1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
{
"metadata": {
"name": "",
"signature": "sha256:569b39eccca34c26fda2a96be72a801e57b24dc25cef982f78e922cfedfaf0c7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8 : Heat Exchanger"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1 Page No : 303"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# Variables\n",
"#for Benzene\n",
"Mb = 1000. \t\t\t#Kg, mass of benzene\n",
"T1 = 75. \t\t\t#C initial temp. of benzene\n",
"T2 = 50. \t\t\t#C final temp. of benzene\n",
"Cp1 = 1.88 \t\t\t#Kj/Kg C. specific heat of benzene\n",
"mu1 = 0.37 \t\t\t#cP. vismath.cosity of benzene\n",
"rho1 = 860. \t\t\t#kg/m**3, density\n",
"k1 = 0.154 \t\t\t#W/m K. thermal conductivity\n",
"\n",
"#for water\n",
"Tav = 35. \t\t\t#C av, temp.\n",
"Cp2 = 4.187 \t\t\t#specific heat\n",
"mu2 = 0.8 \t\t\t#cP. vismath.cosity\n",
"k2 = 0.623 \t\t\t#W/m K. thermal conductivity\n",
"T3 = 30. \t\t\t#C. initial temp.\n",
"T4 = 40. \t\t\t#C final temp.\n",
"\n",
"#Calculation and Results\n",
"#(a)\n",
"HD = Mb*Cp1*(T1-T2) \t\t\t#Kj/h, heat duty\n",
"WR = HD/(Cp2*(T4-T3)) \t\t\t#kg/h Water rate\n",
"print \"the heat duty of the exchanger is %.0f kj/h\"%(HD)\n",
"print \"the water flow rate is %d kg/h\"%(WR)\n",
"\n",
"#(b)\n",
"#tube side (water) calculations\n",
"# Variables\n",
"di1 = 21. \t\t\t#mm, inner diameter of inner tube \n",
"do1 = 25.4 \t\t\t#mm, outer dia. of inner tube\n",
"t = 2.2 \t\t\t#mm/ wall thickness\n",
"kw = 74.5 \t\t\t#W/m K. thermal conductivity of the wall\n",
"di2 = 41. \t\t\t#mm, inner diameter of outer pipe\n",
"do2 = 48. \t\t\t#mm, outer diameter of outer pipe\n",
"\n",
"FA1 = (math.pi/4)*(di1*10**-3)**2 \t\t\t#m**2, flow area\n",
"FR1 = WR/1000.\n",
"v1 = FR1/(FA1*3600) \t\t\t#m/s, velocity\n",
"Re1 = (di1*10**-3)*v1*1000/(mu2*10**-3) \t\t\t#Reynold no.\n",
"Pr1 = Cp2*1000*(mu2*10**-3)/k2 \t\t\t#Prandtl no.\n",
"#umath.sing dittus boelter eq.\n",
"Nu1 = 0.023*(Re1)**(0.8)*(Pr1)**(0.3) \t\t\t#nusslet no.\n",
"h1 = round(Nu1*k2/(di1*10**-3),-1) \t\t\t#W/m**2 C, heat transfer coefficient\n",
"\n",
"#Outer side (benzene) calculation\n",
"FA2 = (math.pi/4)*(di2*10**-3)**2-(math.pi/4)*(do1*10**-3)**2 \t\t\t#flow area\n",
"wp = math.pi*(di2*10**-3+do1*10**-3) \t\t\t#wettwd perimeter\n",
"dh = 4*FA2/wp \t\t\t#hydrolic diameter\n",
"bfr = Mb/rho1 \t\t\t#m**3/h benzene flow rate\n",
"v2 = bfr/(FA2*3600) \t\t\t#m/s, velocity\n",
"Re2 = dh*v2*rho1/(mu1*10**-3) \t\t\t#Reynold no\n",
"Pr2 = Cp1*10**3*(mu1*10**-3)/k1 \t\t\t#Prandtl no.\n",
"Nu2 = 0.023*(Re2)**(0.8)*(Pr2)**(0.4) \t\t\t#nusslet no.\n",
"h2 = Nu2*k1/(dh) \t\t\t#W/m**2 C, heat transfer coefficient\n",
"\n",
"print \"heat transfer coefficient based on inside area is %.0f W/m**2 C \"%(h1)\n",
