summaryrefslogtreecommitdiff
path: root/Grobs_Basic_Electronics_by_M_E_Schultz/Chapter5.ipynb
blob: 64665511a2b4ebcb73cb772993ed759fcc210968 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 5 : Parallel Circuits"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_1 Page No.  149"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Current Resistor R1 = 0.015 Amps\n",
      "i.e 15 mAmps\n",
      "The Current Resistor R2 = 0.03 Amps\n",
      "i.e 25 mAmps\n"
     ]
    }
   ],
   "source": [
    "# Solve for branch currents I1 and I2.\n",
    "\n",
    "R1 = 1.*10**3#    # Resistor 1=1*10**3 Ohms\n",
    "R2 = 600.#       # Resistor 2=600 Ohms\n",
    "Va = 15.#        # Applied Voltage=15 Volts\n",
    "\n",
    "I1 = Va/R1#\n",
    "print 'The Current Resistor R1 = %0.3f Amps'%I1\n",
    "print 'i.e 15 mAmps'\n",
    "\n",
    "I2 = Va/R2#\n",
    "print 'The Current Resistor R2 = %0.2f Amps'%I2\n",
    "print 'i.e 25 mAmps'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_2 Page No.  150"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Total Current in the Mainline = 11 Amps\n"
     ]
    }
   ],
   "source": [
    "# An R1 of 20 Ohms\u0002, an R2 of 40 Ohms\u0002, and an R3 of 60 Ohms\u0002 are connected in parallel across the 120-V power line. Using Kirchhoff’s current law, determine the total current It.\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 20.#      # Resistor 1=20 Ohms\n",
    "R2 = 40.#      # Resistor 2=40 Ohms\n",
    "R3 = 60.#      # Resistor 3=60 Ohms\n",
    "Va = 120.#     # Applied Voltage=120 Volts\n",
    "\n",
    "I1 = Va/R1#\n",
    "I2 = Va/R2#\n",
    "I3 = Va/R3#\n",
    "\n",
    "It = I1+I2+I3\n",
    "print 'The Total Current in the Mainline = %0.f Amps'%It"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_3 Page No.  151"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Current in R2 branch = 5 Amps\n"
     ]
    }
   ],
   "source": [
    "# Two branches R1 and R2 across the 120-V power line draw a total line current It of 15 A. The R1 branch takes 10 A. How much is the current I2 in the R2 branch?\n",
    "\n",
    "# Given data\n",
    "\n",
    "I1 = 10#        # Current in R1 branch=10 Amps\n",
    "It = 15#        # Total Current=15 Amps\n",
    "\n",
    "I2 = It-I1#\n",
    "print 'The Current in R2 branch = %0.f Amps'%I2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_4 Page No.  152"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Total Current = 0.6008 Amps\n",
      "i.e 600.8 mAmps\n"
     ]
    }
   ],
   "source": [
    "# Three parallel branch currents are 0.1 A, 500 mA, and 800 \u0002A. Using Kirchhoff’s current law, calculate It.\n",
    "\n",
    "\n",
    "# Given data\n",
    "\n",
    "I1 = 0.1#              # Branch Current 1=0.1 Amps\n",
    "I2 = 0.5#              # Branch Current 2=500m Amps\n",
    "I3 = 800*10**-6#        # Branch Current 3=800u Amps\n",
    "\n",
    "It = I1+I2+I3#\n",
    "print 'The Total Current = %0.4f Amps'%It\n",
    "print 'i.e 600.8 mAmps'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_5 Page No.  153"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Equivalent Resistance Req = 9 Ohms\n"
     ]
    }
   ],
   "source": [
    "# Two branches, each with a 5-A current, are connected across a 90-V source. How much is the equivalent resistance Req?\n",
    "\n",
    "# Given data\n",
    "\n",
    "I1 = 5#      # Branch Current 1=5 Amps\n",
    "I2 = 5#      # Branch Current 2=5 Amps\n",
    "Va = 90#     # Applied Voltage=90 Volts\n",
    "\n",
    "It = I1+I2#\n",
    "Req = Va/It#\n",
    "print 'The Equivalent Resistance Req = %0.f Ohms'%Req"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_6 Page No.  158"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The Value of Rx = 60.00 Ohms\n"
     ]
    }
   ],
   "source": [
    "# What Rx in parallel with 40 Ohms\u0002 will provide an Req of 24 Ohms?\n",
    "\n",
    "# Given data\n",
    "\n",
    "R = 40.0#         # Resistance=40 Ohms\n",
    "Req = 24.0#       # Equivqlent Resistance=24 Ohms\n",
    "\n",
    "Rx = (R*Req)/(R-Req)#\n",
    "print 'The Value of Rx = %0.2f Ohms'%Rx"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example No. 5_7 Page No.  158"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of R = 50000 Ohms\n",
      "i.e 50 kohms\n"
     ]
    }
   ],
   "source": [
    "# What R in parallel with 50 kOhms will provide an Req of 25 kOhms\u0002\n",
    "\n",
    "# Given data\n",
    "\n",
    "R1 = 50*10**3#         # R1=50k Ohms\n",
    "Req = 25*10**3#       # Req=25k Ohms\n",
    "\n",
    "R = (R1*Req)/(R1-Req)#\n",
    "print 'The value of R = %0.f Ohms'%R\n",
    "print 'i.e 50 kohms'"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}