summaryrefslogtreecommitdiff
path: root/Heat_Transfer_Principles_And_Applications_by_Dutta/ch6.ipynb
blob: 362c8be7c0622a501e696d3d7bb2e4dab557d4cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 6 : Boiling and condensation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.1 Page No : 177"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "So a bubble nucleus that has been detached from a cavity will not collapse in the liquid if it is larger than 1.89 micrometer \n",
      "The superheat of the liquid is 9 C\n"
     ]
    }
   ],
   "source": [
    "from scipy.optimize import fsolve \n",
    "import math \n",
    "import warnings\n",
    "warnings.filterwarnings('ignore', 'The iteration is not making good progress')\n",
    "# Variables\n",
    "#(a)\n",
    "Tsat = 350            \t\t\t#K, saturated temp.\n",
    "Tl = Tsat+5           \t\t\t#K, liquid temp.\n",
    "#By antoine eqn.\n",
    "T = Tl-273            \t\t\t#C, \n",
    "\n",
    "# Calculations and Results\n",
    "pl = math.exp(4.22658-(1244.95/(T+217.88)))\n",
    "ST = 26.29-0.1161*T   \t\t\t#dyne/cm, Surface tension of liquid\n",
    "ST_ = ST*10**-3        \t\t\t#N/m  Surface tension of liquid\n",
    "Lv = 33605            \t\t\t#kj/kgmol, molar heat of vaporization\n",
    "R = 0.08314           \t\t\t#m**3  bar/kgmol K, gas math.cosmath.tant\n",
    "r = (2*ST_*R*Tsat**2)/((Tl-Tsat)*pl*(Lv*10**3))\n",
    "print \"So a bubble nucleus that has been detached from a cavity will not collapse in \\\n",
    "the liquid if it is larger than %.2f micrometer \"%(r*10**6)\n",
    "\n",
    "#(b)\n",
    "r1 = 10**-6       \t\t\t#m\n",
    "#pl1 = exp(4.22658-(1244.95/(Tl_-273+217.88)))   \t\t\t#vapour pressure\n",
    "#ST1 = 0.02629-1.161*10**-4(Tl_-273)              \t\t\t#surface tension\n",
    "\n",
    "def f(Tl): \n",
    "    return (Tl-Tsat)-2*(0.02629-1.161*10**-4*(Tl-273))*R*Tsat**2/(r1*Lv*10**3)\n",
    "Tl = fsolve(f,0.1)\n",
    "T_ = (Tl-273.5)-(Tsat-273)\n",
    "print \"The superheat of the liquid is %d C\"%(T_)\n",
    "\n",
    "# note : answers are slightly different because of rounding off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.2 Page No : 180"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "total rate of boiling of water is 69 kg/h \n",
      "Qs2 compares reasonably well with the Qs1\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "# Variables\n",
    "d = 0.35                   \t\t\t#m, diameter of pan\n",
    "p = 1.013                  \t\t\t#bar, pressure\n",
    "T1 = 115.                   \t\t\t#C, bottom temp.\n",
    "T2 = 100.                   \t\t\t#C, boiling temp.\n",
    "Te = T1-T2                 \t\t\t#C, excess temp.\n",
    "#For Water\n",
    "mu1 = 2.70*10**-4           \t\t\t#Ns/m**2, vismath.cosity\n",
    "cp1 = 4.22                 \t\t\t#kj/kg C, specific heat\n",
    "rho1 = 958.                 \t\t\t#kg/m63. density\n",
    "Lv1 = 2257.                 \t\t\t#kj/kg, enthalpy of vaporization \n",
    "s1 = 0.059                 \t\t\t#N/m , surface tension\n",
    "Pr1 = 1.76                 \t\t\t#Prandtl no.\n",
    "#For saturated steam\n",
    "rho2 = 0.5955\n",
    "#For the pan\n",
