1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9 : Evaporation and Evaporators"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1 Page No : 391"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The rate at which heat must be supplied at 1 atm pressure is 2.441e+08 kj/ day\n",
"The rate at which heat must be supplied at a pressure of 600 mm Hg is 2.373e+08 kj/day \n"
]
}
],
"source": [
"# Variables\n",
"ro = 1020. \t\t\t# kg/m**3, density of feed\n",
"sf = 4.1 \t\t\t#kj/kg C,specific heat of the feed\n",
"sp = 3.9 \t\t\t#kj/kg C,specific heat of the product\n",
"ci = 5. \t\t\t#initial concentration\n",
"cw = 100.-ci \t\t\t#conc. of water\n",
"cf = 40. \t\t\t#final conc.\n",
"rate = 100. \t\t\t#m**3/day, rate of conc. of aq. solution\n",
"ft = 25. \t\t\t# C, feed temp.\n",
"\n",
"#calculation and results\n",
"#materiel balance\n",
"Wf = rate*ro \t\t\t#Kg. feed entering\n",
"Ms = ro*ci \t\t\t#Kg mass of solute\n",
"Mw = ro*cw \t\t\t#kg,mass of water\n",
"fc = cw/ci \t\t\t#kg,feed concentration\n",
"pc = (100-cf)/cf \t\t\t# kg,product concentration\n",
"wlwp = Ms*pc \t\t\t#Kg, water leaving with the product\n",
"Ws = Mw-wlwp \t\t\t#kg,water evaporated\n",
"Wp = wlwp+Ms \t\t\t# kg, product\n",
"#energy balance\n",
"rt = 0. \t\t\t#C reference temp.\n",
"ef = sf*(ft-rt) \t\t\t#kj/kg,enthlpy of the feed\n",
"#case i\n",
"Tp = 100. \t\t\t#temp. of the product (because the solute has a 'high molecular wt' the boiling pt elevation is neglected)\n",
"ip = sp*(Tp-rt) \t\t\t#kj/kg, enthalpy of the product\n",
"iv = 2680. \t\t\t#kj/kg, enthalpy of the vapour generated at 100 C and 1 atm pr. from the steam table\n",
"#refer to fig. 9.23\n",
"#from energy balance eq. (Wf*if+qs = Wv*iv+Wp*ip)\n",
"qs = Ws*iv+Wp*ip-Wf-ef \t\t\t#Wv = Ws\n",
"print \"The rate at which heat must be supplied at 1 atm pressure is %1.3e kj/ day\"%(qs)\n",
"\n",
"#case ii\n",
"#650 mm Hg vaccum = 110 mmHg pressure\n",
"bp = 53.5 \t\t\t#C, boiling point of water\n",
"ip2 = sp*(bp-rt) \t\t\t#kj/kg, enthalpy of the product\n",
"es = 2604. \t\t\t#kj/kg, enthalpy of the saturated steam (from steam table)\n",
"#from energy balnce eq.\n",
"qs2 = Wp*ip+Ws*es-Wf-ef\n",
"print \"The rate at which heat must be supplied at a pressure of 600 mm Hg is %1.3e kj/day \"%(qs2)\n",
"\n",
"# note : rounding off error."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2 Page No : 393"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The steam required is 1737 kg/h\n",
"No. of tube are 102\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variables\n",
"ci = 10. \t\t\t#%,initial concentration\n",
"cf = 40. \t\t\t#%, final conc\n",
"Wf = 2000. \t\t\t#kg/h, feed rate\n",
