1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5 : free convection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1 Page No : 153"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The rate of heat loss is 267 W\n"
]
}
],
"source": [
"# Variables\n",
"T1 = 65. \t\t\t#C, furnace temp.\n",
"T2 = 25. \t\t\t#C, ambient temp.\n",
"h = 1.5 \t\t\t#m, height of door\n",
"w = 1. \t\t\t#m, width of door\n",
"Tf = (T1+T2)/2 \t\t\t#c, average air film temp.\n",
"\n",
"# Calculations\n",
"Pr = 0.695 \t\t\t#Prandtl no.\n",
"mu = 1.85*10**-5 \t\t\t#m**2/s, vismath.cosity\n",
"beeta = 1/(Tf+273) \t\t\t#K**-1. coefficient of volumetric expension\n",
"k = 0.028 \t\t\t#W/m C, thermal conductivity\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"Grl = g*beeta*(T1-T2)*h**3/(mu**2) \t\t\t#Grashof no.\n",
"Ral = Grl*Pr \t\t\t#Rayleigh no.\n",
"#Nusslet no.\n",
"Nul = (0.825+(0.387*(Ral)**(1./6))/(1+(0.492/Pr)**(9./16))**(8./27))**2 \n",
"hav = Nul*k/h \t\t\t#average heat transfer coefficient\n",
"Ad = h*w \t\t\t#m**2, door area\n",
"dt = T1-T2 \t\t\t#temp. driving force\n",
"q = hav*Ad*dt \t\t\t#W,rate of heat loss\n",
"\n",
"# Results\n",
"print \"The rate of heat loss is %.0f W\"%(q)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2 Page No : 154"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the steady state temp. of the plate is 61.6 C\n"
]
}
],
"source": [
"# Variables\n",
"T1 = 60. \t\t\t#C, plate temp.\n",
"T2 = 25. \t\t\t#C, ambient temp.\n",
"h = 1.\n",
"w = 1. \t\t\t#m, width of door\n",
"q = 170. \t\t\t#W, rate of heat transfer\n",
"Tf = (T1+T2)/2 \t\t\t#c, average air film temp.\n",
"#Properties of air at Tf\n",
"Pr = 0.7 \t\t\t#Prandtl no.\n",
"mu = 1.85*10**-5 \t\t\t#m**2/s, vismath.cosity\n",
"beeta = 1./(Tf+273) \t\t\t#K**-1. coefficient of volumetric expension\n",
"k = 0.028 \t\t\t#W/m C, thermal conductivity\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"\n",
"#Calculation\n",
"A = h*w \t\t\t#m**2, plate area\n",
"P = 2*(h+w) \t\t\t#m,perimeter of plate \n",
"L = A/P \t\t\t#m characteristic length\n",
"Grl = g*beeta*(T1-T2)*L**3/(mu**2) \t\t\t#Grashof no.\n",
"Ral = Grl*Pr \t\t\t#Rayleigh no.\n",
"#Nusslet no.\n",
"Nul = 0.54*(Ral)**(1./4) \t\t\t#Nusslet no.\n",
"hav = Nul*k/L \t\t\t#average heat transfer coefficient\n",
"Ts = q/(hav*A)+T2\n",
"\n",
"# Results\n",
"print \"the steady state temp. of the plate is %.1f C\"%(Ts)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3 Page No : 156"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The required time for cooling is 2.30 hr\n"
]
}
],
"source": [
"import math \n",
"from scipy.integrate import quad \n",
"# Variables\n",
"d = 0.0254 \t\t\t#m, diameter of steel rod\n",
"l = 0.4 \t\t\t#m, length of rod\n",
"T1 = 80. \t\t\t#C, initial temp.\n",
"T2 = 30. \t\t\t#C, ambient temp.\n",
"T3 = 35. \t\t\t#c, temp. after cooling\n",
"rho = 7800. \t\t\t#kg/m**3 ,density of steel rod\n",
"cp = 0.473 \t\t\t#kj/kg C. specific heat\n",
"\n",
"#Calculation\n",
"m = math.pi/4*d**2*l*rho \t\t\t#kg. mass of cylinder\n",
"A = math.pi*d*l \t\t\t#m**2, area of cylinder\n",
"dt = T1-T2 \t\t\t#c, insmath.tanmath.taneous temp. difference\n",
"h = 1.32*(dt/d)**0.25 \t\t\t#W/m**2 C, heat transfer coefficient\n",
"\n",
"def f0(T): \n",
" return 1./(T**(5./4))\n",
"\n",
"i = quad(f0,5,50)[0]\n",
"\n",
"t = i/(3.306*A/(m*cp*10**3))\n",
"\n",
"# Results\n",
"print \"The required time for cooling is %.2f hr\"%(t/3600.)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4 Page No : 157"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rate of heat loss by free convection per meter length of pipe. is 107 W\n"
