1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11 Mass Transfer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"value of diffusion coefficient for co2 in air is 0.132 square centimeter/s\n",
"From Table A-8,D=0.164 sq cm/s\n",
" So,they are in fair agreement\n"
]
}
],
"source": [
"#Example Number 11.1\n",
"# diffusion coefficient for co2\n",
"\n",
"# Variable declaration\n",
"\n",
"T =298.0\t\t\t# [K] temperature of air\n",
"Vco2 = 34.0 \t\t\t# molecular volume of co2\n",
"Vair = 29.9 \t\t\t# molecular volume of air\n",
"Mco2 = 44.0 \t\t\t# molecular weight of co2\n",
"Mair = 28.9 \t\t\t# molecular weight of air\n",
"P = 1.0132*10**(5) \t\t# [Pa] atmospheric pressure\n",
"\t# using equation (11-2)\n",
"#Calculation\n",
"D = 435.7*T**(3.0/2.0)*(((1/Mco2)+(1/Mair))**(1.0/2.0))/(P*(Vco2**(1.0/3.0)+Vair**(1.0/3.0))**(2)) \n",
"\n",
"#Result\n",
"print \"value of diffusion coefficient for co2 in air is\",round(D,3),\"square centimeter/s\" \n",
"print \"From Table A-8,D=0.164 sq cm/s\\n So,they are in fair agreement\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.3"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temperature of dry air is 53.66 degree celsius\n",
" recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\n",
"With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\n"
]
}
],
"source": [
"#Example Number 11.3\n",
"# Wet-bulb temperature\n",
"\n",
"#Variable declaration\n",
"\n",
"Pg = 2107.0\t\t\t# [Pa] from steam table at 18.3 degree celcius\n",
"Pw = Pg*18.0 \t\t\t# [Pa]\n",
"Rw = 8315.0 \t\t\t# [J/mol K] gas constant\n",
"Tw = 273+18.3\t \t\t# [K]\n",
"\n",
"RHOw = Pw/(Rw*Tw) \t\t# [kg/cubic meter]\n",
"\n",
"\n",
"Cw = RHOw \t\t\t# [kg/cubic meter]\n",
"RHOinf = 0.0 \t\t\t# since the free stream is dry air\n",
"Cinf = 0.0 \n",
"P = 1.01325*10**(5) \t\t# [Pa]\n",
"R = 287 \t\t\t# [J /kg K]\n",
"T = Tw \t\t\t\t# [K]\n",
"RHO = P/(R*T) \t\t\t# [kg/cubic meter]\n",
"\n",
"Cp = 1004.0 \t\t\t# [J/kg degree celsius]\n",
"Le = 0.845 \n",
"Hfg = 2.456*10**(6) \t\t# [J/kg]\n",
"#Calculations\n",
"# now using equation(11-31)\n",
"\n",
"Tinf = (((Cw-Cinf)*Hfg)/(RHO*Cp*(Le**(2.0/3.0))))+Tw \t# [K]\n",
"Tin = Tinf-273 \t\t\t\t\t# [degree celsius]\n",
"\n",
"print \"Temperature of dry air is\",round(Tin,2),\"degree celsius\" \n",
"print \" recalculate the density at the arithmetic-average temperature between wall and free-stream conditions\" \n",
"print \"With this adjustments these results are RHO = 1.143 kg/m**(3) and Tinf = 55.8 degree celcius\"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.4"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Relative humidity is therefore 27.8 percentage\n"
]
}
],
"source": [
"#Example Number 11.4\n",
"# relative humidity of air stream\n",
"\n",
"#Variable declaration\n",
"\n",
"\t\t# these data were taken from previous example\n",
"Rho = 1.212 \t\t\t\t\t# [kg/cubic meter]\n",
"Cp = 1004 \t\t\t\t\t# [J/kg]\n",
"Le = 0.845 \n",
"Tw = 18.3 \t\t\t\t\t# [degree celsius]\n",
"Tinf = 32.2 \t\t\t\t\t# [degree celsius]\n",
"Rhow = 0.015666 \t\t\t\t# [kg/cubic meter]\n",
"Cw = Rhow \t\t\t\t\t# [kg/cubic meter]\n",
"\n",
"#calculation\n",
"\n",
"Hfg = 2.456*10**(6) \t\t\t\t# [J/kg]\n",
"\t\t# we use eqn 11-31\n",
"Cinf = Cw-(Rho*Cp*Le**(2.0/3.0)*(Tinf-Tw)/Hfg) \t# [kg/cubic meter]\n",
"Rhoinf = Cinf \t\t\t\t\t# [kg/cubic meter]\n",
"Rhog = 0.0342 \t\t\t\t\t# [kg/cubic meter]\n",
"RH = (Rhoinf/Rhog)*100 \n",
"\n",
"#Result\n",
"\n",
"print \"Relative humidity is therefore\",round(RH,1),\"percentage\" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 11.5"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaporation rate on the land under these conditions is 0.0028 kg/h square meter\n"
]
}
],
"source": [
"#Example Number 11.5\n",
"# water evaporation rate\n",
"\n",
"# Variable declaration\n",
"\n",
"Ta = 38+273 \t\t\t# [K] temperature of atmospheric air\n",
"RH = 0.30 \t\t\t# relative humidity\n",
"u = 10.0\t\t\t# [mi/h] mean wind speed\n",
"R = 0.287 \t\t\t# universal gas constant\n",
"Dw = 0.256*10**(-4) \t\t# [square meter/s] from table A-8(page no.-610)\n",
"rho_w = 1000 \t\t\t# [kg/cubic meter]\n",
"\t# for this calculation we can make use of equation(11-36). from thermodynamic \tsteam tables\n",
"p_g = 6.545 \t\t\t# [kPa] at 38 degree celsius\n",
"p_s = p_g \t\t\t# [kPa]\n",
"p_w = RH*p_s \t\t\t# [kPa]\n",
"p_s = 1.933 \t\t\t# [in Hg]\n",
"p_w = 0.580 \t\t\t# [in Hg]\n",
"\t# also \n",
"u_bar = u*24 \t\t\t# [mi/day]\n",
"\t# equation(11-36) yields, with the application of the 0.7 factor\n",
"\n",
"E_lp = 0.7*(0.37+0.0041*u_bar)*(p_s-p_w)**(0.88) \t\t# [in/day]\n",
"E_lp = E_lp*2.54/100 \t\t\t\t\t\t# [m/day]\n",
"\n",
"\t# noting that standard pan has the diameter of 1.2m, we can use the figure to \t\tcalculate the mass evaporation rate per unit area as\n",
"m_dot_w_by_A = E_lp*rho_w/24 \t\t\t\t# [kg/h square meter]\n",
"\n",
"\n",
"\t# as a matter of interest, we might calculate the molecular-diffusion rate of \t\twater vapour from equation(11-35), taking z1 as the 1.5m dimension above the \t\tstandard pan.\n",
"z1 = 1.5 \t\t\t\t\t\t\t# [m]\n",
"\n",
"\t# since rho = p/(R*T)\n",
"\t# equation(11-35) can be written as \n",
"m_dot_w_by_A1 = 0.622*Dw*p_g*3600/(R*Ta*z1) \t\t\t# [kg/h square meter]\n",
"\n",
"#Result\n",
"\n",
"print \"Evaporation rate on the land under these conditions is\",round(m_dot_w_by_A1,4),\"kg/h square meter\"\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|