    "Csf = 0.013               \t\t\t#consmath.tant\n",
    "n = 1.                     \t\t\t#exponent\n",
    "g = 9.8                   \t\t\t#m/s**2, gravitational consmath.tant\n",
    "\n",
    "# Calculations and Results\n",
    "#from eq. 6.6  \t\t\t#heat flux\n",
    "Qs1 = mu1*Lv1*(g*(rho1-rho2)/s1)**(1./2)*(cp1*Te/(Csf*Lv1*(Pr1)**n))**3\n",
    "Rate = Qs1/Lv1             \t\t\t#kg/m**2 s. rate of boiling\n",
    "Ap = math.pi/4*d**2            \t\t\t#m**2, pan area\n",
    "Trate = Rate*Ap           \t\t\t#kg/s, Total rate of boiling\n",
    "Trate_ = Trate*3600.5     \t\t\t#kg/h. Total rate of boiling\n",
    "print \"total rate of boiling of water is %.0f kg/h \"%(Trate_)\n",
    "\n",
    "#umath.sing Lienhard's eq.,   \t\t\t#critical heat flux\n",
    "Qmax = 0.149*Lv1*rho2*(s1*g*(rho1-rho2)/(rho2)**2)**(1/4)\n",
    "#by Mostinski eq.\n",
    "Pc = 221.2                \t\t\t#critical pressure\n",
    "Pr = p/Pc                 \t\t\t#reduced pressure\n",
    "hb = 0.00341*(Pc)**(2.3)*Te**(2.33)*Pr**(0.566)     \t\t\t#boiling heat transfer coefficient\n",
    "hb_ = hb/1000              \t\t\t#kW/m**2 C boiling heat transfer coefficient\n",
    "Qs2 = hb_*(Te)\n",
    "print \"Qs2 compares reasonably well with the Qs1\"\n",
    "\n",
    "# note: rounding off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.3 Page No : 181"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The boilins rate is 63 kg/m**2 h\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "# Variables\n",
    "A = 12.5673\n",
    "B = 4234.6\n",
    "pv = 1.813\n",
    "T1 = 200.                 \t\t\t#C, tube wall temp.\n",
    "#For methanol\n",
    "Tc = 512.6               \t\t\t#K, critical temp.\n",
    "w = 0.556                \t\t\t#acentric factor\n",
    "Zra = 0.29056-0.08775*w\n",
    "R = 0.08314             \t\t\t#m**3bar/gmol K, universal gas consmath.tant\n",
    "Pc = 80.9               \t\t\t#bar, critical temp.\n",
    "Mw = 32.                 \t\t\t#g, molecular wt\n",
    "\n",
    "#Calculation\n",
    "#Estimation of liquid and vapour properties \n",
    "#from antoine eq.\n",
    "T = B/(A-math.log(pv))       \t\t\t#K, boiling point\n",
    "Te = (T1+273)-T         \t\t\t#K, excess temp.\n",
    "Tm = ((T1+273)+T)/2     \t\t\t#K, mean temp.\n",
    "#Liquid properties\n",
    "#(a)\n",
    "Tr = T/Tc              \t\t\t#K, reduced temp.\n",
    "#from Rackett technique\n",
    "Vm = R*Tc*(Zra)**(1+(1-Tr)**(2/7))/Pc      \t\t\t#m**3/kg mol, molar volume\n",
    "rhol = Mw/Vm                             \t\t\t#kg/m**3, density of satorated liquid density\n",
    "#(b)\n",
    "#from Missenard technique\n",
    "T2 = 348.               \t\t\t#K,given data temp.\n",
    "T3 = 373.               \t\t\t#K,given data temp.\n",
    "Cp2 = 107.5            \t\t\t#j/g mol K specific heat at T2\n",
    "Cp3 = 119.4            \t\t\t#j/g mol K specific heat at T3\n",
    "#By linear interpolation at T = 353.7 K\n",
    "Cp = Cp2+(Cp3-Cp2)*((T-T2)/(T3-T2))    \t\t\t#kj/kg mol C, specific heat at T = 353.7 K\n",
    "Cp_ = Cp*0.03125                       \t\t\t#kj/kg C\n",
    "#(c)Surface tension at given temp.(K)\n",