"ft = 30. \t\t\t#C feed temp.\n",
"rp = 0.33 \t\t\t#kg/cm**2, reduced pressure\n",
"bt1 = 75. \t\t\t#C,boiling point temp.\n",
"sst = 115. \t\t\t#C, saturated steam temp.\n",
"l = 1.5 \t\t\t# m,height of calandria\n",
"sh = 0.946 \t\t\t#kcal/kg C, specific heat of liquir\n",
"lh = 556.5 \t\t\t#kcal/kg latent heat of steam\n",
"bt2 = 345. \t\t\t#K, boiling point of water \n",
"h = 2150. \t\t\t#kcal/h m**2 C, overall heat transfer coefficient\n",
"si = 2000.*(ci/100) \t\t\t#kg/h, solids in\n",
"wi = 1800. \t\t\t#kg/h,wate in\n",
"\n",
"# Calculations\n",
"Wp = si/(cf/100) \t\t\t#kg/h, product out\n",
"Wv = Wf-Wp \t\t\t#evaporation rate\n",
"ef = sh*(ft-bt1)\n",
"ip = 0\n",
"lamda_s = 529.5 \t\t\t#kcal/kg, lamda_s = is-il\n",
"bpe = (273+bt1)-345 \t\t\t#boiling point elevation.\n",
"#from eergy balance eq.\n",
"Ws = (Wp*ip+Wv*lh-Wf*ef)/lamda_s\n",
"q = Ws*lamda_s \t\t\t#kcal/h,rate of heat transfer\n",
"A = q/(h*(sst-bt1)) \t\t\t# m**2\n",
"di = 0.0221 \t\t\t#m,inside diameter\n",
"At = math.pi*l*di \t\t\t#m**2, area of a math.single tube\n",
"N = A/At \t\t\t#no. of tubes\n",
"\n",
"# Results\n",
"print \"The steam required is %.0f kg/h\"%(Ws)\n",
"print \"No. of tube are %d\"%(N)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.3 Page No : 393"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The steam pressure to be used in the calandria is 2.15 barabs)\n",
"The heat transfer rate required is 4.01e+06 Kj/h\n",
"Rate of steam supply is 1833 kg/h\n"
]
}
],
"source": [
"# Variables\n",
"Wf = 2000. \t\t\t#kg/h, feed rate\n",
"ci = 8. \t\t\t#% initial conc.\n",
"cf = 40. \t\t\t#% final conc.\n",
"ft = 30. \t\t\t#C, feed temp.\n",
"vp = 660. \t\t\t#mm Hg, vaccum pressure\n",
"ssp = 8. \t\t\t# bar absolute, saturated steam pr.\n",
"\n",
"#calculation\n",
"sr = Wf*(ci/100) \t\t\t#kg/h, solid rate\n",
"Wp = sr/(cf/100) \t\t\t#kg/h,concentrated product rate\n",
"ap = 760-vp \t\t\t#mm Hg, absolute pressure in the evaporator\n",
"bt = 325. \t\t\t#K,boiling temp. of water\n",
"l_s = 2380. \t\t\t#kj/kg, latent heat\n",
"R = 8.303 \t\t\t#gas consmath.tant\n",
"w = 40. \t\t\t#g,mass of solute\n",
"M = 18. \t\t\t#g,molecular wt of solvent\n",
"W = 60. \t\t\t#g,mass of the solvent\n",
"m = 2000. \t\t\t#g,molecular wt of solute\n",
"dtb = (R*bt**2*w*M)/(l_s*W*m) \t\t\t#C, boiling point elevation\n",
"bp = bt+dtb \t\t\t#k,boiling point of 40% solution\n",
"dt = 70. \t\t\t#C, from given data flux becomes maximum at a temp. drop = 70 C\n",
"st = bp+dt \t\t\t#K,saturation temp. of steam in the steam chest\n",
"Sp = 2.15 \t\t\t# bar, from steam table, saturation lr. of steam at this temp.\n",
"\n",
"sh = 4.2 \t\t\t#kj/kg C, specific heat of product\n",