]
}
],
"source": [
"import math\n",
"# Variables\n",
"id_ = 78.*10**-3 \t\t\t#m, internal diameter\n",
"od = 89.*10**-3 \t\t\t#m, outer diameter\n",
"Pg = 15. \t\t\t#kg/cm**2, gauge pressure\n",
"t = 2.*10**-2 \t\t\t#m, thickness of preformed mineral fibre\n",
"k = 0.05 \t\t\t#W/m C. thermal conductivity\n",
"Ta = 25. \t\t\t#C, ambient air temp.\n",
"Pr = 0.705 \t\t\t#Prandtl no.\n",
"#assume\n",
"Ts = 50. \t\t\t#C, skin temp.\n",
"l = 1. \t\t\t#m, length\n",
"Ti = 200.5 \t\t\t#C, initial temp.\n",
"rs = od/2+t \t\t\t#m, outer radius of insulation\n",
"ri = od/2 \t\t\t#m, inner radius of insulation\n",
"\n",
"# Calculations\n",
"Q = 2*math.pi*l*k*(Ti-Ts)/(math.log(rs/ri)) \t\t\t#W\n",
"#properties of air at taken at the mean film temp.\n",
"Tf = (Ta+Ts)/2 \t\t\t#C\n",
"mu = 1.76*10**-5 \t\t\t#m**2/s. vismath.cosity\n",
"beeta = (1/(Tf+273)) \t\t\t#K**-1, coefficient of volumetric expansion\n",
"k1 = 0.027 \t\t\t#W/m C, thermal conductivity\n",
"ds = 2*rs \t\t\t#m, outer dia. of insulated pipe\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"Grd = g*beeta*(Ts-Ta)*ds**3/(mu**2) \t\t\t#Grashof no.\n",
"Rad = Grd*Pr \t\t\t#Rayleigh no.\n",
"#from eq. 5.9\n",
"#Nusslet no. \n",
"Nu = (0.60+(0.387*(Rad)**(1./6))/(1+(0.559/Pr)**(9./16))**(8./27))**2 \n",
"hav = Nu*k1/ds \t\t\t#W/ m**2 C, average heat transfer coefficient\n",
"Ts = (Q/(math.pi*ds*l*hav))+Ta \t\t\t#C, skin temp.\n",
"#revised calculation by assuming\n",
"Ts1 = 70. \t\t\t#C, skin temp.\n",
"#Rate of heat transfer through insulation\n",
"Q1 = 2*math.pi*l*k*(Ti-Ts1)/(math.log(rs/ri))\n",
"Tf1 = (Ta+Ts1)/2 \t\t\t#C, average aie mean film temp.\n",
"mu1 = 1.8*10**-5 \t\t\t#m**2/s. vismath.cosity\n",
"beeta1 = (1/(Tf1+273)) \t\t\t#K**-1, coefficient of volumetric expansion\n",
"k1 = 0.0275 \t\t\t#W/m C, thermal conductivity\n",
"Pr1 = 0.703 \t\t\t#Prandtl no.\n",
"Grd1 = g*beeta1*(Ts1-Ta)*ds**3/(mu1**2) \t\t\t#Grashof no.\n",
"Rad = Grd1*Pr1 \t\t\t#Rayleigh no.\n",
"#from eq. 5.9\n",
"# average heat transfer coefficient, in \t\t\t#W/ m**2 C,\n",
"hav1 = (0.60+(0.387*(Rad)**(1./6))/(1+(0.559/Pr)**(9./16))**(8./27))**2*(k1/ds)\n",
"Ts2 = (Q1/(math.pi*ds*l*hav1))+Ta\n",
"#again assume skin temp. = 74\n",
"Ts2 = 74 \t\t\t#C, assumed skin temp.\n",
"Q3 = 2*math.pi*l*k*(Ti-Ts2)/(math.log(rs/ri))\n",
"\n",
"# Results\n",
"print \"the rate of heat loss by free convection per meter length of pipe. is %.0f W\"%(Q3)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5 Page No : 159"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The required insulation thickness is 0.188 m\n"
]
}
],
"source": [
"from scipy.optimize import fsolve \n",
"import math \n",
"\n",
"# Variables\n",
"Ts = 65. \t\t\t#C, skin temp.\n",
"To = 30. \t\t\t#C, ambient temp.\n",
"Tw = 460. \t\t\t#C, wall temp.\n",
"Tf = (Ts+To)/2 \t\t\t#C,mean air film temp.\n",
"beeta = (1./(Tf+273)) \t\t\t#K**-1, coefficient of volumetric expansion\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"mu = 1.84*10**-5 \t\t\t#m**2/s, vismath.cosity\n",
"L = 10.5 \t\t\t#m, height of converter\n",
"di = 4. \t\t\t#m,diameter of converter\n",
"Pr = 0.705 \t\t\t#Prandtl no.\n",
"k = 0.0241 \t\t\t#kcal/h m C, thermal conductivity\n",
"\n",
"#Calculation\n",
"Grl = g*beeta*(Ts-To)*L**3/(mu**2) \t\t\t#Grashof no.\n",
"x = di/L \t\t\t#assume di/l = x\n",
"y = 35/(Grl)**(1./4) \t\t\t#assume 35/(Grl)**(3/4) = y\n",