    "T4 = 313.\n",
    "St4 = 20.96\n",
    "T5 = 333.\n",
    "St5 = 19.4\n",
    "#By linear interpolation at T = 353.7 K\n",
    "S = 17.8                               \t\t\t#dyne/cm, surface temp.\n",
    "#(d) liquid vismath.cosity\n",
    "T6 = 298.               \n",
    "MUt6 = 0.55                           \t\t\t#cP, liquid vismath.cosity at temp = 298\n",
    "MU = ((MUt6)**-0.2661+((T-T6)/233))**(-1/0.2661)       \t\t\t#cP\n",
    "#(e)Prandtl no. a,b,c are consmath.tant\n",
    "a = 0.3225\n",
    "b = -4.785*10**-4\n",
    "c = 1.168*10**-7\n",
    "kl = a+b*T+c*T**2                     \t\t\t#W/m C, thermal conductivity\n",
    "Prl = Cp_*1000*MU*10**-3/kl           \t\t\t#Prandtl no.\n",
    "#(f)heat of vaporization at 337.5 K\n",
    "Lv = 1100.                            \t\t\t#kj/kg, enthalpy of vaporization\n",
    "\n",
    "#Properties of methanol vapour at Tm\n",
    "#(a)\n",
    "Vm1 = R*Tm/pv                      \t\t\t#m**3/kg mol, molar volume\n",
    "rhov = Mw/Vm1                      \t\t\t#kg/m**3, density of vapour\n",
    "#(b) a1,b1,c1,d1 are math.cosmath.tants\n",
    "a1 = -7.797*10**-3\n",
    "b1 = 4.167*10**-5\n",
    "c1 = 1.214*10**-7\n",
    "d1 = -5.184*10**-11\n",
    "#thermal conductivity of vapour\n",
    "kv = a1+b1*Tm+c1*Tm**2+d1*Tm**3    \t\t\t#W/m C\n",
    "#(c)heat capacity of vapour,  a2,b2,c2,d2 are math.cosmath.tants\n",
    "a2 = 21.15\n",
    "b2 = 7.092*10**-2\n",
    "c2 = 2.589*10**-5\n",
    "d2 = -2.852*10**-8\n",
    "#heat capacity of vapour,      in kj/kh mol K\n",
    "Cpv = a2+b2*Tm+c2*Tm**2+d2*Tm**3\n",
    "\n",
    "#(d)vismath.cosity of vapour\n",
    "T7 = 67.\n",
    "MUt7 = 112.\n",
    "T8 = 127.\n",
    "MUt8 = 132.\n",
    "#from linear inter polation at Tm\n",
    "MUv = 1.364*10**-5              \t\t\t#kg/m s\n",
    "\n",
    "#from Rohsenow's eq.\n",
    "Csf = 0.027                   \t\t\t#consmath.tant\n",
    "n = 1.7                       \t\t\t#exponent value\n",
    "#from eq. 6.6\n",
    "g = 9.8                       \t\t\t#m/s**2, gravitational consmath.tant\n",
    "#heat flux   \t\t\t#kW/m**2\n",
    "Q = MU*10**-3*Lv*(g*(rhol-rhov)/S*10**-3)**(1./2)*(Cp_*Te/(Csf*Lv*(Prl)**n))**3\n",
    "#from eq. 6.11\n",
    "#from eq 6.11,  critical heat flux\n",
    "Qmax = 0.131*Lv*(rhov)**(1./2)*(S*10**-3*g*(rhol-rhov))**(1./4)\n",
    "#dimensionless radius r_\n",
    "r = 0.016\n",
    "r_ = r*(g*(rhol-rhov)/(S*10**-3))**(1./2)\n",
    "#peak heat flux\n",
    "Qmax1 = Qmax*(0.89+2.27*math.exp(-3.44*math.sqrt(r_)))\n",
    "#from eq. 6.12\n",
    "#heat transfer coefficient hb\n",
    "d = 0.032                        \t\t\t#m, tube diameter\n",
    "hb = 0.62*((kv**3)*rhov*(694-rhov)*g*(Lv*10**3+0.4*Cpv*Te)/(d*MUv*Te))**(1./4)\n",
    "Qb = hb*Te                      \t\t\t#kw/m**2, heat flux\n",
    "BR = Qb*10**-3/Lv                \t\t\t#kg/m**2s, boilng rate \n",
    "\n",
    "# Results\n",
    "print \"The boilins rate is %.0f kg/m**2 h\"%(BR*3600)\n",
    "\n",
    "# note : rounding off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.4 Page No : 188"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total tube length is 0.393 m\n"