"rt = 0. \t\t\t#C reference teml.\n",
"ef = sh*(ft-rt) \t\t\t# kj/kg, enthalpy of the feed\n",
"ip = sh*(54-rt) \t\t\t#kj/kg, enthalpy of the product\n",
"iv = 2607. \t\t\t#kj/kg, enthalpy of vapour produced\n",
"#from eq 9.6\n",
"Wv = 1600. \t\t\t#enthalpy of evaporation\n",
"q = Wp*ip+Wv*iv-Wf*ef \t\t\t#kj/h, heat transfe rate required\n",
"hvp = 2188. \t\t\t#kj/kg, heat of vaporization of saturated steam at 397 K\n",
"rs = q/hvp \t\t\t#kg/h, rate of steam supply\n",
"\n",
"# Results\n",
"print \"The steam pressure to be used in the calandria is %.2f barabs)\"%(Sp);\n",
"print \"The heat transfer rate required is %.2e Kj/h\"%(q);\n",
"print \"Rate of steam supply is %.0f kg/h\"%(rs);\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.4 Page No : 402"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The evaporator area is 72 square metre \n",
"Steam economy is 1.79\n"
]
}
],
"source": [
"import math \n",
"\n",
"from numpy import array, linalg\n",
"# Variables\n",
"Wf = 6000. \t\t\t#kg/h, feed rate\n",
"ci = 2. \t\t\t#%, initial concentration\n",
"cf = 35. \t\t\t#%, final conc.\n",
"ft = 50. \t\t\t#C,feed temp.\n",
"ssp = 2. \t\t\t#bar abs, saturated steaam pr.\n",
"sep = 0.0139 \t\t\t#bar abs, maintained temp. in second effect\n",
"h1 = 2000. \t\t\t#W/m**2 K,overall heat transfer coeffcient in 1st effect\n",
"h2 = 1500. \t\t\t#W/m**2 K, overall heat transfer coefficient in 2nd effect\n",
"cp = 4.1 \t\t\t#kj/kg k,specific heat\n",
"\n",
"#calculation\n",
"si = Wf*(ci/100) \t\t\t#kg/h, solid in\n",
"wi = 5880. \t\t\t#kg/h, water in\n",
"Wp = si/(cf/100) \t\t\t#kg/h product out\n",
"wo = Wp*(1-cf/100) \t\t\t#kg/h, water out with the product\n",
"ter = wi-wo \t\t\t#kg/h, total evaporation rate\n",
"\n",
"#boiling temp. in the first effect\n",
"T1 = 120. \t\t\t#C,Temprature\n",
"l_s1 = 2200. \t\t\t#kj/kg, latent heat\n",
"T2 = 12. \t\t\t#C,boiling point in second effect\n",
"l_s2 = 2470. \t\t\t# kj/kg in second effect\n",
"tatd = T1-T2 \t\t\t# C,tatd = dt1+dt2 = T1-T2 , total available temp. drop\n",
"#from eq. 9.20\n",
"#h1*dt1 = h2*dt2\n",
"#solving above two equations by matrix\n",
"A = array([[1,1],[2000,-1500]])\n",
"C = array([108,0])\n",
"X = linalg.solve(A,C)\n",
"#X = inv(A)*C\n",
"\n",
"dt1 = X[0]\n",
"dt2 = X[1]\n",
"t1 = T1-dt1 \t\t\t#temp. of steam leaving the first effect\n",
"t2 = T2-dt2 \t\t\t#temp. of steam leaving second effect\n",
"#energy balance over the 1st effect, from eq.9.14\n",
"rt1 = t1\n",
"ef = cp*(ft-t1) \t\t\t#kj/kg,enthalpy of feed\n",
"i1 = 0\n",
"lam_s1 = 2330. \t\t\t#kj/kg\n",
"is1 = lam_s1\n",
"#Wf*ef+Ws*l_s = (Wf-Ws1)*i1+Ws1*is1\n",
"#substituting we get,\n",