"print \"heat transfer coefficient based on outside area is %.1f W/m**2 C \"%(h2)\n",
"\n",
"#Calculation of clean overall heat transfer coefficient, outside area basis\n",
"#from eq. 8.28\n",
"# Variables\n",
"l = 1. \t\t\t#assume , length\n",
"Ao = math.pi*do1*10**-3*l\n",
"Ai = math.pi*di1*10**-3*l\n",
"Am = (do1*10**-3-di1*10**-3)*math.pi*l/(math.log(do1*10**-3/(di1*10**-3)))\n",
"\n",
"#overall heat transfer coefficient\n",
"Uo = 1/((1/h2)+(Ao/Am)*((do1*10**-3-di1*10**-3)/(2*kw))+(Ao/Ai)*(1/h1))\n",
"Ui = Uo*Ao/Ai\n",
"\n",
"#Calculation of LMTD\n",
"dt1 = T1-T4\n",
"dt2 = T2-T3\n",
"LMTD = (dt1-dt2)/math.log(dt1/dt2) \t\t\t#math.log mean temp. difference correction factor\n",
"Q = HD*1000/3600 \t\t\t#W, heat required\n",
"Ao_ = Q/(Uo*LMTD) \t\t\t#m**@, required area\n",
"len = Ao_/(math.pi*do1*10**(-3)) \t\t\t#m, tube length necessary\n",
"\n",
"#(c)\n",
"la = 15. \t\t\t#m ,actual length\n",
"Aht = (math.pi*do1*10**(-3)*la)\n",
"Udo = Q/(Aht*LMTD) \t\t\t#W/m**2 C, overall heat transfer coefficient with dirt factor\n",
"#from eq. 8.2\n",
"Rdo = (1/Udo)-(1/Uo) \t\t\t#m**2 C/W\n",
"print \"overall heat transfer coefficient outside area basis is %.1f W/m**2 C \"%(Uo)\n",
"print \"overall heat transfer coefficient inside area basis is %.1f W/m**2 C \"%(Ui)\n",
"print \"The fouling factor is %f m**2 C/W\"%(Rdo)\n",
"\n",
"# note : rounding off error. please check."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the heat duty of the exchanger is 47000 kj/h\n",
"the water flow rate is 1122 kg/h\n",
"heat transfer coefficient based on inside area is 3560 W/m**2 C \n",
"heat transfer coefficient based on outside area is 880.3 W/m**2 C \n",
"overall heat transfer coefficient outside area basis is 663.1 W/m**2 C \n",
"overall heat transfer coefficient inside area basis is 802.0 W/m**2 C \n",
"The fouling factor is 0.000949 m**2 C/W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2 Page No : 309"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"Cp = 50. \t\t\t#tpd, plant capacity\n",
"T1 = 135. \t\t\t#C, Temp.\n",
"T2 = 40. \t\t\t#C temp.\n",
"T3 = 30. \t\t\t#C temp.\n",
"dt1 = (T1-T2) \t\t\t#C hot end temp. \n",
"dt2 = (T2-T3) \t\t\t#C cold end temp.\n",
"#Properties of ethylbenzene\n",
"rho1 = 840. \t\t\t#kg/m**3, density\n",
"cp1 = 2.093 \t\t\t#kj/kg K , specific heat\n",
"T = 87.5 \t\t\t#C\n",
"mu1 = math.exp(-6.106+1353/(T+273)+5.112*10**-3*(T+273)-4.552*10**-6*((T+273)**2))\n",
"k1 = 0.2142-(3.44*10**-4)*(T+273)+(1.947*10**-7)*(T+273)**2\n",
"k1_ = k1*0.86 \t\t\t#kcal/h m K\n",
"#properties of water\n",
"rho2 = 993. \t\t\t#kg/m**3, density\n",
"mu2 = 8*10.**-4 \t\t\t#kg/m s , vismath.cosity \n",