     ]
    }
   ],
   "source": [
    "import math \n",
    "\n",
    "# Variables\n",
    "W1 = 200.              \t\t\t#kg/h, rate of entering toluene\n",
    "muv = 10.**-5           \t\t\t#kg/m s, vismath.cosity of toluene vapour\n",
    "mul = 2.31*10**-4      \t\t\t#kg/m s, vismath.cosity of  benzene\n",
    "rhol = 753.            \t\t\t#kg/m**3, density of benzene\n",
    "rhov = 3.7            \t\t\t#kg/m**3, density of toluene vapour\n",
    "Cpl = 1968.            \t\t\t#j/kg C, specific heat of benzene\n",
    "kl = 0.112            \t\t\t#W/m C, thermal conductivity of benzene\n",
    "T1 = 160.              \t\t\t#C tube wall temp.\n",
    "T2 = 120.              \t\t\t#C , saturated temp.\n",
    "Te = T1-T2            \t\t\t#C, excess temp.\n",
    "Lv = 3.63*10**5        \t\t\t#j/kg, enthalpy of vaporization\n",
    "s = 1.66*10**-2        \t\t\t#N/m, surface tension\n",
    "\n",
    "#Calculation of hc & hb\n",
    "w = 0.125             \t\t\t#m, mean step size\n",
    "d = 0.0211            \t\t\t#, internal diameter of tube\n",
    "G = W1/(3600*math.pi/4*(d**2))         \t\t\t#kg/m**2 s, mass flow rate\n",
    "Re1 = G*(1-w)*d/mul              \t\t\t#Reynold no. \n",
    "Prl = Cpl*mul/kl                 \t\t\t#Prandtl no.\n",
    "#from eq. 6.23\n",
    "x = (w/(1-w))**(0.9)*(rhol/rhov)**(0.5)*(muv/mul)**0.1  \t\t\t#let x = 1/succepsibility\n",
    "#from eq. 6.22               \n",
    "F = 2.35*(x+0.231)**0.736        \t\t\t#factor signifies 'liquid only reynold no.' to a two phase reynold no.\n",
    "#from eq. 7.21\n",
    "Re2 = 10**-4*Re1*F**1.25          \t\t\t#Reynold no.\n",
    "#from eq. 6.18\n",
    "S = (1+0.12*Re2**1.14)**-1        \t\t\t#boiling supression factor\n",
    "#from eq. 6.15\n",
    "hc = 0.023*Re1**(0.8)*Prl**(0.4)*(kl/d)*F  \t\t\t#W/m**2 C, forced convection boiling part\n",
    "#from eq. 6.16\n",
    "mulv = (1/rhov)-(1/rhol)              \t\t\t#m**3/kg, kinetic vismath.cosity of liquid vpaour\n",
    "dpsat = Te*Lv/((T2+273)*mulv)         \t\t\t#N/m**2, change in saturated presssure \n",
    "#nucleate boiling part hb\n",
    "hb = 1.218*10**-3*(kl**0.79*Cpl**0.45*rhol**0.49*Te**0.24*dpsat**0.75*S/(s**0.5*mul**0.29*Lv**0.24*rhov**0.24))\n",
    "h = hc+hb                            \t\t\t#W/m**2 C, total heat transfer coefficient\n",
    "\n",
    "#calculation of required heat transfer area\n",
    "a = 5.                              \t\t\t#%, persentage change in rate of vaporization\n",
    "W2 = W1*a/100                      \t\t\t#kg/h, rate of vaporization\n",
    "W2_ = W2/3600                      \t\t\t#kg/s\n",
    "Q = W2_*Lv                         \t\t\t#W,heat load\n",
    "A = Q/(h*Te)                       \t\t\t#m**2, area of heat transfer\n",
    "l = A/(math.pi*d)                      \t\t\t#m, required length of tube\n",
    "#from table 6.2\n",
    "Tl = 0.393\n",
    "\n",
    "# Results\n",
    "print \"The total tube length is %.3f m\"%(Tl)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.5 Page No : 195"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total rate of condensation is 33.08 kg/h\n"
     ]
    }
   ],
   "source": [