"#Ws1 = 0.9442*Ws-253.4..........(1)\n",
"#energy balance over second effect\n",
"#from eq 9.15\n",
"#(Wf-Ws1)*i1+Ws1*lam_s1 = (Wf-Ws1-Ws2)*i2+Ws2*is2\n",
"rt2 = t2\n",
"lam_s2 = 2470.\n",
"is2 = lam_s2\n",
"i2 = 0\n",
"# substituting we get\n",
"#Ws2 = 0.8404*Ws1+617.5............(2)\n",
"#ter,Ws1+Ws2 = 5657...............(3)\n",
"#solving by matrix method\n",
"A = array([[0.9442,-1,0],[0,0.8404,-1],[0,1,1]])\n",
"B = array([253.4,-617.5,5657])\n",
"X = linalg.solve(A,B)\n",
"#X = inv(A)*B\n",
"Ws = X[0]\n",
"Ws1 = X[1]\n",
"Ws2 = X[2]\n",
"\n",
"#evaporator area\n",
"A1 = Ws*l_s1/(h1*dt1) \t\t\t#for 1st effect\n",
"A2 = Ws1*lam_s1/(h2*dt2) \t\t\t#for second effect\n",
"\n",
"#revised calculation\n",
"#taking\n",
"dt1_ = 48.\n",
"dt2_ = 60.\n",
"T1_ = T1-dt1_\n",
"T2_ = T2-dt2_\n",
"ls1_ = 2335.\n",
"ls2_ = 2470.\n",
"# energy balance over first effect gives\n",
"#Ws1 = 0.9422Ws-231.8.........(4)\n",
"#energy balance over second effect gives\n",
"#Ws2 = 0.8457Ws1+579.5......(5)\n",
"#solving eq 3,4,5\n",
"P = array([[0.9422,-1,0],[0,0.8457,-1],[0,1,1]])\n",
"Q = array([231.8,-579.5,5657])\n",
"Y = linalg.solve(P,Q)\n",
"#Y = inv(P)*Q\n",
"Ws_ = Y[0]\n",
"Ws1_ = Y[1]\n",
"Ws2_ = Y[2]\n",
"\n",
"#eveporator area for 1st & 2nd effect in m**2\n",
"A1_ = Ws_*l_s1/(h1*dt1_)\n",
"A2_ = Ws1_*ls1_/(h2*dt2_)\n",
"EA = (A1_+A2_)/2\n",
"SE = (Ws1_+Ws2_)/Ws_\n",
"\n",
"# Results\n",
"print \"The evaporator area is %.0f square metre \"%(EA);\n",
"print \"Steam economy is %.2f\"%(SE);\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.5 Page No : 404"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum no. of effects are 4\n"
]
}
],
"source": [
"# Variables\n",
"ssp = 3.32 \t\t\t#bar abs, saturated steam pr.\n",
"rp = 0.195 \t\t\t# bar abs, residual pr. in the condenser\n",
"tl = 41. \t\t\t#K, sun of temp. losses because of BPE\n",
"mt = 8. \t\t\t#k,minimum available temp. driving force\n",
"#calculation\n",
"sst = 410. \t\t\t#K,saturated steam temp.\n",
"st = 333. \t\t\t#K,corresponding saturation temp. when pressure in the last effect is 0.195 bar\n",
"ttd = sst-st \t\t\t#K,total temp. difference\n",
"atd = ttd-tl \t\t\t# K,available temp. drop across the unit\n",
"n = atd/mt \t\t\t#maximum no. of effect\n",
"\n",
"# Results\n",
"print \"Maximum no. of effects are %.0f\"%(n);\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.6 Page No : 405"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The areas are now reasonably close \n",
"Steam Rate is 8854 Kg/h \n",
"Steam economy is 1.93\n"
]
}
],
"source": [
"# Variables\n",
"fc = 9.5 \t\t\t#%,feed concentration\n",
"pc = 50. \t\t\t#%, product conc.\n",
"ft = 40. \t\t\t# C,feed temp.\n",