"cp2 = 4.175 \t\t\t#kj/kg K , specific heat\n",
"k2 = 0.623 \t\t\t#W/m K, thermal conductivity\n",
"k2_ = k2*0.8603 \t\t\t#kcal/h m**2 K\n",
"#Calculation\n",
"#(i) Energy balance\n",
"Cp = Cp*1000./24 \t\t\t#kg/h, plant capacity\n",
"Cp = 2083. \t\t\t#approx.\n",
"HD = Cp*cp1*dt1 \t\t\t#kj/h, Heat duty \n",
"HD_ = HD*0.238837 \t\t\t#kcal/h\n",
"wfr = HD/(cp2*dt2)\n",
"\n",
"#(ii)\n",
"mu1 = mu1 \t\t\t#cP, vismath.cosity of ethylbenzene\n",
"k1 = k1 \t\t\t#W/m K, thermal conductivity of ethylbenzene\n",
"\n",
"#(iii)\n",
"#LMTD calculation\n",
"LMTD = (dt1-dt2)/math.log(dt1/dt2)\n",
"#assume\n",
"Udo = 350. \t\t\t#kcal/h m**2 C, overall coefficient\n",
"A = HD_/(Udo*LMTD) \t\t\t#m**2, area required\n",
"\n",
"#(iv)\n",
"id_ = 15.7 \t\t\t#mm, internal diameter of tube\n",
"od = 19. \t\t\t#mm, outer diameter of tube\n",
"l = 3000. \t\t\t#mm, length\n",
"OSA = math.pi*(od*10**-3)*(l*10**-3) \t\t\t#m**2. outer surface area\n",
"n = A/OSA \t\t\t#no. of tubes required\n",
"fa = n*(math.pi/4)*(id_*10**-3)**2 \t\t\t#m**2, flow arae\n",
"lv = (wfr/1000)/(3600*fa) \t\t\t#m/s, linear velocity\n",
"\n",
"#(v)\n",
"n1 = 44. \t\t\t#total no. of tubes that can be accomodated in a 10 inch shell\n",
"np = 11. \t\t\t#no. of tubes in each pass\n",
"#(vi)\n",
"bf = 0.15 \t\t\t#m, baffel spacing\n",
"#(vii)\n",
"#estimation of heat transfer coefficient\n",
"#Tube side (water)\n",
"fa1 = (math.pi/4)*(id_*10**-3)**2*np \t\t\t#m**2, flow area\n",
"v1 = (wfr/1000.)/(3600*fa1) \t\t\t#m/s, velocity\n",
"Re = (id_*10**-3)*v1*rho2/mu2 \t\t\t#Reynold no.\n",
"#from fig . 8.11(a)\n",
"jh = 85. \t\t\t#colburn factor\n",
"#jh = (hi*di)/k*(cp*mu/k)**-1/3 \n",
"#assume, (cp*mu/k) = x\n",
"hi = jh*(k2_/(id_*10**-3))*(cp2*1000*mu2/k2)**(1/3) \t\t\t#kcal/h m**2 C\n",
"\n",
"#shell side(organic)\n",
"B = bf \t\t\t#m, baffel spacing\n",
"p = 0.0254 \t\t\t#m,radius of 1 tube\n",
"Ds = 0.254 \t\t\t#m, inside diameter of shell\n",
"c = 0.0064 \n",
"#from eq. 8.32\n",
"As = c*B*Ds/p \t\t\t#m**2, flow area\n",
"Gs = Cp/As \t\t\t#kg/m**2 h, mass flow rate of shell fluid\n",
"do = od/10 \t\t\t#cm, outside diameter of shell\n",
"#from eq. 8.31\n",
"Dh = 4*((0.5*p*100)*(0.86*p*100)-((math.pi*(do)**2)/8))/((math.pi*do)/2)\n",
"Dh_ = Dh*10**-2 \t\t\t#m, hydrolic diameter\n",
"Re1 = (Dh_*Gs)/(3600*(mu1*10**-3)) \t\t\t#Reynold no.\n",
"#from fig 8.11(b)\n",
"jh1 = 32 \t\t\t#colburn factor\n",
"ho = jh1*(k1_/Dh_)*((6)**(1./3))\n",
"#from eq. 8.28\n",
"ratio = od/id_ \t\t\t#ratio = Ao/Ai\n",
"Rdo = 0.21*10**-3 \t\t\t#outside dirt factor\n",
"Rdi = 0.35*10**-3 \t\t\t#inside dirt factor\n",
"Udo = 1/((1/ho)+Rdo+(ratio)*Rdi+(ratio)*(1/hi))\n",
"\n",
"#SECOND TRIAL\n",
"#estimation of heat transfer coefficient\n",
"#Tube side (water)\n",
