1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2 :Steady State conduction In one dimension"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1 Page No : 14"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rate of heat gain is 16.27 W\n",
"interface temp. between brick and cork is 24.2 C\n",
"interface temp. between cement and cork is -13.6 C\n",
"thermal resistance offered by brick layer is 12.9 percent\n",
"thermal resistance offered by cork layer is 84.1 percent\n",
"thermal resistance offered by cement layer is 3.0 percent\n",
"Additional thickness of cork to be provided = 5.1 cm\n"
]
}
],
"source": [
"# Variables\n",
"A = 1. \t\t\t#m**2, area\n",
"#for inner layer (cement)\n",
"ti = 0.06 \t\t\t#m, thickness\n",
"ki = 0.72 \t\t\t#W/m C, thermal conductivity\n",
"Ti = -15. \t\t\t#C, temprature\n",
"#for middle layer (cork)\n",
"tm = 0.1 \t\t\t#m, thickness\n",
"km = 0.043 \t\t\t#W/m C, thermal conductivity\n",
"#for outer layer(brick)\n",
"to = 0.25 \t\t\t#m, thickness\n",
"ko = 0.7 \t\t\t#W/m C, thermal conductivity\n",
"To = 30. \t\t\t#C, temprature\n",
"\n",
"# Calculation and Results\n",
"#Thermal resistance of outer layer \t\t\t#C/W\n",
"Ro = to/(ko*A) \n",
"#Thermal resistance of middle layer \t\t\t#C/W\n",
"Rm = tm/(km*A) \n",
"#Thermal resistance of inner layer \t\t\t#C/W\n",
"Ri = ti/(ki*A)\n",
"Rt = Ro+Rm+Ri\n",
"tdf = To-Ti \t\t\t#temp driving force\n",
"#(a)\n",
"Q = tdf/Rt \t\t\t#rate of heat gain\n",
"print \"the rate of heat gain is %.2f W\"%(Q)\n",
"\n",
"#(b)\n",
"#from fig. 2.4\n",
"td1 = Q*to/(ko*A) \t\t\t#C temp. drop across the brick layer\n",
"T1 = To-td1 \t\t\t#interface temp. between brick and cork\n",
"#similarly\n",
"td2 = Q*tm/(km*A) \t\t\t#C temp. drop across the cork layer\n",
"T2 = T1-td2 \t\t\t#C, interface temp. between cement and cork\n",
"print \"interface temp. between brick and cork is %.1f C\"%(T1)\n",
"print \"interface temp. between cement and cork is %.1f C\"%(T2)\n",
"\n",
"\n",
"#(c)\n",
"Rpo = Ro/Rt \t\t\t#thermal resistance offered by brick layer\n",
"Rpm = Rm/Rt \t\t\t#thermal resistance offered by cork layer\n",
"Rpi = Ri/Rt \t\t\t#thermal resistance offered by cement layer\n",
"print \"thermal resistance offered by brick layer is %.1f percent\"%(Rpo*100)\n",
"print \"thermal resistance offered by cork layer is %.1f percent\"%(Rpm*100)\n",
"print \"thermal resistance offered by cement layer is %.1f percent\"%(Rpi*100)\n",
"\n",
"#second part\n",
"x = 30. \t\t\t#percentage dec in heat transfer \n",
"Q1 = Q*(1-x/100) \t\t\t#W, desired rate of heat flow\n",
"Rth = tdf/Q1 \t\t\t#C/W, required thermal resistance\n",
"Rad = Rth-Rt \t\t\t#additional thermal resistance\n",
"Tad = Rad*km*A\n",
"print \"Additional thickness of cork to be provided = %.1f cm\"%(Tad*100)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2 Page No : 15"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rate of heat loss is 50.7 W\n",
"thermal conductivities of insulating layer is 0.1633 W/m C\n"
]
}
],
"source": [
"# Variables\n",
"#outer thickness of brickwork (to) & inner thickness (ti)\n",
"to = 0.15 \t\t\t#m thickness\n",
"ti = 0.012 \t\t\t#m thickness\n",
"#thickness of intermediate layer(til)\n",
"til = 0.07 \t\t\t#m thick\n",
"#thermal conductivities of brick and wood\n",
"kb = 0.70 \t\t\t#W/m celcius\n",
"kw = 0.18 \t\t\t#W/m celcius\n",
"#temp. of outside and inside wall\n",
"To = -15 \t\t\t#celcius\n",
"Ti = 21 \t\t\t#celcius\n",
"#area\n",
"A = 1 \t\t\t#m**2\n",
"\n",
"\n",
"# Calculations and Results\n",