"#for a verticla flat plate, from eq. 5.3\n",
"Ral = Grl*Pr \t\t\t#Rayleigh no.\n",
"#nusslet no.\n",
"Nu = (0.825+(0.387*(Ral)**(1./6))/(1+(0.496/Pr)**(9./16))**(8./27))**2\n",
"hav = Nu*k/L \t\t\t#kcal/h m**2 C, average heat transfer coefficient\n",
"#w = poly(0,\"w\")\n",
"#Dav = (4+(4+2*w))/2 \t\t\t#average diameter\n",
"#Aav = math.pi*Dav*L \t\t\t#average heat transfer area\n",
"#Qi = math.pi*Dav*L*0.0602*(Tw-Ts)/w \t\t\t#Rate of heat transfer through insulation\n",
"#rate of heat transfer from the outer surface of the insulation by free convection\n",
"#Qc = hav*math.pi*Dav*L*(Ts-To) \n",
"#Qi = Qc\n",
"def f(w): \n",
" return math.pi*(4+w)*L*0.0602*(Tw-Ts)/w-hav*math.pi*(4+2*w)*L*(Ts-To)\n",
"w = fsolve(f,0.1)\n",
"\n",
"# Results\n",
"print \"The required insulation thickness is %.3f m\"%(w)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6 Page No : 162"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rate of heat transfer is 13.4 W\n"
]
}
],
"source": [
"# Variables\n",
"L = 1.6 \t\t\t#m,height of enclosure\n",
"w = 0.04 \t\t\t#m, width of enclosure\n",
"b = 0.8 \t\t\t#m, breath\n",
"T1 = 22. \t\t\t#C,surface temp.\n",
"T2 = 30. \t\t\t#C, wall temp.\n",
"Tm = (T1+T2)/2 \t\t\t#C, Mean air temp.\n",
"Pr = 0.7 \t\t\t#Prandtl no.\n",
"\n",
"# Calculations\n",
"#fpr air at 26 C\n",
"beeta = 1./(Tm+273) \t\t\t#K**-1. coefficient of volumetric expension\n",
"mu = 1.684*10**-5 \t\t\t#m**2/s, vismath.cosity\n",
"k = 0.026 \t\t\t#W/m C, thermal conductivity\n",
"alpha = 2.21*10**-5 \t\t\t#m**2/s, thermal diffusity\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"Raw = g*beeta*(T2-T1)*w**3/(mu*alpha) \t\t\t#Rayleigh no.\n",
"Nuw = 0.42*(Raw)**0.25*Pr**0.012*(L/w)**-0.3 \t\t\t#Nusslet no.\n",
"h = Nuw*k/w \t\t\t#kcal/h m**2 C, heat transfer coefficient\n",
"q = h*(T2-T1)*(L*b) \t\t\t#W,the rate of heat transfer\n",
"\n",
"# Results\n",
"print \"the rate of heat transfer is %.1f W\"%(q)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.7 Page No : 163"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rate of heat loss per meter length is 39.7 kcal/h\n"
]
}
],
"source": [
"import math\n",
"# Variables\n",
"Ts = 60. \t\t\t#C, surface temp\n",
"To = 30. \t\t\t#C, bulk temp.\n",
"d = 0.06 \t\t\t#m, diameter of pipe\n",
"l = 1. \t\t\t#m, length\n",
"Tm = (Ts+To)/2\n",
"#for air at Tm\n",
"rho = 1.105 \t\t\t#kg/m**3, density\n",
"cp = 0.24 \t\t\t#kcal/kg C. specific heat\n",
"mu = 1.95*10**-5 \t\t\t#kg/m s. vismath.cosity\n",
"P = 0.7 \t\t\t#Prandtl no. \n",
"kv = 1.85*10**-5 \t\t\t#m**2/s, kinetic vismath.cosity\n",
"k = 0.0241 \t\t\t#kcal/f m C, thermal conductivity\n",
"beeta = (1./(Tm+273)) \t\t\t#K**-1. coefficient of volumetric expension\n",
"V = 0.3 \t\t\t#m/s, velocity\n",
"g = 9.8 \t\t\t#m/s**2, gravitational consmath.tant\n",
"\n",
"#Calculation\n",
"Rad = g*beeta*(Ts-To)*d**3*P/(kv**2) \t\t\t#Rayleigh no.\n",
"#from eq. 5.9\n",
"Nufree = (0.60+(0.387*Rad**(1./6))/(1+(0.559/P)**(9./16))**(8./27))**2\n",
"#calculation of forced convection nusslet no.\n",
"#from eq. 4.19\n",
"Re = d*V/(kv)\n",
"Nuforced = 0.3+(0.62*Re**(1./2)*P**(1./3)/(1+(0.4/P)**(2./3))**(1./4))*(1.+(Re/(2.82*10**5))**(5./8))**(4./5)\n",
"Nu = (Nuforced**3+Nufree**3)**(1./3) \t\t\t#nusslet no. for mixed convection\n",
"#Nu = h*d/k\n",
"h = Nu*k/d \t\t\t#kcal/h m**2 C, heat transfer corfficient\n",
"q = h*math.pi*d*l*(Ts-To)\n",
"\n",
"# Results\n",
"print \"the rate of heat loss per meter length is %.1f kcal/h\"%(q)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|