summaryrefslogtreecommitdiff
path: root/Heat_Transfer_Principles_And_Applications_by_Dutta/ch11.ipynb
blob: b98ede25006dabda96cd50ebe4be973df245afb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 11 : Boundary layer heat transfer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 11.1 Page No : 478"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "i) Boundary layer thickness is 0.0033  m\n",
      "Local drag coefficient is 8.72e-04 \n",
      "total drag force is 0.615  N \n",
      "Shear stress is 0.285 N/m**2\n"
     ]
    }
   ],
   "source": [
    "import math \n",
    "#Variable\n",
    "v  = 1. \t\t\t#m/s\n",
    "#temprature\n",
    "T = 25.            \t\t\t# degree celcius\n",
    "#length of plate,l = 1m\n",
    "l = 1.             \t\t\t#m\n",
    "#width of plate,w = 0.5m\n",
    "w = 0.5 \t\t\t#m\n",
    "#angle of incidence,theta = 0 degree\n",
    "theta = 0.         \t\t\t#degree\n",
    "\n",
    "#Calculation\n",
    "#for water at 25 degree celcius ,momentum diffusivity,\n",
    "MD = 8.63*(10**-7)  \t\t\t# m**2/s\n",
    "#local Reynold no.\n",
    "x = 0.5 \t\t\t#m\n",
    "Re = x*v/MD \n",
    "#from Eq. 11.39,the boundary layer thickness is\n",
    "t = 5*x/(Re**0.5)\n",
    "\n",
    "\n",
    "#Results\n",
    "print  \"i) Boundary layer thickness is %.4f  m\"%(t)\n",
    "\n",
    "#local drag coefficient\n",
    "#CD = local drag force per unit area (F)/kinetic energy per unit volume(KE)\n",
    "#F = 0.332*rho*v**2*Re**0.5 and KE =  0.5*rho*v**2\n",
    "CD = 0.332*v**2*(Re**-0.5)/(0.5)*v**2\n",
    "\n",
    "print \"Local drag coefficient is %.2e \"%(CD)\n",
    "\n",
    "#From eq 11.44, the drag force acting on one side of the plate is\n",
    "#kinetic viscocity\n",
    "mu = 8.6*(10**-4)\n",
    "fd = 0.664*mu*v*(l*v/MD)**0.5*w\n",
    "#the total force acting on both sides of the plate\n",
    "\n",
    "tfd = 2*fd\n",
    "print \"total drag force is %.3f  N \"%(tfd)\n",
    "\n",
    "#shear stress at any point in the boundary layer\n",
    "#at a point in the boundary layer,\n",
    "x = 0.5 \t\t\t#m\n",
    "y = t/2\n",
    "# n = blasius dimensionless variable\n",
    "n = y/(MD*x/v)**0.5\n",
    "#From table 11.1, at n = 2.5,f\"(n) = 0.218\n",
    "#shear stress =  tau\n",
    "fn = 0.218 \t\t\t#f\"(n) = fn\n",
    "tau = (mu*v*(v/(MD*x))**0.5)*fn\n",
    "print \"Shear stress is %.3f N/m**2\"%(tau)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 11.2 Page No : 488"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Thermal boundary layer thickness is 8.7 mm \n",
      "heat transfer coeff is 6.9 W/m**2 C\n"
     ]
    }
   ],
   "source": [
    "#Variable\n",
    "Ts = 200.           \t\t\t# C,temp. of air\n",
    "Ta = 30.            \t\t\t#C, temp .of surface\n",
    "Va = 8.             \t\t\t#m/s, velocity of air\n",
    "d = 0.75           \t\t\t#m, dismath.tant from leading edge\n",
    "\n",
    "#Calculation and Results\n",
    "Tm = (Ts+Ta)/2     \t\t\t#C, Mean temp. of boundary layer\n",
    "mu = 2.5*10**-5    \t\t\t#m**2/s, vismath.cosity\n",
    "P = 0.69           \t\t\t#prndatl no.\n",
    "k = 0.036          \t\t\t#W/m c, thermal conductivity\n",
    "Re = d*Va/mu       \t\t\t#reynold no.\n",
    "t = 5*d/(Re**0.5*P**(1./3))           \t\t\t#m, thermal boundary layer thickness\n",
    "print \"Thermal boundary layer thickness is %.1f mm \"%(t*10**3)\n",
    "\n",
    "N = (0.332*Re**(0.5)*P**(1./3))   \t\t\t#Nusslet no.\n",
    "h = k*N/d                                     \t\t\t#heat transfer coefficent\n",
    "print \"heat transfer coeff is %.1f W/m**2 C\"%(h)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 11.3 Page No : 489"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Local rate of heat exchange is  235 W/m2\n",
      "Plate temperature is :108 Celsius \n"
     ]
    }
   ],
   "source": [
    "# Variables\n",
    "#Free strean velocity (v1) and temp.(t1) on side 1\n",
    "v1 = 6. \t\t\t#m/s\n",