"#(a)\n",
"#Thermal resistance of brick , wood and insulating layer\n",
"TRb = to/(kb*A) \t\t\t#C/W\n",
"TRw = ti/(kw*A) \t\t\t#C/W\n",
"TRi = 2*TRb \t\t\t#C/W\n",
"#Total thermal resistance\n",
"TR = TRb+TRw+TRi \t\t\t#C/W\n",
"#Temp. driving force\n",
"T = Ti-To \t\t\t#C\n",
"#Rate of heat loss\n",
"Q = T/TR\n",
"print \"Rate of heat loss is %.1f W\"%(Q)\n",
"#(b)thermal conductivities of insulating layer\n",
"k = til/(A*TRi)\n",
"print \"thermal conductivities of insulating layer is %.4f W/m C\"%(k)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3 Page No : 19"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rate of heat loss is 4095 W\n",
"interface temp.is 183 C\n",
"Fractional resistance offered by the special brick layer is 0.353 \n"
]
}
],
"source": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"#Length & Inside rdius of gas duct\n",
"L = 1. \t\t\t#m\n",
"ri = 0.5 \t\t\t#m radius\n",
"#Properties of inner and outer layer\n",
"ki = 1.3 \t\t\t#W/m C, thermal conductivity of inner bricks\n",
"ti = 0.27 \t\t\t#m, inner layer thickness \n",
"ko = 0.92 \t\t\t#W/m C, thermal conductivity of special bricks \n",
"to = 0.14 \t\t\t#m, outer layer thickness\n",
"Ti = 400. \t\t\t#C, inner layer temp.\n",
"To = 65. \t\t\t#C, outer layer temp.\n",
"\n",
"#calculation and Results\n",
"r_ = ri+ti \t\t\t#m, outer radius of fireclay brick layer\n",
"ro = r_+to \t\t\t#m, outer radius of special brick layer\n",
"#Heat transfer resistance\n",
"#Heat transfer resistance of fireclay brick\n",
"R1 = (math.log(r_/ri))/(2*math.pi*L*ki)\n",
"#Heat transfer resistance of special brick\n",
"R2 = (math.log(ro/r_))/(2*math.pi*L*ko)\n",
"#Total resistance\n",
"R = round(R1+R2,4)\n",
"#Driving force\n",
"T = Ti-To\n",
"#Rate of heat loss\n",
"Q = T/(R)\n",
"print \"Rate of heat loss is %d W\"%(Q)\n",
"#interface temp.\n",
"Tif = Ti-(Q*R1)\n",
"print \"interface temp.is %d C\"%(Tif)\n",
"#Fractional resistance offered by the special brick layer\n",
"FR = R2/(R1+R2)\n",
"print \"Fractional resistance offered by the special brick layer is %.3f \"%(FR)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4 Page No : 20"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The hot end temp. is 148 C\n",
"The temprature gradient at hot end is -294.7 C/m\n",
"The temprature gradient at cold end is -1179 C/m\n",
"the temprature at 0.15m away from the cold end is 131 C\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variables\n",
"d1 = 0.06 \t\t\t#m, one end diameter of steel rod\n",
"d2 = 0.12 \t\t\t#m,other end diameter of steel rod\n",
"l = 0.2 \t\t\t#m length of rod\n",
"T2 = 30. \t\t\t#C, temp. at end 2\n",
"Q = 50. \t\t\t#W, heat loss\n",
"k = 15. \t\t\t#W/m c, thermal conductivity of rod\n",
"\n",
"# Calculation and Results\n",
"#T = 265.8-(7.07/(0.06-0.15*x))........(a)\n",
"#(a)\n",
"x1 = 0\n",
"#from eq. (a)\n",
"T1 = 265.8-(7.07/(0.06-0.15*x1))\n",
"print \"The hot end temp. is %.0f C\"%(T1)\n",
"#(b) from eq. (i)\n",
"C = 50 \t\t\t#integration consmath.tant\n",
"#from eq. (i)\n",
"D1 = -C/(math.pi*d1**2*k) \t\t\t#D = dT/dx, temprature gradient\n",
"print \"The temprature gradient at hot end is %.1f C/m\"%(D1)\n",
"#similarly\n",
"D2 = -1179 \t\t\t#at x = 0.2m\n",
"print \"The temprature gradient at cold end is %.0f C/m\"%(D2)\n",
"\n",
"#(c)\n",
"x2 = 0.15 \t\t\t#m, given,\n",
"x3 = l-x2 \t\t\t#m, section away from the cold end\n",
"#from eq. (a)\n",
"T2 = 265.8-(7.07/(0.06-0.15*x3))\n",