"er = 2000. \t\t\t#kg NaOH/h, evaporation rate\n",
"vp = 714. \t\t\t#mm Hg, vaccum pr. in last effect\n",
"#heat transfer coefficients, W/m**2 C\n",
"h1 = 6000. \t\t\t#for first effect\n",
"h2 = 3500. \t\t\t#for second effect\n",
"h3 = 2500. \t\t\t#for third effect\n",
"\n",
"#calculatiin\n",
"Wf = er/(fc/100) \t\t\t#kg/h, 2 tons NaOH per hour, feed rate\n",
"Wp = er/(pc/100) \t\t\t#kg/h, product rate\n",
"ter = Wf-Wp \t\t\t#kg/h, total evaporation rate\n",
"#steam\n",
"p = 3.3 \t\t\t#bar,assumed saturated\n",
"#from steam table\n",
"Ts = 137. \t\t\t#C,temp.\n",
"l_s = 2153. \t\t\t#kj/kg, latent heat\n",
"pl = 760.-vp \t\t\t#mm Hg,pressure in the last effect\n",
"bp = 37. \t\t\t#C,boiling point of water\n",
"#refer to fig. 9.24\n",
"attd = Ts-bp \t\t\t#C,apparent total temp. drop\n",
"#let assume the following evaporation rate for three effects in kg/h\n",
"ev1 = 5600.\n",
"ev2 = 5680.\n",
"ev3 = 5773.\n",
"#conc. in three effects\n",
"c1 = er/(Wf-ev1)\n",
"c2 = er/(Wf-ev1-ev2)\n",
"c3 = 0.5 \t\t\t# Variables\n",
"#boiling point elevations in three effects in C\n",
"bpe1 = 3.5\n",
"bpe2 = 8.\n",
"bpe3 = 39.\n",
"attda = attd-(bpe1+bpe2+bpe3) \t\t\t#actual total temp. drop available\n",
"#temp. drop in three effects\n",
"#from eq. 9.23\n",
"dt1 = attda*((1/h1)/((1/h1)+(1/h2)+(1/h3)))\n",
"dt2 = attda*((1/h2)/((1/h1)+(1/h2)+(1/h3)))\n",
"dt3 = attda*((1/h3)/((1/h1)+(1/h2)+(1/h3)))\n",
"\n",
"#from table 9.4\n",
"#enthalpy of solution in three effects in kj/kg\n",
"i1 = 486.\n",
"i2 = 385.\n",
"i3 = 460.\n",
"#enthalpy of vapour generated for three effects in kj/kg\n",
"is1 = 2729.\n",
"is2 = 2691.\n",
"is3 = 2646.\n",
"#Enthalpy of condensate over effect 1,2,3 in kj/kg\n",
"il1 = 0.\n",
"il2 = 519.\n",
"il3 = 418.\n",
"#Enthalpy balance over effect 1\n",
"ef = 145. \t\t\t#kj/kg,enthalpy of feed\n",
"#from energy balance eq.\n",
"#Ws1 = 0.96Ws-3200......(1)\n",
"#enthalpy balanc over effect 2\n",
"#Ws2 = 0.9146Ws1+922...........(2)\n",
"#enthalpy balanc over effet 3\n",
"#Ws3 = 1.073Ws2+0.0343Ws1-722........(3)\n",
"#ter = Ws1+Ws2+Ws3 = 17053..........(4)\n",
"\n",
"#Solving above four eqns by matrix\n",
"A = array([[0.96,-1,0,0],[0,0.9146,-1,0],[0,0.0343,1.073,-1],[0,1,1,1]])\n",
"B = array([3200,-922,722,17053])\n",
"X = linalg.solve(A,B)\n",
"#X = inv(A)*B\n",
"Ws = X[0]\n",
"Ws1 = X[1]\n",
"Ws2 = X[2]\n",
"Ws3 = X[3]\n",
"\n",
"#calculation of heat transfer areas iver effect 1, 2 ,3\n",
"A1 = Ws*l_s*10**3/(h1*dt1*3600)\n",
"A2 = Ws1*(is1-il2)*10**3/(h2*dt2*3600)\n",
"A3 = Ws2*(is2-il3)*10**3/(h3*dt3*3600)\n",
"\n",
"#Revised dt\n",
"avar = (A1+A2+A3)/3\n",
"dt1_ = (A1/avar)*dt1\n",
"dt2_ = (A2/avar)*dt2\n",