    "t1 = 150. \t\t\t#degree celcius\n",
    "#same on  side 2\n",
    "v2 = 3. \t\t\t#m/s\n",
    "t2 = 50. \t\t\t#degree celcius\n",
    "#dismath.tant\n",
    "x = 0.7 \t\t\t#m\n",
    "#The plate temp. is assumed to be equal to the mean of the bulk air temp on the two sides of the plates\n",
    "T = 100. \t\t\t#degree celcius\n",
    "\n",
    "# Calculations\n",
    "#Side 1\n",
    "#mean air temp.\n",
    "tm1 = (T+t1)/2\n",
    "#From thermophysical properties:kinetic vismath.cosity (kv),Prandtl no.(P), thermal conductivity (k)\n",
    "kv1 = 2.6*10**-5 \t\t\t#m**2/s\n",
    "P1 = 0.69\n",
    "k1 = 0.0336 \t\t\t#W/m degree celcius\n",
    "#Reynold no.\n",
    "Re1 = x*v1/kv1\n",
    "#Nusslet no(N1)\n",
    "a = 1/3.\n",
    "N1 = 0.332*(Re1)**0.5*P1**a\n",
    "h1 = k1*N1/x\n",
    "#Side 2 of the plate\n",
    "tm2 = (T+t2)/2\n",
    "#Similarly\n",
    "kv2 = 2.076*(10)**-5 \t\t\t#m**2/s\n",
    "P2 = 0.70\n",
    "k2 = 0.03 \t\t\t#W/m degree celcius\n",
    "Re2 = x*v2/kv2\n",
    "N2 = 0.332*(Re2)**0.5*P2**a\n",
    "h2 = k2*N2/x\n",
    "#overall heat transfer coeff. \n",
    "U = h1*h2/(h1+h2)\n",
    "#The local rate of heat exchange\n",
    "RH = U*(t1-t2)\n",
    "\n",
    "# Results\n",
    "print \"Local rate of heat exchange is  %.0f W/m2\"%(RH)\n",
    "#the plate temp is given by\n",
    "TP = t2+(t1-t2)*U/h2\n",
    "print \"Plate temperature is :%.0f Celsius \"%(TP)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 11.4 Page No : 490"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The  temprature of plate after 1 hour is 82 C\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Variables\n",
    "T1 = 120.                             \t\t\t#C, initial temp.\n",
    "T2 = 25.                              \t\t\t#C, Final temp.\n",
    "Tm = (T1+T2)/2                       \t\t\t#C, mean temp.\n",
    "rho = 8880.                           \t\t\t#kg/m**3, density of plate\n",
    "#Properties of air at mean temp.\n",
    "mu = 2.07*10**-5                      \t\t\t#m**2/s, vismath.cosity\n",
    "Pr = 0.7                             \t\t\t#Prandtl no.\n",
    "k = 0.03                             \t\t\t#W/m C, thermal conductivity\n",
    "l = 0.4                              \t\t\t#m, length of plate\n",
    "w = 0.3                              \t\t\t#m, width of plate\n",
    "d = 0.0254                           \t\t\t#m, thickness of plate\n",
    "Vinf = 1.                             \t\t\t#m/s, air velocity\n",
    "Re = l*Vinf/mu                       \t\t\t#REynold no.\n",
    "\n",
    "#from eq. 11.90 (b)\n",
    "Nu = 0.664*(Re)**(1./2)*(Pr)**(1./3)     \t\t\t#average Nusslet no.\n",
    "#Nu = l*h/k\n",
    "h = Nu*k/l                           \t\t\t#W/m**2 C, heat transfer coefficient\n",
    "#Rate of change of temp. is given by\n",
    "A = 2*l*w                            \t\t\t#m**2. area of plate\n",
    "t = 1*3600.                           \t\t\t#s, time\n",
    "cp = 0.385*10.**3                      \t\t\t#j/kg K, specific heat\n",
    "m = l*w*d*rho                        \t\t\t#kg, mass of plate\n",
    "\n",
    "#-d/dt(m*cp8dt) = A*hv*(T1-T2)\n",
    "#appling the boundary condition \n",
    "T = (T1-T2)*math.exp(-A*h*t/(m*cp))+T2\n",
    "print \"The  temprature of plate after 1 hour is %.0f C\"%(T)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 11.5 Page No : 508"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Nusslet no is: 388 \n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "# Variables\n",
    "#Reynold no (Re),friction factor(f),Prandlt no. (P)\n",
    "Re = 7.44*(10**4)\n",
    "f = 0.00485\n",
    "P = 5.12\n",
    "x = P-1            \t\t\t#assume\n",
    "\n",
    "# Calculations\n",
    "#according to Von Karmen anamath.logy\n",
    "N = ((f/2)*Re*P)/(1+(5*math.sqrt(f/2))*(x+math.log(1+(5./6)*x)))\n",
    "\n",
    "# Results\n",
    "print \"Nusslet no is: %.0f \"%(N)\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}