta_by_theta_o = 0.98 \n",
"theta = theta_by_theta_o*theta_o \t# [degree celsius]\n",
"T = Te+theta \t\t\t\t# [degree celsius]\n",
"\n",
"\t\t\t# using Figure 4-14(page no.-152). For this calculation we \t\t\trequire the following properties of aluminium:\n",
"\t\n",
"rho = 2700 \t\t\t\t# [kg/cubic meter]\n",
"C = 900 \t\t\t\t# [J/kg degree celsius]\n",
"\n",
"\t\t\t# for figure 4-14(page no.-152) we need \n",
"\n",
"V = h**2*alpha*t/(k**2) \n",
"B = h*L/k \n",
"\n",
"\t\t\t# from figure 4-14(page no.-152)\n",
"\n",
"Q_by_Qo = 0.41 \n",
"\n",
"\t\t\t# for unit area \n",
"Qo_by_A = rho*C*2*L*theta_i \t\t# [J/square meter]\n",
"\n",
"# Now, heat removed per unit surface area is \n",
"Q_by_A = Qo_by_A*Q_by_Qo \t\t# [J/square meter]\n",
"\n",
"#RESULTS\n",
"\n",
"print\"Temperature at a depth of 1.25 cm from one of faces after 1 min of exposure of plate to the environment is\",round(T,1),\" degree celsius\" \n",
"\n",
"print\"Energy removed per unit area from the plate in this time is\",Q_by_A,\" J/square meter\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.7"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature at a radius of 1.25 cm is 118.4 degree celsius\n",
"Heat lost per unit length 1 minute after the cylinder is exposed to the environment is 403174.0 J/m\n"
]
}
],
"source": [
"#Example4.7-Long cylinder suddenly exposed to convection \n",
"\n",
"#VARIABLE DECLARATION\n",
"\n",
"d = 0.05 \t\t\t# [m] diameter of cylinder\n",
"Ti = 200 \t\t\t# [degree C] initial temperature of aluminium cylinder\n",
"Tinf = 70 \t\t\t# [degree celsius] temperature of environment\n",
"h = 525 \t\t\t# [W/sq m degree celsius] heat transfer coefficient\n",
"\n",
"#CALCULATION\n",
"\n",
"# we have\n",
"theta_i = Ti-Tinf \t\t# [degree celsius]\n",
"alpha = 8.4*10**(-5) \t\t# [square meter/s]\n",
"ro = d/2 \t\t\t# [m]\n",
"t = 60 \t\t\t\t# [s]\n",
"k = 215\t\t # [W/m degree celsius]\n",
"r = 0.0125 \t\t\t# [m]\n",
"rho = 2700 \t\t\t# [kg/cubic meter]\n",
"C = 900 \t\t\t# [J/kg degree celsius]\n",
"\n",
"\t# we compute\n",
"\n",
"Z = alpha*t/ro**2 \n",
"X = k/(h*ro) \n",
"r_by_ro = r/ro \n",
"\n",
"\n",
"\t# from figure 4-8(page no.-146)\n",
"theta_o_by_theta_i = 0.38 \n",
"\n",
"\t# from figure 4-11(page no.-150) at r/ro = 0.5\n",
"theta_by_theta_o = 0.98 \n",
"\n",
"\t# so that \n",
"theta_by_theta_i = theta_o_by_theta_i*theta_by_theta_o \n",
"theta = theta_i*theta_by_theta_i \t# [degree celsius]\n",
"T = Tinf+theta \t\t\t\t# [degree celsius]\n",
"\n",
"\t# to compute the heat lost, we determine\n",
"V = h**2*alpha*t/k**2 \n",
"B = h*ro/k \n",
"\n",
"\t# from figure 4-15(page no.-153)\n",
"Q_by_Qo = 0.65 \n",
"\n",
"\t# for unit length\n",
"import math\n",
"Qo_by_L = rho*C*math.pi*ro**2*theta_i \t# [J/m]\n",
"\n",
"\t#actual heat lost per unit length is \n",
"Q_by_L = Qo_by_L*Q_by_Qo \t\t# [J/m]\n",
"\n",
"\n",
"\n",
"#RESULTS\n",
"\n",
"print\"Temperature at a radius of 1.25 cm is\",round(T,1),\" degree celsius\" \n",
"print\"Heat lost per unit length 1 minute after the cylinder is exposed to the environment is\",round(Q_by_L),\"J/m\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.8"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The temperature at the axis is: 117.6 degree celsius\n",