"print \"the temprature at 0.15m away from the cold end is %.0f C\"%(T2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5 Page No : 24"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the rate of heat transfer is -3746 W\n",
"Refrigeration capacity is 1.07 tons\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variables\n",
"#inside and outside diameter and Temp. of sphorical vessel\n",
"do = 16. \t\t\t#m, diameter \n",
"t = 0.1 \t\t\t#m, thick \n",
"Ri = do/2 \t\t\t#m, inside radius \n",
"Ro = Ri+t \t\t\t#m. outside radius\n",
"To = 27. \t\t\t#C, temperature\n",
"Ti = 4. \t\t\t#C ammonia\n",
"k = 0.02 \t\t\t#W/m C, thermal conductivity of foam layer \n",
"\n",
"# Calculations and Results\n",
"#from eq. 2.23 the rate of heat transfer\n",
"Q = (Ti-To)*(4*math.pi*k*Ro*Ri)/(Ro-Ri)\n",
"print \"the rate of heat transfer is %.0f W\"%(Q)\n",
"#Refrigeration capacity(RC)\n",
"#3516 Watt = 1 ton\n",
"RC = -Q/3516\n",
"print \"Refrigeration capacity is %.2f tons\"%(RC)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6 Page No : 28"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the temprature midway in the rod at steady state is 167.3 C\n",
"Temprature gradient at one end of the rod is 559 C/W\n",
"Temprature gradient at other end of the rod is 521.8 C/W\n"
]
}
],
"source": [
"import math \n",
"# Variables\n",
"d = 0.05 \t\t\t#m, diameter of rod\n",
"l = 0.5 \t\t\t#m, length of rod\n",
"T1 = 30. \t\t\t#CTemp. at one end (1)\n",
"T2 = 300. \t\t\t#C, temp at other end (2)\n",
"\n",
"# Calculations and Results\n",
"x1 = l/2 \t\t\t#m, at mid plane\n",
"#temprature distribution ,\n",
"#comparing with quadratic eq. ax**2+bx+c \n",
"#and its solution as x = (-b+math.sqrt(b**2-4*a*c))/2*a\n",
"a = 1.35*10**-4\n",
"b = 1\n",
"c = -(564*x1+30.1)\n",
"T = (-b+math.sqrt(b**2-4*a*c))/(2*a)\n",
"print \"the temprature midway in the rod at steady state is %.1f C\"%(T)\n",
"\n",
"#Temprature gradient at the ends of the rod\n",
"x2 = 0 \t\t\t#m, at one end\n",
"a1 = 1.35*10**-4\n",
"b1 = 1\n",
"c1 = -(564*x2+30.1)\n",
"T1 = (-b1+math.sqrt(b1**2-4*a1*c1))/(2*a1)\n",
"k1 = 202+0.0545*T1 \n",
"C1 = 113930 \t\t\t#integration consmath.tant from eq. (1)\n",
"TG1 = C1/k1 \t\t\t#C/W, temprature gradient, dT/dx\n",
"#similarly\n",
"x3 = 0.5\n",
"a2 = 1.35*10**-4\n",
"b2 = 1\n",
"c2 = -(564*x3+30.1)\n",
"T2 = (-b2+math.sqrt(b2**2-4*a2*c2))/(2*a2)\n",
"k2 = 202+0.0545*T2\n",
"TG2 = C1/k2\n",
"print \"Temprature gradient at one end of the rod is %.0f C/W\"%(TG1)\n",
"print \"Temprature gradient at other end of the rod is %.1f C/W\"%(TG2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7 Page No : 29"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"At the surface x = 0, the temp. is 600 C\n",
"At the surface x = 0.3m, the temp. is 270 C\n",
"Rhe average temprature of the wall is 615 C\n",
"The maximum temprature occurs at 0.104 m\n",
"The maximum temp. is 730 C\n",
"heat flux at left surface is -58750 W/m**2\n",
"heat flux at right surface is 110450 W/m**2\n",
"The average volumetric rate if heat genaration is 564000 W/m**3 \n"
]
}
],
"source": [
"import math \n",
"from scipy.integrate import quad \n",
"# Variables\n",
"#temprature distribution in wall\n",
"\n",
"t = 0.3 \t\t\t#m, thickness of wall\n",
"k = 23.5 \t\t\t#W/m c thermal conductivity of wall\n",
"\n",
"# Calculations and Results\n",
"x1 = 0\n",
"T1 = 600+2500*x1-12000*x1**2 \t\t\t#C, at surface\n",
"x2 = 0.3\n",
"T2 = 600+2500*x2-12000*x2**2 \t\t\t#C, at x = 0.3\n",
"\n",
"def f3(x): \n",
" return 600+2500*x-12000*x**2\n",
"\n",
"Tav = 1/t* quad(f3,0,0.3)[0]\n",