"dt3_ = attda-dt1_-dt2_\n",
"\n",
"#from table 9.5\n",
"#enthalpy of vapour generated over effect 1,2,3 in kj/kg\n",
"is1_ = 2720.\n",
"is2_ = 2685.\n",
"is3_ = 2646.\n",
"#enthalpy of soln on 1,2,3 in kj/kg\n",
"i1_ = 470.\n",
"i2_ = 380.\n",
"i3_ = 460.\n",
"#enthalpy of condensate over effect 1 ,2,3 in kj/kg\n",
"il1_ = 0.\n",
"il2_ = 513.\n",
"il3_ = 412.\n",
"#enthalpy balance ove effect 1,2,3 gives\n",
"Ws_ = 8854.\n",
"Ws1_ = 5432.\n",
"Ws2_ = 5812.\n",
"Ws3_ = 5809.\n",
"#revised heat transfer areas for effect 1 ,2,3 in m**2\n",
"A1_ = Ws_*l_s*1000/(h1*dt1_*3600)\n",
"A2_ = Ws1_*(is1_-il2_)*10**3/(h2*dt2_*3600)\n",
"A3_ = Ws2_*(is2_-il3_)*10**3/(h3*22.5*3600)\n",
"avar_ = (A1_+A2_+A3_)/3\n",
"SE = ter/Ws_\n",
"\n",
"# Results\n",
"print \"The areas are now reasonably close \"\n",
"print \"Steam Rate is %.0f Kg/h \"%(Ws_)\n",
"print \"Steam economy is %.2f\"%(SE)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.7 Page No : 409"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The increase in evaporation capacity ic 113 percentage \n",
" The percentage change in the math.cost of concentrating a ton of feed is 15 percentage\n"
]
}
],
"source": [
"from numpy import array, linalg\n",
"\n",
"# Variables\n",
"Wf = 3000. \t\t\t#kg/h,feed\n",
"fc = 8. \t\t\t#%, feed concentration\n",
"pc = 40. \t\t\t#% product concentration\n",
"si = Wf*(fc/100) \t\t\t#kg,solid in\n",
"pr = si/(40./100) \t\t\t#g/h, product rate\n",
"ft = 60. \t\t\t#C,feed temp.\n",
"er = Wf-pr \t\t\t#kg/h, evaporation rate\n",
"math.cost = 120000. \t\t\t#total math.cost per year\n",
"p1 = 4.5 \t\t\t#bar, low pressure steam\n",
"scpt = 700. \t\t\t#per ton. math.cost of steam\n",
"cp = 0.764 \t\t\t# kcal/kg, specific heat\n",
"\n",
"#from table 9.6\n",
"eep = 1. \t\t\t#atm existing evaporator pressure \n",
"oop = 400000. \t\t\t# peryear ,other operatingmath.cost\n",
"oop_ = 600000. \t\t\t#per yr, for proposed condition\n",
"wd = 300. \t\t\t#days per year.working days\n",
"wh = wd*24. \t\t\t#working hr\n",
"\n",
"# Calculations\n",
"#EXISTING OPERATING CONDITION \n",
"rt = 0 \t\t\t#C,reference temp.\n",
"ef = eep*(ft-rt) \t\t\t#kcal/kg, enthalpy of feed\n",
"pt = 100. \t\t\t#C,product temp.\n",
"i1 = cp*(pt-rt) \t\t\t#kcal/kg, enthalpy of soln\n",
"is1 = 639. \t\t\t#kcal/kg,enthalpy of vapour generated at 1 atm (from steam table)\n",
"l_s = 496. \t\t\t#kcal/kg,latent heat of steam at 4.5 bar\n",
"T = 425. \t\t\t#K\n",
"#heat balance\n",
"Ws = (er*is1+pr*i1-Wf*ef)/l_s \t\t\t#kg/h, steam required\n",
"q = Ws*l_s \t\t\t#ton/ hr,heat supplied\n",
"x = q/(T-(pt+273)) \t\t\t#x = Ud*A\n",
"#hourly math.cost\n",
"sc = Ws/1000*(scpt) \t\t\t# /perh, steam math.cost\n",