"The temperature at the surface is 116.2 degree celsius\n"
]
}
],
"source": [
"#Example 4.8-\n",
"#Calculate temperature at axis and surface of th cylinder 10 cm from end 1 min after exposure\n",
"\n",
"#VARIABLES DECLARATION\n",
"import math\n",
"\n",
"d = 0.05 \t\t# [m] diameter of aluminium cylinder \n",
"Ti = 200 \t\t# [degree celsius] initial temperature of of cylinder\n",
"Te = 70 \t\t# [degree celsius] environment temperature\n",
"k = 215 \t\t# [W/m degree celsius] heat transfer coefficient of plate\n",
"h = 525 \t\t# [W/sq m degree celsius] convection heat transfer coefficient \n",
"alpha = 8.4*10**(-5) # [square meter/s] constant\n",
"x = 0.10 \t\t# [m] distance at which temperature is calculated from end\n",
"t = 60 \t\t\t# [s] time after which temperature is measured\n",
"\t# so that the parameters for use with figure(4-5)\n",
"\n",
"#CALCULATION\n",
"A = h*math.sqrt(alpha*t)/k \n",
"B = x/(2*math.sqrt(alpha*t)) \n",
"# from figure (4-5)\n",
"z = 1-0.036 \n",
"S_of_X = z \n",
"\t# for the infinite cylinder we seek both the axis- and surface-temperature \tratios.\n",
"\t# the parameters for use with fig(4-8) are \n",
"r_o = d/2 \t\t\t# [m] radius of aluminium cylinder \n",
"r = d/2 \t\t\t# [m] for surface temperature ratio\n",
"C = k/(h*r_o) \n",
"D = (alpha*t/r_o**(2)) \n",
"y = 0.38 \n",
"\n",
"\t# this is the axis temperature ratio.\n",
"\t# to find the surface-temperature ratio,we enter figure (4-11),using \n",
"R = r/r_o \n",
"u = 0.97 \n",
"# thus \n",
"w = y \t\t\t# at r = 0\n",
"v = y*u \t\t# at r = r_o\n",
"C_of_O_axis = w \t# at r = 0\n",
"C_of_O_r_o = v \t\t# at r = r_o\n",
"\t# combining the solutions for the semi-infinite slab and infinite cylinder, we \thave \n",
"t = S_of_X*C_of_O_axis \n",
"s = S_of_X*C_of_O_r_o \n",
"\t# the corresponding temperatures are \n",
"T_axis = Te+t*(Ti-Te) \n",
"T_r_o = Te+s*(Ti-Te) \n",
"\n",
"\n",
"#RESULTS\n",
"\n",
"print\"The temperature at the axis is:\",round(T_axis,1),\" degree celsius\"\n",
"print\"The temperature at the surface is\",round(T_r_o,1),\" degree celsius\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.9"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature at a radial position of 0.0125 m and a distance of 0.00625m from one end of cylinder 60 second after exposure to environment is 104.5 degree celsius\n"
]
}
],
"source": [
"#Example 4.9\n",
"# finite length cylinder suddenly exposed to convection \n",
"\n",
"#Variable declaration\n",
"\n",
"d = 0.05 \t\t\t# [m] diameter of aluminium cylinder \n",
"Ti = 200 \t\t\t# [degree celsius] initial temperature of of cylinder\n",
"Te = 70\t\t\t # [degree celsius] environment temperature\n",
"k = 215 \t\t\t# [W/m deg celsius] heat transfer coefficient of plate\n",
"h = 525 \t\t\t# [W/sq m deg C] convection heat transfer coefficient \n",
"alpha = 8.4*10**(-5) \t\t#[square meter/s] constant\n",
"x1 = 0.00625 \t\t\t#[m]dist at which temperature is calculated from end\n",
"t = 60 \t\t\t\t# [s] time after which temperature is measured\n",
"r = 0.0125 \t\t\t# [m] radius at which temperature is calculated\n",
"\t# to solve this problem we combine the solutions from heisler charts for an \t\tinfinite cylinder and an infinite plate in accordance with the combination \t\tshown in fig (4-18f)\n",