"np1 = 12 \t\t\t#\n",
"fa2 = (math.pi/4)*(id_*10**-3)**2*np1 \t\t\t#m**2, flow area\n",
"v2 = (wfr/1000)/(3600*fa2) \t\t\t#m/s, velocity\n",
"Re2 = (id_*10**-3)*v2*rho2/mu2 \t\t\t#Reynold no.\n",
"#from fig . 8.11(a)\n",
"jht = 83. \t\t\t#colburn factor\n",
"#jh = (hi*di)/k*(cp*mu/k)**-1/3 \n",
"#assume, (cp*mu/k) = x\n",
"hit = jht*(k2_/(id_*10**-3))*(cp2*1000*mu2/k2)**(1./3) \t\t\t#kcal/h m**2 C\n",
"\n",
"#shell side\n",
"B2 = 0.1 \t\t\t#m, baffel spacing\n",
"p2 = 0.0254 \t\t\t#m,radius of 1 tube\n",
"Ds2 = 0.254 \t\t\t#m, inside diameter of shell\n",
"c2 = .0064\n",
"#from eq. 8.32\n",
"As2 = c2*B2*Ds2/p2 \t\t\t#m**2, flow area\n",
"Gs2 = Cp/As2 \t\t\t#kg/m**2 h, mass flow rate of shell fluid\n",
"do2 = od/10 \t\t\t#cm, outside diameter of shell\n",
"#from eq. 8.30\n",
"Dh2 = 4*((p2*100)**2-((math.pi*(do2)**2)/4))/((math.pi*do2))\n",
"Dh2_ = Dh2*10**-2 \t\t\t#m, hydrolic diameter\n",
"Re2 = (Dh2_*Gs2)/(3600*(mu1*10**-3))\n",
"#from fig 8.11(b)\n",
"jh2 = 48 \t\t\t#colburn factor\n",
"ho2 = jh2*(k1_/Dh2_)*((6)**(1./3))\n",
"#from eq. 8.28\n",
"ratio = od/id_ \t\t\t#ratio = Ao/Ai\n",
"Rdo2 = 0.21*10**-3 \t\t\t#outside dirt factor\n",
"Rdi2 = 0.35*10**-3 \t\t\t#inside dirt factor\n",
"Udo2 = 1/((1/ho2)+Rdo+(ratio)*Rdi+(ratio)*(1/hit))\n",
"\n",
"#from eq. 8.10(a)\n",
"tauc = (T2-T3)/(T1-T3) \t\t\t#Temprature ratio\n",
"R = (T1-T2)/(T2-T3) \t\t\t#Temprature ratio\n",
"Ft = 0.8 \t\t\t#LMTD correction ftor\n",
"Areq = HD_/(Udo2*Ft*LMTD) \t\t\t#area required\n",
"tubes = 48. \t\t\t#no. of tubes\n",
"lnt = 4.5 \t\t\t#length of 1 tube\n",
"Aavl = (math.pi*od*10**-3)*tubes*lnt \t\t\t#available area\n",
"excA = ((Aavl-Areq)/Areq)*100 \t\t\t#% excess area\n",
"\n",
"#Pressure drop calculation\n",
"#Tube side\n",
"#from eq. 8.33\n",
"Gt = wfr/(3600*fa2) \t\t\t#kg/m**2 s, mass flow rate of tube fluid\n",
"n2 = 4. \t\t\t#tube passes\n",
"fit = 1. \t\t\t#dimensionless vismath.cosity ratio\n",
"g = 9.8 \t\t\t#gravitational consmath.tant\n",
"f = 0.0037 \t\t\t#friction factor\n",
"dpt = f*Gt**2*lnt*n2/(2*g*rho2*id_*10**-3*fit) \t\t\t#kg/m**2, tube side pressure drop\n",
"\n",
"#eq.8.35\n",
"dpr = 4*n2*v2**2*rho2/(2*g) \t\t\t#kg/m**2, return tube pressure loss\n",
"dpr_ = dpr*9.801 \t\t\t#N/m**2\n",
"tpr = dpt+dpr \t\t\t#kg/m**2, total pressure drop\n",
"#shell side\n",
"fs = 0.052 \t\t\t#friction factor for shell\n",
"bf1 = 0.1 \t\t\t#m, baffel spacing\n",
"Nb = lnt/bf1-1 \t\t\t#no. of baffles\n",
"dps = fs*(Gs2/3600)**2*Ds*(Nb+1)/(2*g*rho1*Dh2_*fit) \t\t\t#kg/m**2, shell side pressure drop\n",
"dps_ = dps*9.81 \t\t\t#N/m**2, shell side pressure drop\n",
"print \"Tube side Pressure drop is %1.3e N/m**2 \"%(dpr_)\n",
"print \"Shell side Pressure drop is %.0f N/m**2 \"%(round(dps_,-1))\n",
