1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3 Steady State Conduction Multiple Dimension"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat lost by the pipe is 859.9 W\n"
]
}
],
"source": [
"#Example Number 3.1\n",
"# Calculate the heat loss by the pipe\n",
"\n",
"# Variable declaration\n",
"\n",
"d = 0.15 \t\t\t# [m] diameter of pipe\n",
"r = d/2 \t\t\t# [m] radius of pipe\n",
"L = 4 \t\t\t\t# [m] length of pipe\n",
"Tp = 75\t\t\t\t# [degree celsius] pipe wall temperature\n",
"Tes = 5 \t\t\t# [degree celsius] earth surface temperature\n",
"k = 0.8\t\t\t\t# [W/m per deg C] thermal conductivity of earth \n",
"D = 0.20 \t\t\t# [m] depth of pipe inside earth\n",
"\n",
"\t# We may calculate the shape factor for this situation using equation given in \ttable 3-1 \n",
"\t\n",
"\t# since D<3*r\n",
"#Calculation\n",
"import math\n",
"S = (2*math.pi*L)/math.acosh(D/r) \t# [m] shape factor\n",
"\t# the heat flow is calculated from \n",
"q = k*S*(Tp-Tes) \t\t\t# [W]\n",
"\n",
"#Result\n",
"print\"Heat lost by the pipe is\",round(q,1),\"W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat lost through the walls is: 8.592 kW\n"
]
}
],
"source": [
"#Example Number 3.2 \n",
"# Calculate heat loss through the walls\n",
"\n",
"# VARIABLE DECLARATION\n",
"\n",
"a = 0.5 \t # [m] length of side of cubical furnace\n",
"Ti = 500 \t # [degree celsius] inside furnace temperature\n",
"To = 50 \t # [degree celsius] outside temperature\n",
"k = 1.04 \t # [W/m per degree celsius] thermal conductivity of fireclay brick \n",
"t = 0.10 \t # [m] wall thickness\n",
"A = a*a \t # [square meter] area of one face \n",
"\t\t # we compute the total shape factor by adding the shape factors \t\t \t for the walls, edges and corners\n",
"\n",
"#Calculation\n",
"Sw = A/t\t # [m] shape factor for wall\n",
"Se = 0.54*a \t # [m] shape factor for edges\n",
"Sc = 0.15*t\t # [m] shape factor for corners\n",
"\n",
"\t\t # there are six wall sections, twelve edges and eight corners, so \t\t\tthe total shape factor S is\n",
"\n",
"S = 6*Sw+12*Se+8*Sc \t# [m]\n",
"\t\t \n",
"\t\t# the heat flow is calculated as \n",
"\n",
"q = k*S*(Ti-To) \t# [W]\n",
"\n",
"#Result\n",
"print\"Heat lost through the walls is:\",round(q/1000,3),\"kW\" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.3"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat lost by disk is: 198.46 W\n"
]
}
],
"source": [
"#Example Number 3.3\n",
"# Calculate the heat loss by the disk\n",
"\n",
"# Variable declaration\n",
"\n",
"import math\n",
"d = 0.30 \t# [m] diameter of disk\n",
"r = d/2 \t# [m] radius of disk\n",
"Td = 95 \t# [degree celsius] disk temperature\n",
"Ts = 20 \t# [degree celsius] isothermal surface temperature\n",
"k = 2.1 \t# [W/m per degree celsius] thermal conductivity of medium \n",
"D = 1.0 \t# [m] depth of disk in a semi-infinite medium\n",
"\t# We have to calculate shape factor using relation given in table (3-1) \n",
"\t# We select the relation for the shape factor is for the case D/(2*r)>1\n",
"\n",
"#Calculation\n",
"S = (4*math.pi*r)/((math.pi/2)-math.atan(r/(2*D)))\t # [m] shape factor\n",
"\t# heat lost by the disk is \n",
"q = k*S*(Td-Ts) \t\t\t\t\t # [W]\n",
"\n",
"#Result\n",
"print\"Heat lost by disk is:\",round(q,2),\"W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.4"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Heat transfer between the disks is: 308.4 W\n"
]
}
],
"source": [
"#Example Number 3.4 \n",
"#Calculate the heat transfer betwwen the disks\n",
"\n",
"# Variable declaration\n",
"\n",
"d = 0.50\t # [m] diameter of both disk\n",
"r = d/2 \t # [m] radius of disk\n",
"Td1 = 80\t # [degree celsius] first disk temperature\n",
"Td2 = 20 \t # [degree celsius] second disk temperature\n",
"k = 2.3 \t # [W/m per degree celsius] thermal conductivity of medium \n",
"D = 1.5\t\t # [m] seperation of disk in a infinite medium\n",
"\t# We have to calculate shape factor using relation given in table (3-1) \n",
"\t# We select the relation for the shape factor is for the case D>5*r\n",
"#Calculation\n",
"import math\n",
"\n",
"S = (4*math.pi*r)/((math.pi/2)-math.atan(r/D)) # [m] shape factor\n",
"q = k*S*(Td1-Td2) # [W]\n",
"\n",
"#Result\n",
"print\"Heat transfer between the disks is:\",round(q,1),\"W\" \n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|