    "from scipy.optimize import fsolve \n",
    "import math \n",
    "\n",
    "# Variables\n",
    "rhol = 483.                         \t\t\t#kg/m**3, density of liquid propane\n",
    "mul = 9.1*10**-5                    \t\t\t#P ,vismath.cosity of liquid propane\n",
    "kl = 0.09                          \t\t\t#W/m K, thermal conductivity of liquid propane\n",
    "Lv = 326.                           \t\t\t#kj/kg. enthalpy of vaporization\n",
    "Cpl = 2.61                         \t\t\t#kj/kg K, specific heat of liquid propane\n",
    "T1 = 32.\n",
    "T2 = 25.                            \t\t\t#C, surface temp.\n",
    "p1 = 11.2\n",
    "rhov = 24.7                       \t\t\t#kg/m**3, density of vapour\n",
    "g = 9.8\n",
    "h = 0.3\n",
    "\n",
    "#Calculation\n",
    "Lv1 = Lv+0.68*Cpl*(T1-T2)\n",
    "#h = 0.943*(g*Lv1*10**3*rhol*(rhol-rhov)*kl**3/(mul*L*(T1-T2)))**(1/4)\n",
    "#Q = h*(L*1)*(T1-T2)\n",
    "#m = Q/(Lv1*10**3) = 1.867*10**-2*L**(3/4)\n",
    "Ref = 30.\n",
    "#from the relation  4*m/mu = Re\n",
    "L = (Ref*mul/(4*1.867*10**-2))**(4./3)\n",
    "m = 1.867*10**-2*L**(3./4)        \t\t\t#rate of condensation for laminar flow\n",
    "#from eq. 6.32\n",
    "#Nu1 = h_/kl*(mul**2/(rhol*(rhol-rhov)*g))**(1/3) = Ref/(1.08*(Ref)**(1.22)-5.2)\n",
    "Lp = h-L        \t\t\t#length of plate over which flow is wavy\n",
    "A = Lp*1         \t\t\t#m**2 area of condensation\n",
    "\n",
    "\n",
    "def f(h1): \n",
    "    return h1/kl*(mul**2/(rhol*(rhol-rhov)*g))**(1./3)-(29.76+0.262*h1)/(1.08*(29.76+0.262*h1)**(1.22)-5.2)\n",
    "h1 = fsolve(f,1000)\n",
    "m2 = m+h1*A*(T1-T2)/(Lv1*10**3)\n",
    "Ref1 = 4*m2/mul\n",
    "m2 = m+h1*A*(T1-T2)/(Lv1*10**3)\n",
    "\n",
    "# Results\n",
    "print \"Total rate of condensation is %.2f kg/h\"%(m2*3600)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.6 Page No : 199"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Rate of condensation is 45.7 kg/h \n",
      "Rate of condensation is 1052 kg/h  \n",
      "thus there will be increase in the calculated rate of heat transfer and in rate of condensation as 1.188 percent\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "# Variables\n",
    "#data fot TCE\n",
    "T1 = 87.4                         \t\t\t#C, normal boiling point\n",
    "T2 = 25.                           \t\t\t#C, surface temp.\n",
    "Lv = 320.8                        \t\t\t#kj/kg, heat of vaporization\n",
    "cp = 1.105                        \t\t\t#kj/kg C, specific heat\n",
    "mu = 0.45*10**-3                   \t\t\t#P. liquid vismath.cosity\n",
    "k = 0.1064                        \t\t\t#W/m C, thermal conductivity\n",
    "rhol = 1375.                       \t\t\t#kg/m**3, liquid density\n",
    "rhov = 4.44                       \t\t\t#kg/m**3, density of vapour\n",
    "Tm = (T1+T2)/2.                    \t\t\t#C, mean film temp.\n",
    "d = 0.0254                        \t\t\t#m, outside diameter of tube\n",
    "l = 0.7                           \t\t\t#m, length\n",
    "g = 9.8                           \t\t\t#m/s**2, gravitational consmath.tant\n",
    "\n",
    "# Calculations and Results\n",