"\n",
"# note : rounding off error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Tube side Pressure drop is 1.118e+04 N/m**2 \n",
"Shell side Pressure drop is 120 N/m**2 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3 Page No : 320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"#for hot stream\n",
"Wh = 10000. \t\t\t#kg/h, Rate of leaving a hydrolic system by the oil\n",
"Cph = 0.454 \t\t\t#Kcal/Kg C, specific heat of oil\n",
"Th1 = 85. \t\t\t#C initial temp. of oil\n",
"Th2 = 50. \t\t\t#C final temp. of oil \n",
"\n",
"#For cold stream\n",
"Cpc = 1. \t\t\t#Kcal/Kg C, specific heat of water\n",
"Tc2 = 30. \t\t\t#C final temp. of water\n",
"Tc1 = 38. \t\t\t#C initial temp. of water\n",
"\n",
"# Calculations\n",
"#from heat balance eq.\n",
"#kg/h, Rate of leaving a hydrolic system by the water\n",
"Wc = Wh*Cph*(Th1-Th2)/(Cpc*(Tc1-Tc2))\n",
"#For the hot stream\n",
"Cmin = Wh*Cph \t\t\t#Kcal/h C.Taking hot stream as min. stream\n",
"#For cold stream\n",
"Cmax = Wc*Cpc \t\t\t#Kcal/h C.Taking cold stream as max. stream\n",
"Cr = Cmin/Cmax \t\t\t#Capacity ratio\n",
"n = (Th1-Th2)/(Th1-Tc2) \t\t\t#effectiveness factor\n",
"#From eq. 8.57\n",
"#No. of transfer units\n",
"NTU = -(1+(Cr)**2)**-(1./2)*math.log(((2/n)-(1+Cr)-(1+(Cr)**2)**(1./2))/((2./n)-(1+Cr)+(1+(Cr)**2)**(1./2)))\n",
"Ud = 400. \t\t\t#kcal/h m**2C , overall dirty heat transfer coefficient\n",
"#from eq. 8.53\n",
"A = (NTU*Cmin)/Ud \t\t\t#Area required\n",
"#if the water rate is increased by 20 %,\n",
"a = 20.\n",
"Wc_ = Wc+(Wc*(a/100))\n",
"Cmax_ = Wc_*Cpc\n",
"Cr_ = Cmin/Cmax_\n",
"#From eq. 8.56\n",
"n_ = 2*((1+Cr_)+(1+(Cr_)**2)**(1./2)*(1+math.exp(-(1+(Cr_)**2)**(1./2)*NTU))/(1-math.exp(-(1+(Cr_)**2)**(1./2)*NTU)))**(-1)\n",
"Th2_ = Th1-(n_*(Th1-Tc2))\n",
"q1 = Wh*Cph*(Th1-Th2) \t\t\t#kcal/h previous rate of heat transfer\n",
"q2 = Wh*Cph*(Th1-Th2_) \t\t\t#kcal/h new rate of heat transfer\n",
"#increase in rate of heat transfer\n",
"dq = (q2-q1)/q1 \n",
"\n",
"# Results\n",
"print \"Th2 = %.1f C\"%Th2_\n",
"print \"The new rate of heat transfer : %d kcal/h\"%q2\n",
"print \"the heat teansfer rate will be affected by %.1f percent \"%(dq*100 )\n",
"\n",
"# note : rounding off error would be there."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Th2 = 49.5 C\n",
"The new rate of heat transfer : 161003 kcal/h\n",
"the heat teansfer rate will be affected by 1.3 percent \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4 Page No : 337"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Variables\n",
"p = 0.0795 \t\t\t#m. pitch of the coil\n",
"d1 = 0.0525 \t\t\t#m,coil diameter\n",
"h = 1.464 \t\t\t#m,height of the limpetted section\n",