"lc = 100. \t\t\t#per h,labour math.cost\n",
"oc = oop/(wh) \t\t\t# per h,othe math.cost\n",
"tc = sc+lc+oc \t\t\t#total math.cost\n",
"C = tc/(Wf/1000) \t\t\t# per ton,math.cost per ton of feed\n",
"\n",
"#PROPOSED OPERATING CONDITION\n",
"bpl = 320. \t\t\t#K,boiling point of liquid\n",
"dt = T-bpl\n",
"q_ = x*dt \t\t\t#kcal/h,rate of heat supply\n",
"sr = q_/l_s \t\t\t#steam rate ton per hr\n",
"pt_ = 47. \t\t\t#C,product temp .\n",
"ep = cp*(pt_-rt) \t\t\t#kcal/kg. enthalpy of product\n",
"ev = 618. \t\t\t#kcal/kg, enthalpy of vapour generated\n",
"#heat balance\n",
"#24Wf_-582Ws1_ = 2825000 ..........(1)\n",
"#material balance\n",
"# 4Wf_-5Ws1_ = 0 .............(2)\n",
"#solving by matrix method\n",
"a = array([[24,-582],[4,-5]])\n",
"b = array([-2825000,0])\n",
"x_ = linalg.solve(a,b)\n",
"#x_ = inv(a)*b\n",
"Wf_ = x_[0]\n",
"Ws1_ = x_[1]\n",
"ic = (Wf_-Wf)/Wf\n",
"print \"The increase in evaporation capacity ic %d percentage \"%(ic*100)\n",
"sr_ = Ws1_/1000 \t\t\t#ton per hr ,steam rate \n",
"#hourly math.cost\n",
"sc_ = Ws1_*scpt \t\t\t#steam math.cost\n",
"lc_ = 200. \t\t\t#labour math.cost rs.200/ h\n",
"oc_ = oop_/wh \t\t\t# other math.cost\n",
"tc_ = sc_/1000+lc_+oc_\n",
"C_ = tc_/(Wf_/1000) \t\t\t#math.cost per ton of feed\n",
"ps = (C-C_)/C\n",
"print \" The percentage change in the math.cost of concentrating a ton of feed is %.0f percentage\"%(ps*100)\n",
"\n",
"# rounding off error."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.8 Page No : 415"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Make up steam required is 1.302e+04 kg/day\n"
]
}
],
"source": [
"# Variables\n",
"q = 2200. \t\t\t#kj/kg heat of condensation of steam \n",
"#from example 9.1\n",
"Qr = 2.337*10**8 \t\t\t#kj/day rate of heat supply\n",
"\n",
"#calculation\n",
"Rate = Qr/q \t\t\t#kg/day steam supply rate\n",
"Rate_ = 1.062*10**5 \t\t\t#approximate value\n",
"E = 2800. \t\t\t#kj/kg enthalpy of compressed vapour\n",
"T = 175.7 \t\t\t#C, temprature\n",
"Ts = 121. \t\t\t#C Saturation temprature\n",
"E1 = 2700. \t\t\t#enthalpy at saturation temprature\n",
"q1 = T-Ts \t\t\t#Superheat of vapour\n",
"T1 = 100. \t\t\t#C hot water temprature\n",
"E2 = 419. \t\t\t#Enthalpy at hot water temp.\n",
"x = (E-E1)/(E1-E2) \t\t\t#water supplied per kg of superheated steam\n",
"S = 1.044 \t\t\t#steam obtained after desuperheating\n",
"R1 = 8.925*10**4 \t\t\t#kg/day rate of vapour generation \n",
"R2 = S*R1 \t\t\t#Rate of recompressed sat. steam\n",
"R2_ = 9.318*10**4 \t\t\t#approximate value\n",
"SR = Rate_-R2_ \n",
"\n",
"# Results\n",
"print \"Make up steam required is %.3e kg/day\"%(SR)\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|