"\n",
"print \"At the surface x = 0, the temp. is %.0f C\"%(T1)\n",
"print \"At the surface x = 0.3m, the temp. is %.0f C\"%(T2)\n",
"print \"Rhe average temprature of the wall is %.0f C\"%(Tav)\n",
"\n",
"#(b)\n",
"\n",
"#for maximum temprature D = 0\n",
"x3 = 2500/24000.\n",
"print \"The maximum temprature occurs at %.3f m\"%(x3)\n",
"Tmax = 600+2500*x3-12000*x3**2\n",
"print \"The maximum temp. is %.0f C\"%(Tmax)\n",
"\n",
"#(c)\n",
"D1 = 2500-24000*x1 \t\t\t#at x = 0, temprature gradient\n",
"Hf1 = -k*D1 \t\t\t#W/m**2, heat flux at left surface(x = 0)\n",
"D2 = 2500-24000*x2 \t\t\t#at x = 0.3, temprature gradient\n",
"Hf2 = -k*D2 \t\t\t#W/m**2, heat flux at right surface(x = 0.3)\n",
"print \"heat flux at left surface is %.0f W/m**2\"%(Hf1)\n",
"print \"heat flux at right surface is %.0f W/m**2\"%(Hf2)\n",
"\n",
"#(d)\n",
"Qt = Hf2-Hf1 \t\t\t#W/m**2, total rate of heat loss\n",
"Vw = 0.3 \t\t\t#m**3/m**2, volume of wall per unit surface area\n",
"Hav = Qt/Vw \t\t\t#W/m**3, average volumetric rate\n",
"print \"The average volumetric rate if heat genaration is %.0f W/m**3 \"%(Hav) \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8 Page No : 30"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The maximum temp. will occur at a position 0.209 m\n",
"The maximum temprature is 152.6 C\n"
]
}
],
"source": [
"import math \n",
"# Variables\n",
"ka = 24 \t\t\t#W/mC thermal conductivitiy of material A\n",
"tA = 0.1 \t\t\t#m, thickness of A material\n",
"kB = 230 \t\t\t#W/mC thermal conductivity of metl B\n",
"kC = 200 \t\t\t#W/mC thermal conductivity of metal C\n",
"tB = 0.1 \t\t\t#m, thickness of B metal\n",
"tC = 0.1 \t\t\t#m, thickness of C metal\n",
"TBo = 100 \t\t\t#C, outer surface temp. of B wall\n",
"TCo = 100 \t\t\t#C, outer surface temp. of C wall\n",
"Q = 2.5*10**5 \t\t\t#W/m**3, heat generated\n",
"\n",
"# Calculations and Results\n",
"#At D = 0\n",
"x = 2175./10416\n",
"print \"The maximum temp. will occur at a position %.3f m\"%(x)\n",
"x1 = x\n",
"TA = -5208*x1**2+2175*x1-74.5\n",
"print \"The maximum temprature is %.1f C\"%(TA)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9 Page No : 36"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This radial position does not fall within layer 1. Therefore no temprature maximum occurs in this layer.\n",
" Similarly no temprature maximum occurs in layer 2.\n",
"The maximum temprature at the outer boundary is 200 C\n"
]
}
],
"source": [
"import math\n",
"\n",
"# Variables\n",
"di = 0.15 \t\t\t#m, inner diameter\n",
"do = 0.3 \t\t\t#m, outer diameter\n",
"Q1 = 100.*10**3 \t\t\t#W/,m**3,inner rate of heat generation\n",
"Q2 = 40.*10**3 \t\t\t#W/m**3, outer rate of heat generation\n",
"Ti = 100. \t\t\t#C, temp.at inside surface\n",
"To = 200. \t\t\t#C, temp. at outside surface\n",
"k1 = 30. \t\t\t#W/m C, thermal conductivity of material for inner layer\n",
"k2 = 10. \t\t\t#W/m C, thermal conductivity of material for outer layer\n",
"\n",
"# Calculations and Results\n",
"#T1 = 364+100*math.log(r)-833.3*r**2 (1)\n",
"#T2 = 718+216*math.log(r)-1000*r**2 (2)\n",
"#(b)from eq. 1\n",
"r = math.sqrt(100./2*833.3)\n",
"print \"This radial position does not fall within layer 1. Therefore no temprature maximum occurs in this layer.\"\n",
"#similarly\n",
"print \" Similarly no temprature maximum occurs in layer 2.\"\n",
"ro = di \t\t # m, outer boundary\n",
"Tmax = To\n",
"print \"The maximum temprature at the outer boundary is %.0f C\"%(Tmax)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|