"d2 = 1.5 \t\t\t#m,diameter of batch polymerization reactor\n",
"d3 = 0.5 \t\t\t#m,diameter of agitator\n",
"rpm = 150. \t\t\t#speed of agitator\n",
"rho = 850. \t\t\t#kg/m3,density of monomer\n",
"rho1 = 900. \t\t\t#kg/m3,density of fluid\n",
"mu = 0.7*10**-3 \t\t\t#poise, vismath.cosity of monomer\n",
"mu1 = 4*10.**-3 \t\t\t#poise, vismath.cosity of fluid\n",
"cp = 0.45 \t\t\t#kcal/kg C, specific heat of monomer\n",
"cp1 = 0.5 \t\t\t#kcal/kg C, specific heat of fluid\n",
"k = 0.15 \t\t\t#kcal/h mC, thermal conductivity of monomer\n",
"k1 = 0.28 \t\t\t#kcal/h mC, thermal conductivity of fluid\n",
"Rdi = 0.0002 \t\t\t#h m2 C/kcal, fouling factor for vessel\n",
"Rdc = 0.0002 \t\t\t#h m2 C/kcal, fouling factor for coil\n",
"Tci = 120. \t\t\t#C, initial temp. of coil liquid\n",
"Tvi = 25. \t\t\t#C, initial temp. of vessel liquid\n",
"Tvf = 80. \t\t\t#C, final temp. of vessel liquid\n",
"\n",
"#calculation\n",
"a = math.pi*d2*h \t\t\t#outside area of the vessel\n",
"x = 60. \t\t\t#%. added of the unwetted area to the wetted area\n",
"ao = ((d1+(x/100)*(p-d1))/p)*a \t\t\t#m**2,effective outside heat transfer area of vessel\n",
"ai = 6.9 \t\t\t#m**2,inside heat transfer area of vessel\n",
"#same as outside area , if thickness is very small\n",
"#vessel side heat transfer coefficient\n",
"Re = (d3**2*(rpm/60)*rho)/mu \t\t\t#reynold no.\n",
"Pr = ((cp*3600)*(mu))/k\n",
"#from eq. 8.66\n",
"y = 1 \t\t\t#x = mu/muw = 1\n",
"Nu = 0.74*(Re**(0.67))*(Pr**(0.33))*(y**(0.14)) \t\t\t#Nusslet no\n",
"hi = Nu*(k/d2) \t\t\t#heat transfer coefficient\n",
"\n",
"#coil side heat transfer coefficient\n",
"v = 1.5 \t\t\t#m/s, linear velocity of fluid\n",
"fa = ((math.pi/4)*d1**2) \t\t\t#m2, flow area of coil\n",
"fr = v*fa*3600 \t\t\t#m3/h , flow rate of the fluid\n",
"Wc = fr*rho \t\t\t#kg/h , flow rate\n",
"dh = (4*(math.pi/8)*d1**2)/(d1+(math.pi/2)*d1) \t\t\t#m,hydrolic diameter of limpet coil\n",
"Re1 = v*rho1*dh/mu1 \t\t\t#coil reynold no.\n",
"Pr1 = cp1*mu1*3600/k1 \t\t\t#prandtl no. of the coil fluid\n",
"#from eq. 8.68\n",
"d4 = 0.0321 \t\t\t#m, inside diameter of the tube\n",
"Nu1 = 0.021*(Re1**(0.85)*Pr1**(0.4)*(d4/d2)**(0.1)*y**0.14) \n",
"hc = Nu1*(k1/dh) \t\t\t#coil side coefficient\n",
"\n",
"U = 1/((1/hi)+(ai/(hc*ao))+Rdi+Rdc) \t\t\t#overall heat transfer corfficient\n",
"#from eq. 8.63\n",
"beeta = math.exp(U*ai/(Wc*cp1))\n",
"Wv = 2200. \t\t\t#kg, mass of fluid vessel\n",
"t = (beeta/(beeta-1))*((Wv*cp)/(Wc*cp1))*math.log((Tci-Tvi)/(Tci-Tvf)) \n",
"\n",
"# Results\n",
"print \"the time required to heat the charge %.0f min\"%(t*60)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the time required to heat the charge 22 min\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|