"\t# for the infinite plate problem \n",
"L = 0.05\t\t\t # [m]\n",
"\n",
"#CALCULATION\n",
"\n",
"\t# the x position is measured fromthe center of the plate so that\n",
"x = L-x1 \t\t\t# [m]\n",
"A = k/(h*L) \n",
"B = (alpha*t/L**(2)) \n",
"\t# from figures (4-17) and (4-10) respectively\n",
"thetha_o_by_i = 0.75 \n",
"thetha_by_i = 0.95 \n",
"\t# so that\n",
"thetha_by_i_plate = thetha_o_by_i*thetha_by_i \n",
"\t# for the cylinder \n",
"r_o = d/2 \t\t\t# [m] radius of the cylinder\n",
"R = r/r_o \n",
"C = k/(h*r_o) \n",
"D = (alpha*t/r_o**(2)) \n",
"\t# and from figures (4-8) and (4-11), respectively\n",
"thetha_o_by_i_cyl = 0.38 \n",
"thetha_by_o = 0.98 \n",
"\t# so that\n",
"thetha_by_i_cyl = thetha_o_by_i_cyl*thetha_by_o \n",
"\t# combining the solutions for the plate and cylinder gives\n",
"thetha_by_i_short_cyl = thetha_by_i_plate*thetha_by_i_cyl \n",
"\t#thus\n",
"T = Te+thetha_by_i_short_cyl*(Ti-Te) \n",
"\n",
"#RESULTS\n",
"print\"Temperature at a radial position of 0.0125 m and a distance of 0.00625m from one end of cylinder 60 second after exposure to environment is\",round(T,1),\"degree celsius\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 4.10"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The actual heat loss in the 1-minute: 40.2 kJ\n"
]
}
],
"source": [
"#Example 4.10\n",
"# heat loss for finite-length cylinder \n",
"\n",
"#Variable declaration\n",
"d = 0.05 \t\t# [m] diameter of aluminium cylinder\n",
"l = 0.1 \t\t# [m] length of aluminium cylinder \n",
"Ti = 200\t\t# [degree celsius] initial temperature of of cylinder\n",
"Te = 70 \t\t# [degree celsius] environment temperature\n",
"k = 215 \t\t# [W/m degree celsius] heat transfer coefficient of plate\n",
"h = 525 \t\t# [W/sq m deg celsius] convection heat transfer coefficient \n",
"alpha = 8.4*10**(-5) \t#[square meter/s] constant\n",
"x1 = 0.00625 \t\t#[m] distance at which temperature is calculated from end\n",
"t = 60 \t\t\t#[s]time after which temperature is measured\n",
"r = 0.0125 #[m] radius at which temperature is calculated\n",
"\n",
"\n",
"#CALCULATION\n",
"\t\n",
"\t# calculate the dimensionless heat-loss ratio for the infinite plate and \tinfinite cylinder which make up the multidimensional body\n",
"\t# for the plate we have \n",
"L = 0.05 \t\t# [m]\n",
"A = h*L/k \n",
"B = h**(2)*alpha*t/k**(2) \n",
"\t# from figure (4-14), for the plate, we read \n",
"Q_by_Q_o_plate = 0.22 \n",
"\n",
"\t# for the cylinder \n",
"r_o = 0.025 \t\t# [m]\n",
"\t# so we calculate \n",
"C = h*r_o/k \n",
"\t# and from figure(4-15) we have \n",
"Q_by_Q_o_cyl = 0.55 \n",
"\n",
"\t# the two heat ratios may be inserted in equation(4-22) to give \n",
"Q_by_Q_o_tot = Q_by_Q_o_plate+Q_by_Q_o_cyl*(1-Q_by_Q_o_plate) \n",
"c = 896 \t\t# [J/kg degree celsius] specific heat of aluminium\n",
"rho = 2707 \t\t# [kg/cubic meter] density of aluminium\n",
"\n",
"import math\n",
"\n",
"V = math.pi*r_o**(2)*l \t# [cubic meter]\n",
"Qo = rho*c*V*(Ti-Te) \t# [J]\n",
"Q = Qo*Q_by_Q_o_tot \t# [J] the actual heat loss in the 1-minute \n",
"\n",
"#RESULTS\n",
"\n",
"print \"The actual heat loss in the 1-minute:\",round((Q/1000),1),\" kJ\" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|