    "#(a) from eq. 6.34\n",
    "Lv1 = Lv+0.68*cp*(T1-T2)\n",
    "h = 0.728*(g*Lv1*10**3*rhol*(rhol-rhov)*k**3/(mu*d*(T1-T2)))**(1./4)\n",
    "A = math.pi*d*l                       \t\t\t#m**2, area of tube\n",
    "Q = h*A*(T1-T2)                   \t\t\t#W, rate of heat transfer\n",
    "m = (Q/Lv1)/1000                  \t\t\t#kg/s rate of condensation\n",
    "print \"Rate of condensation is %.1f kg/h \"%(m*3600)\n",
    "\n",
    "#(b)   from eq. 6.35\n",
    "N = 6.                             \t\t\t#No. of tubes in vertical tire\n",
    "h1 = 0.728*(g*Lv1*10**3*rhol*(rhol-rhov)*k**3/(N*mu*d*(T1-T2)))**(1./4)\n",
    "TN = 36.                           \t\t\t#total no. of tubes\n",
    "TA = TN*math.pi*d*l                    \t\t\t#m**2, total area\n",
    "Q1 = h1*TA*(T1-T2)                   \t\t\t#W, rate of heat transfer\n",
    "m1 = (Q1/Lv1)/1000.                  \t\t\t#kg/s rate of condensation\n",
    "print \"Rate of condensation is %.0f kg/h  \"%(m1*3600)\n",
    "#from chail's corelation\n",
    "h2 = (1+0.2*cp*(T1-T2)*(N-1)/(Lv1))\n",
    "print \"thus there will be increase in the calculated rate of\\\n",
    " heat transfer and in rate of condensation as %.3f percent\"%(h2)\n",
    "\n",
    "# note : rounding off error."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 6.7 Page No : 201"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "fraction of input vapour condensed is 52.7\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "# Variables\n",
    "Gv = 20.                  \t\t\t#kg/m**2 s, mass flow rate of benzene\n",
    "di = 0.016               \t\t\t#m, tube diameter\n",
    "muv = 8.9*(10**-6)        \t\t\t#P, vismath.cosity\n",
    "Lv = 391.                 \t\t\t#kj/kg., enthalpy of vaporization\n",
    "cpl = 1.94               \t\t\t#kj/kg C, specific heat\n",
    "Tv = 80.                  \t\t\t#C, normal boiling point of benzene\n",
    "Tw = 55.                  \t\t\t#C, wall temp.\n",
    "g = 9.8                  \t\t\t#m/s**2, gravitational consmath.tant\n",
    "rhol = 815.               \t\t\t#kg/m**3, density of benzene\n",
    "rhov = 2.7               \t\t\t#kg/m**3, density of benzene vapour\n",
    "kl = 0.13                \t\t\t#W/m C, thermal conductivity\n",
    "mu = 3.81*10**-4          \t\t\t#P, vismath.cosity of benzene\n",
    "l = 0.5                  \t\t\t#m, length  of tube\n",
    "\n",
    "#calculation\n",
    "Rev = di*Gv/muv          \t\t\t#Reynold no. of vapour\n",
    "#from eq. 6.38\n",
    "Lv1 = Lv+(3./8)*cpl*(Tv-Tw)\n",
    "#heat transfer corfficient , h\n",
    "h = 0.555*(g*rhol*(rhol-rhov)*kl**3*Lv1*10**3/(di*mu*(Tv-Tw)))**(1./4)\n",
    "Aavl = math.pi*di*l          \t\t\t#m**2, available area\n",
    "Q = Aavl*h*(Tv-Tw)       \t\t\t#W, rate of heat transfer\n",
    "m = Q/(Lv1*10**3)         \t\t\t#kg/s, rate of condensation of benzene\n",
    "Ratei = Gv*(math.pi/4)*di**2   \t\t\t#kg/s rate of input of benzene vapour\n",
    "n = m/Ratei              \n",
    "\n",
    "# Results\n",
    "print \"fraction of input vapour condensed is %.1f\"%(n*100)\n",
    "\n",
    "# note : rouding off error."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}